Charmed Hadron Decays at BESIII Liaoyuan Dong (For BESIII Collaboration) Institute of High Energy of Physics, Beijing, China ## **Outline** - \triangleright *D* semileptonic decays (data@ $\psi(3770)$) - Branching fraction of $D^+ \to K^- \pi^+ e^+ v_e$ and form factors - Branching fraction of $D^+ \rightarrow \omega(\phi)e^+v_e$ and form factors - Branching fraction of $D^+ \rightarrow K_L e^+ v_e$ and form factor - $\succ \Lambda_c^+$ hadronic and semileptonic decays (data@4600) - Branching fractions of 12 hadronic modes - Branching fraction of $\Lambda_c^+ \to \Lambda e^+ v_e$ charge conjugated modes are implied in this talk. ## The BESIII Detector NIM A614, 345 (2010) #### **Drift Chamber (MDC)** $\sigma P/P (^{0}/_{0}) = 0.5\%(1 \text{GeV})$ $\sigma_{dE/dx} (^{0}/_{0}) = 6\%$ #### **Time Of Flight (TOF)** σ_{τ} : 90 ps Barrel 110 ps endcap **Super-conducting** magnet (1.0 tesla) μCounter 8-9 layers RPC $\delta R\Phi = 1.4 \text{ cm}^2 1.7 \text{ cm}$ **EMC**: $\sigma E/VE(^{0}/_{0}) = 2.5 \% (1 \text{ GeV})$ $\sigma_{z,\phi}(cm) = 0.5 - 0.7 \text{ cm/VE}$ (CsI) # e⁺e⁻ annihilation samples in this talk - At $E_{cm} = 3.773 GeV$. Accumulated luminosity = 2920 pb⁻¹. $D^0 \overline{D}^0$ and $D^+ D^-$ are produced in pair at mass threshold. - At $E_{cm} = 4.6 GeV$, Accumulated luminosity = 567 pb⁻¹. $\Lambda_c^+ \Lambda_c^-$ are produced in pair at mass threshold. # **Analysis technique** - \triangleright Typically, two ways to obtain the D/ Λ_c yields: - **1.** Single Tag (ST): Find only one D/Λ_c . - 2. Double Tag (DT): Find both of them. - > Tags are selected based on two variables: $$\Delta E = E_{D/\Lambda_c} - E_{beam}, \ m_{BC} = \sqrt{E_{beam}^2 - |\vec{p}_{D/\Lambda_c}|^2}.$$ For semileptonic decays, to identify a missing neutrino, we adopt a kinematic variable: $U_{miss} = E_{miss} - c |\vec{p}_{miss}|$, E_{miss} and \vec{p}_{miss} are missing energy and momentum carried by the neutrino, respectively. ## Study of $D^+ \rightarrow K^- \pi^+ e^+ v_e$ #### **Purposes:** - Measure the branching fractions of $D^+ \to K^- \pi^+ e^+ v_e$ and $D^+ \to \overline{K}^{*0}(892) e^+ v_e$. - Measure the fractions and properties of different $K\pi$ (non-)resonant amplitudes. - Measure q^2 dependent transition form factors in $D^+ \to \overline{K}^{*0}(892)e^+v_e$ (q^2 is the invariant mass of e^+v_e). ### Tagged D^- decays(Six modes): ## Signal side $D^+ \to K^- \pi^+ e^+ v_e$ decays: $N_{D}^{\text{obs}} = 18262 \text{ (16181 in } K^* \text{ region)}$ is about 0.7% (0.4% in K^* region) background level Branching fractions results (preliminary): $$\mathbf{\mathcal{B}}(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.09)\%$$ $\mathbf{\mathcal{B}}(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.08)\%$ ## Amplitude Analysis of $D^+ o K^- \pi^+ e^+ v_e$ The differential decay width of the $D^+ \to K^-\pi^+e^+\nu_e$ decay can be described using: Phys. Rev. 