

Charmed Hadron Decays at BESIII

Liaoyuan Dong (For BESIII Collaboration)

Institute of High Energy of Physics, Beijing, China

Outline

- \triangleright *D* semileptonic decays (data@ $\psi(3770)$)
 - Branching fraction of $D^+ \to K^- \pi^+ e^+ v_e$ and form factors
 - Branching fraction of $D^+ \rightarrow \omega(\phi)e^+v_e$ and form factors
 - Branching fraction of $D^+ \rightarrow K_L e^+ v_e$ and form factor
- $\succ \Lambda_c^+$ hadronic and semileptonic decays (data@4600)
 - Branching fractions of 12 hadronic modes
 - Branching fraction of $\Lambda_c^+ \to \Lambda e^+ v_e$

charge conjugated modes are implied in this talk.

The BESIII Detector

NIM A614, 345 (2010)

Drift Chamber (MDC)

 $\sigma P/P (^{0}/_{0}) = 0.5\%(1 \text{GeV})$

 $\sigma_{dE/dx} (^{0}/_{0}) = 6\%$

Time Of Flight (TOF)

 σ_{τ} : 90 ps Barrel 110 ps endcap

Super-conducting magnet (1.0 tesla) μCounter

8-9 layers RPC

 $\delta R\Phi = 1.4 \text{ cm}^2 1.7 \text{ cm}$

EMC: $\sigma E/VE(^{0}/_{0}) = 2.5 \% (1 \text{ GeV})$

 $\sigma_{z,\phi}(cm) = 0.5 - 0.7 \text{ cm/VE}$ (CsI)

e⁺e⁻ annihilation samples in this talk

- At $E_{cm} = 3.773 GeV$. Accumulated luminosity = 2920 pb⁻¹. $D^0 \overline{D}^0$ and $D^+ D^-$ are produced in pair at mass threshold.
- At $E_{cm} = 4.6 GeV$, Accumulated luminosity = 567 pb⁻¹. $\Lambda_c^+ \Lambda_c^-$ are produced in pair at mass threshold.

Analysis technique

- \triangleright Typically, two ways to obtain the D/ Λ_c yields:
 - **1.** Single Tag (ST): Find only one D/Λ_c .
 - 2. Double Tag (DT): Find both of them.
- > Tags are selected based on two variables:

$$\Delta E = E_{D/\Lambda_c} - E_{beam}, \ m_{BC} = \sqrt{E_{beam}^2 - |\vec{p}_{D/\Lambda_c}|^2}.$$

For semileptonic decays, to identify a missing neutrino, we adopt a kinematic variable: $U_{miss} = E_{miss} - c |\vec{p}_{miss}|$,

 E_{miss} and \vec{p}_{miss} are missing energy and momentum carried by the neutrino, respectively.

Study of $D^+ \rightarrow K^- \pi^+ e^+ v_e$

Purposes:

- Measure the branching fractions of $D^+ \to K^- \pi^+ e^+ v_e$ and $D^+ \to \overline{K}^{*0}(892) e^+ v_e$.
- Measure the fractions and properties of different $K\pi$ (non-)resonant amplitudes.
- Measure q^2 dependent transition form factors in $D^+ \to \overline{K}^{*0}(892)e^+v_e$ (q^2 is the invariant mass of e^+v_e).

Tagged D^- decays(Six modes):

Signal side $D^+ \to K^- \pi^+ e^+ v_e$ decays:

 $N_{D}^{\text{obs}} = 18262 \text{ (16181 in } K^* \text{ region)}$

is about 0.7% (0.4% in K^* region)

background level

Branching fractions results (preliminary):

$$\mathbf{\mathcal{B}}(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.09)\%$$

 $\mathbf{\mathcal{B}}(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.08)\%$

Amplitude Analysis of $D^+ o K^- \pi^+ e^+ v_e$

The differential decay width of the $D^+ \to K^-\pi^+e^+\nu_e$ decay can be described using: Phys. Rev. 137, B438 (1965)

- $m_{K\pi}^2$ $K\pi$ mass square
- $q^2 e^+ v_e$ mass square
- θ_K , θ_e , χ angles

Fit Results (preliminary)

Non-resonant S-wave amplitude: Phase δ_S is parameterized as that defined in LASS scattering experiment [Nucl. Phys. B296, 493 (1988)]