137, B438 (1965) - $m_{K\pi}^2$ $K\pi$ mass square - $q^2 e^+ v_e$ mass square - θ_K , θ_e , χ angles ### Fit Results (preliminary) Non-resonant S-wave amplitude: Phase δ_S is parameterized as that defined in LASS scattering experiment [Nucl. Phys. B296, 493 (1988)] #### Fitted fractions of the components: $$f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$$ $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$ #### • Parameters of $\overline{K}^{*0}(892)$: $$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$ $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$ • Form factors of $D^+ \to \overline{K}^{*0}(892)e^+v_e$ by SPD model: $V(q^2) = \frac{V(0)}{1-q^2/m_V^2}, \ A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1-q^2/m_A^2}$ $$m_V = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^2 \text{ (first measurement)}$$ $m_A = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^2$ $$A_1(0) = 0.573 \pm 0.011 \pm 0.020$$ $$r_V = V(0)/A_1(0) = 1.411 \pm 0.058 \pm 0.007$$ $$r_2 = A_2(0)/A_1(0) = 0.788 \pm 0.042 \pm 0.008$$ ### **Model-Independent Measurement of S-wave Phase** We fit the phase in different $m_{K\pi}$ intervals, assuming δ_S remains constant within each interval. #### **Blue dots:** BESIII Model-independent measurement with $S+\bar{K}^{*0}(892)$ #### **Red and dotted lines:** Predicted by BESIII amplitude analysis based on LASS parameterization Nucl. Phys. B296, 493 (1988) #### **Green dots:** BABAR Model-independent measurement with S+ \overline{K}^{*0} (892) + \overline{K}^{*0} (1410) Phys. Rev. D 83, 072001 (2011) Model-independent measurements of BESIII are consistent with the results from BESIII amplitude analysis within 1σ . ### **Model-Independent Measurement of Form Factors** - Events located in the $K^{*0}(892)$ window [0.8,1] GeV/c², are used to measure the form factors by a Projective Weighting Technique. [Phys. Rev. D 81, 112001 (2010)] - Signal is assumed to be composed of $K^{*0}(892)$ and a non-resonant S-wave. - $D^+ \to \overline{K}^{*0}(892)e^+v_e$ decay can be described in terms of 3 helicity basis form factors: P-wave related: $H_{\pm,0}(q^2)$ S-wave related: $h_0(q^2)$ The model-independent measurements are generally consistent with CLEO's results. And they are also consistent with the predicted trend based on the SPD model from BESIII amplitude analysis. Red dots : BESIII model-independent measurement Black dots : CLEO model-independent measurement Blue Line: BESIII result from amplitude analysis, which is based on SPD model. ## Study of $D^+ \rightarrow \omega(\phi)e^+v_e$ #### Current status: Form factors in $D^+ \to \omega e^+ v_e$ have never been measured before. No significant excess of $D^+ \to \phi e^+ v_e$ is observed. ### U_{miss} distributions: Red dots: data. Black line: fit result, Blue area: total background, Green area: peaking background. Red dots: data, Black histogram: signal MC simulation, Arrows: signal region. #### Branching fractions are compared with the world average value. [PDG, Chin. Phys. C, 527 38, 090001 (2014)] | Mode | This work (prelimina | ary) Previous | |--------------------|---|---| | $\omega e^+ \nu_e$ | $(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$ | $(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$ | | $\phi e^+ \nu_e$ | $< 1.3 \times 10^{-5} \ (@90\%C.L.)