Fitted fractions of the components:

$$f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$$

 $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

• Parameters of $\overline{K}^{*0}(892)$:

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$

 $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$

• Form factors of $D^+ \to \overline{K}^{*0}(892)e^+v_e$ by SPD model: $V(q^2) = \frac{V(0)}{1-q^2/m_V^2}, \ A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1-q^2/m_A^2}$

$$m_V = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^2 \text{ (first measurement)}$$

 $m_A = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^2$

$$A_1(0) = 0.573 \pm 0.011 \pm 0.020$$

$$r_V = V(0)/A_1(0) = 1.411 \pm 0.058 \pm 0.007$$

$$r_2 = A_2(0)/A_1(0) = 0.788 \pm 0.042 \pm 0.008$$

Model-Independent Measurement of S-wave Phase

We fit the phase in different $m_{K\pi}$ intervals, assuming δ_S remains constant within each interval.

Blue dots:

BESIII Model-independent measurement with $S+\bar{K}^{*0}(892)$

Red and dotted lines:

Predicted by BESIII amplitude analysis based on LASS parameterization
Nucl. Phys. B296, 493 (1988)

Green dots:

BABAR Model-independent measurement with S+ \overline{K}^{*0} (892) + \overline{K}^{*0} (1410) Phys. Rev. D 83, 072001 (2011)

Model-independent measurements of BESIII are consistent with the results from BESIII amplitude analysis within 1σ .

Model-Independent Measurement of Form Factors

- Events located in the $K^{*0}(892)$ window [0.8,1] GeV/c², are used to measure the form factors by a Projective Weighting Technique. [Phys. Rev. D 81, 112001 (2010)]
- Signal is assumed to be composed of $K^{*0}(892)$ and a non-resonant S-wave.
- $D^+ \to \overline{K}^{*0}(892)e^+v_e$ decay can be described in terms of 3 helicity basis form factors:

P-wave related: $H_{\pm,0}(q^2)$

S-wave related: $h_0(q^2)$

The model-independent measurements are generally consistent with CLEO's results. And they are also consistent with the predicted trend based on the SPD model from BESIII amplitude analysis.

Red dots : BESIII model-independent measurement

Black dots : CLEO model-independent measurement

Blue Line: BESIII result from amplitude analysis,

which is based on SPD model.

Study of $D^+ \rightarrow \omega(\phi)e^+v_e$

Current status:

Form factors in $D^+ \to \omega e^+ v_e$ have never been measured before. No significant excess of $D^+ \to \phi e^+ v_e$ is observed.

U_{miss} distributions:

Red dots: data.

Black line: fit result,

Blue area: total background,

Green area: peaking background.

Red dots: data,

Black histogram: signal MC simulation,

Arrows: signal region.

Branching fractions are compared with the world average value.

[PDG, Chin. Phys. C, 527 38, 090001 (2014)]

Mode	This work (prelimina	ary) Previous
$\omega e^+ \nu_e$	$(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$
$\phi e^+ \nu_e$	$< 1.3 \times 10^{-5} \ (@90\%C.L.)$	$< 9.0 \times 10^{-5} \ (@90\%C.L.)$

Form Factors in $D^+ \rightarrow \omega e^+ v_e$

Form factors in $D^+ \to \omega e^+ v_e$ decay can be parameterized similarly as those in the $D^+ \to K^- \pi^+ e^+ v_e$ decay.

Results of form factor parameters (preliminary):

$$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

Study of $D^+ o K_L e^+ v_e$

Experimental study of $D^+ \to K_L e^+ \nu_e$ is important to test

- the theoretical calculation of $A_{CP}^{D^+ \to K_L e^+ \nu}$ e.
- the LQCD calculation on $f_+^K(0)$,
- and the unitarity of the CKM matrix.

We study the $D^+ \to K_L e^+ v_e$ decays for the first time.