$ | $< 9.0 \times 10^{-5} \ (@90\%C.L.)$ | ## Form Factors in $D^+ \rightarrow \omega e^+ v_e$ Form factors in $D^+ \to \omega e^+ v_e$ decay can be parameterized similarly as those in the $D^+ \to K^- \pi^+ e^+ v_e$ decay. #### **Results of form factor parameters (preliminary):** $$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$$ $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$ ## Study of $D^+ o K_L e^+ v_e$ Experimental study of $D^+ \to K_L e^+ \nu_e$ is important to test - the theoretical calculation of $A_{CP}^{D^+ \to K_L e^+ \nu}$ e. - the LQCD calculation on $f_+^K(0)$, - and the unitarity of the CKM matrix. ### We study the $D^+ \to K_L e^+ v_e$ decays for the first time. ### **Branching fractions:** • Branching fractions are calculated separately for each charm and tag mode using: $$\mathcal{B}_{\text{sig}} = \frac{N_{\text{DT}}(1 - f_{\text{bkg}}^{\text{peak}})}{\epsilon N_{\text{ST}}}$$ CP asymmetry is determined using: $$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)} \qquad \frac{-}{D^+}$$ ### **Results (preliminary):** $$\mathcal{B}(D^+ \to K_L e^+ \nu_e) = (4.482 \pm 0.027 \pm 0.103)\%$$ $$A_{CP}^{D^+ \to K_L e^+ \nu_e} = (-0.59 \pm 0.60 \pm 1.50)\%$$ | | | | | - "e\" = | | |-----------------------------------|------------------|----------------|----------------------------|------------------|----------------------------| | | | $D^+ o K_L^0$ | $e^+ \nu_e$ | pre _ | | | Tag Mode | $N_{ m ST}$ | $N_{ m DT}$ | $f_{ m bkg}^{ m peak}(\%)$ | $\epsilon(\%)$ | $\mathcal{B}_{ m sig}(\%)$ | | $D^- \to K^+ \pi^- \pi^-$ | 410200 ± 670 | 10492 ± 103 | 41.83 ± 0.28 | 33.96 ± 0.10 | 4.381 ± 0.050 | | $D^- \to K^+ \pi^- \pi^- \pi^0$ | 120060 ± 457 | 3324 ± 64 | 44.78 ± 0.49 | 33.14 ± 0.19 | 4.613 ± 0.103 | | $D^- \to K_S^0 \pi^- \pi^0$ | 102136 ± 378 | 2658 ± 56 | 38.93 ± 0.58 | 35.67 ± 0.21 | 4.456 ± 0.108 | | $D^- \to K_S^0 \pi^- \pi^- \pi^+$ | 59158 ± 303 | 1459 ± 41 | 40.84 ± 0.76 | 32.51 ± 0.27 | 4.488 ± 0.145 | | $D^- \to K_S^0 \pi^-$ | 47921 ± 225 | 1287 ± 36 | 38.90 ± 0.88 | 35.07 ± 0.32 | 4.679 ± 0.155 | | $D^- \rightarrow K^+ K^- \pi^-$ | 35349 ± 239 | 905 ± 32 | 44.64 ± 0.97 | 30.98 ± 0.35 | 4.575 ± 0.190 | | Averaged | | | | | 4.455 ± 0.038 | | | | $D^- o K_L^0$ | $e^-\bar{\nu}_e$ | | | |-------------------------------------|------------------|----------------|----------------------------|------------------|----------------------------------| | Tag Mode | $N_{ m ST}$ | $N_{ m DT}$ | $f_{ m bkg}^{ m peak}(\%)$ | $\epsilon(\%)$ | $\mathcal{B}_{\mathrm{sig}}(\%)$ | | $D^+ \to K^- \pi^+ \pi^+$ | 407666 ± 668 | 10354 ± 103 | 40.44 ± 0.29 | 34.02 ± 0.11 | 4.447 ± 0.051 | | $D^+ \to K^-\pi^+\pi^+\pi^0$ | 117555 ± 450 | 3264 ± 63 | 42.28 ± 0.52 | 33.19 ± 0.19 | 4.829 ± 0.107 | | $D^+ \rightarrow K_S^0 \pi^+ \pi^0$ | 101824 ± 378 | 2642 ± 55 | 39.06 ± 0.58 | 35.92 ± 0.21 | 4.402 ± 0.104 | | $D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$ | 59046 ± 303 | 1533 ± 42 | 39.68 ± 0.77 | 33.44 ± 0.27 | 4.683 ± 0.147 | | $D^+ \to K_S^0 \pi^+$ | 48240 ± 226 | 1217 ± 35 | 38.50 ± 0.88 | 35.20 ± 0.32 | 4.408 ± 0.147 | | $D^+ \to K^+ K^- \pi^+$ | 35742 ± 240 | 942 ± 32 | 44.04 ± 0.95 | 32.40 ± 0.36 | 4.552 ± 0.181 | | Averaged | | | | | 4.508 ± 0.038 | | | | | | | | ### Form Factor in $D^+ o K_L e^+ v_e$ Signal shape of q^2 distribution can be described using $$\frac{dn_{\text{observed}}}{dq^2} = AN_{\text{tag}}p^3(q'^2)|f_+(q'^2)|^2\epsilon(q'^2)\otimes\sigma(q'^2,q^2)$$ 2-par. Series Expansion is used for form factor $f_+(q^2)$: [Becher and Hill, Phys. Lett. B 633, 61 (2006) $$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2}, t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2}, t_{0})\right]^{k}$$ Simultaneous fit to q^2 distributions of observed DT candidates: **Results (preliminary):** $f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$, $r_{1} \equiv a_{1}/a_{0} = -1.91 \pm 0.33 \pm 0.24$ ## Measurements of Λ_c^{\pm} Hadronic Branching Fractions Absolute branching fractions of Λ_c^+ decays are still not well determined. Belle measurement: $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$. PRL 113(2014) 042002 Measurement using the threshold pair-productions via e^+e^- annihilation is unique: the most simple and straightforward. 2.28 2.29 2. M_{BC}(GeV/c²) $M_{BC}(GeV/c^2)$ $M_{BC}(GeV/c^2)$ $M_{BC}(GeV/c^2)$ ### DT yields in data $M_{RC}(GeV/c^2)$ $$N_{-j}^{DT} = \sum_{i^+ \neq j} N_{i^+j^-}^{DT} + \sum_{i^- \neq j} N_{i^-j^+}^{DT} + N_{jj}^{DT}$$ Where, $N_{i+j^-}^{DT}$ is the DT yield with $\Lambda_c^+ \rightarrow$ i and $\Lambda_c^- \rightarrow$ j. with $\Lambda_c^+ \rightarrow i$ and $\Lambda_c^- \rightarrow j$. $M_{RC}(GeV/c^2)$ $M_{RC}(GeV/c^2)$ $M_{BC}(GeV/c^2)$ #### **B€S**III preliminary | Decay modes | N_{-j}^{DT} | |-----------------------------|---------------| | pK_S | 89 ± 10 | | $pK^-\pi^+$ | 390 ± 21 | | $pK_S\pi^0$ | 40 ± 7 | | $pK_S\pi^+\pi^-$ | 29 ± 6 | | $pK^-\pi^+\pi^0$ | 148 ± 14 | | $\Lambda \pi^+$ | 59 ± 8 | | $\Lambda \pi^+ \pi^0$ | 89 ± 11 | | $\Lambda \pi^+ \pi^- \pi^+$ | 53 ± 7 | | $\Sigma^0\pi^+$ | 39 ± 6 | | $\Sigma^+\pi^0$ | 20 ± 5 | | $\Sigma^+\pi^+\pi^-$ | 56 ± 8 | | $\Sigma^+\omega$ | 13 ± 3 | ## Hadronic branching fraction results (preliminary) We perform a simultaneous fit to all tag modes while constraining the total Λ_c^+ pair number, taking into account the correlations. | Decay modes § | global fit ${\cal B}$ | $\operatorname{PDG} \mathcal{B}$ | Belle \mathcal{B} | |-----------------------------|-----------------------|----------------------------------|--| | oK_S | 1.48 ± 0.08 | 1.15 ± 0.30 | | | $\rho K^-\pi^+$ | 5.77 ± 0.27 | 5.0 ± 1.3 | $6.84 \pm 0.24^{+0.21}_{-0.27}$ | | $ ho K_S \pi^0$ | 1.77 ± 0.12 | 1.65 ± 0.50 | | | D · · · · · | 1.43 ± 0.10 | 1.30 ± 0.35 | | | $\rho K^-\pi^+\pi^0$ | 4.25 ± 0.22 | 3.4 ± 1.0 | $\checkmark \mathcal{B}(pK^-\pi^+)$: BESIII | | $\Lambda \pi^+$ | 1.20 ± 0.07 | 1.07 ± 0.28 | precision comparable with | | $\Lambda \pi^+ \pi^0$ | 6.70 ± 0.35 | 3.6 ± 1.3 | _ | | $\Lambda \pi^+ \pi^- \pi^+$ | 3.67 ± 0.23 | 2.6 ± 0.7 | Belle's result | | $\Sigma^0\pi^+$ | 1.28 ± 0.08 | 1.05 ± 0.28 | ✓ BESIII rate $\mathcal{B}(pK^-\pi^+)$ is | | $\Sigma^{+}\pi^{0}$ | 1.18 ± 0.11 | 1.00 ± 0.34 | × 2 | | $\Sigma^{+}\pi^{+}\pi^{-}$ | 3.58 ± 0.22 | 3.6 ± 1.0 | smaller | | $\Xi^+\omega$ | 1.47 ± 0.18 | 2.7 ± 1.0 | ✓ Improved precisions of the | | - | | | | stat. errors only other 11 modes significantly ### Measurement of the Branching Fraction for $\Lambda_c^+ \to \Lambda e^+ v_e$ ### Measuring $\Lambda_{\rm c}^+ o \Lambda e^+ v_e$ will provide experimental information for - testing the theoretical predication for $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ v_e)$, - and calibrating the LQCD calculations. ### We perform the first absolute measurement of $\mathcal{B}(\Lambda_{\mathrm{c}}^+ \to \Lambda e^+ v_e)$. subtraction of backgrounds: - non-ST events: negligible - Λ sidebands: 1.4±0.8 - $\Lambda \mu^+ \nu + \Lambda \pi^+ \pi^0 + \Lambda \pi^+ = 4.5 \pm 0.5$ - \rightarrow signal yields: 103.5 \pm 10.9 Result (preliminary): $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ v_e) = (3.63 \pm 0.38 \pm 0.??)\%$ scaled PDG **(2.9±0.5)%** - Statistics limited measurement. - → systematic error smaller than statistical error - Best precision to date: twofold improvement ### **Other Results** - $\rightarrow D^+ \rightarrow \mu^+ \nu_\mu$ (Phys. Rev. D **89**, 051104(R) (2014)) - $ightharpoonup D^+ o K_S^0 \pi^+ \pi^0$ (Phys. Rev. D **89**, 052001 (2014)) - $ightharpoonup D^0 o K^- e^+ v_e$ and $D^0 o \pi^- e^+ v_e$ (to be submitted soon) - > Strong phase difference in $D^0 \to K^-\pi^+$ (Phys. Lett. B **734**, 227(2014)) - $> y_{cp} \text{ in } D^0 \overline{D}^0 \text{ oscillation (Phys. Lett. B$ **744** $, 339 (2015)) }$ - \triangleright BF of D^{*0} decay (Phys. Rev. D **91**, 031101(R) (2015)) - $ightharpoonup BF(D_S^+ \to \eta' X) \text{ and } BF(D_S^+ \to \eta' \rho^+) \text{ (arXiv:1506.08952 [hep-ex])}$ # Summary - 1. BESIII released many new results with the world largest D meson sample at $\psi(3770)$. - 2. BESIII started study of Λ_c^+ decays using the world largest data at Λ_c^+ -pair threshold (4.6GeV). - 3. BESIII will take 3 fb⁻¹ data at 4.17GeV in 2016 to study the D_S^+ decays. - 4. Many new exciting results are on their way ! # Thank you!