Branching fractions:

• Branching fractions are calculated separately for each charm and tag mode using:

$$\mathcal{B}_{\text{sig}} = \frac{N_{\text{DT}}(1 - f_{\text{bkg}}^{\text{peak}})}{\epsilon N_{\text{ST}}}$$

CP asymmetry is determined using:

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)} \qquad \frac{-}{D^+}$$

Results (preliminary):

$$\mathcal{B}(D^+ \to K_L e^+ \nu_e) = (4.482 \pm 0.027 \pm 0.103)\%$$

$$A_{CP}^{D^+ \to K_L e^+ \nu_e} = (-0.59 \pm 0.60 \pm 1.50)\%$$

				- "e\" =	
		$D^+ o K_L^0$	$e^+ \nu_e$	pre _	
Tag Mode	$N_{ m ST}$	$N_{ m DT}$	$f_{ m bkg}^{ m peak}(\%)$	$\epsilon(\%)$	$\mathcal{B}_{ m sig}(\%)$
$D^- \to K^+ \pi^- \pi^-$	410200 ± 670	10492 ± 103	41.83 ± 0.28	33.96 ± 0.10	4.381 ± 0.050
$D^- \to K^+ \pi^- \pi^- \pi^0$	120060 ± 457	3324 ± 64	44.78 ± 0.49	33.14 ± 0.19	4.613 ± 0.103
$D^- \to K_S^0 \pi^- \pi^0$	102136 ± 378	2658 ± 56	38.93 ± 0.58	35.67 ± 0.21	4.456 ± 0.108
$D^- \to K_S^0 \pi^- \pi^- \pi^+$	59158 ± 303	1459 ± 41	40.84 ± 0.76	32.51 ± 0.27	4.488 ± 0.145
$D^- \to K_S^0 \pi^-$	47921 ± 225	1287 ± 36	38.90 ± 0.88	35.07 ± 0.32	4.679 ± 0.155
$D^- \rightarrow K^+ K^- \pi^-$	35349 ± 239	905 ± 32	44.64 ± 0.97	30.98 ± 0.35	4.575 ± 0.190
Averaged					4.455 ± 0.038

		$D^- o K_L^0$	$e^-\bar{\nu}_e$		
Tag Mode	$N_{ m ST}$	$N_{ m DT}$	$f_{ m bkg}^{ m peak}(\%)$	$\epsilon(\%)$	$\mathcal{B}_{\mathrm{sig}}(\%)$
$D^+ \to K^- \pi^+ \pi^+$	407666 ± 668	10354 ± 103	40.44 ± 0.29	34.02 ± 0.11	4.447 ± 0.051
$D^+ \to K^-\pi^+\pi^+\pi^0$	117555 ± 450	3264 ± 63	42.28 ± 0.52	33.19 ± 0.19	4.829 ± 0.107
$D^+ \rightarrow K_S^0 \pi^+ \pi^0$	101824 ± 378	2642 ± 55	39.06 ± 0.58	35.92 ± 0.21	4.402 ± 0.104
$D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$	59046 ± 303	1533 ± 42	39.68 ± 0.77	33.44 ± 0.27	4.683 ± 0.147
$D^+ \to K_S^0 \pi^+$	48240 ± 226	1217 ± 35	38.50 ± 0.88	35.20 ± 0.32	4.408 ± 0.147
$D^+ \to K^+ K^- \pi^+$	35742 ± 240	942 ± 32	44.04 ± 0.95	32.40 ± 0.36	4.552 ± 0.181
Averaged					4.508 ± 0.038

Form Factor in $D^+ o K_L e^+ v_e$

Signal shape of q^2 distribution can be described using

$$\frac{dn_{\text{observed}}}{dq^2} = AN_{\text{tag}}p^3(q'^2)|f_+(q'^2)|^2\epsilon(q'^2)\otimes\sigma(q'^2,q^2)$$

2-par. Series Expansion is used for form factor $f_+(q^2)$:

[Becher and Hill, Phys. Lett. B 633, 61 (2006)
$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2}, t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2}, t_{0})\right]^{k}$$

Simultaneous fit to q^2 distributions of observed DT candidates:

Results (preliminary):

 $f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$, $r_{1} \equiv a_{1}/a_{0} = -1.91 \pm 0.33 \pm 0.24$

Measurements of Λ_c^{\pm} Hadronic Branching Fractions

Absolute branching fractions of Λ_c^+ decays are still not well determined.

Belle measurement: $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$. PRL 113(2014) 042002

Measurement using the threshold pair-productions via e^+e^- annihilation is unique: the most simple and straightforward.

2.28 2.29 2. M_{BC}(GeV/c²)

 $M_{BC}(GeV/c^2)$

 $M_{BC}(GeV/c^2)$

 $M_{BC}(GeV/c^2)$

DT yields in data

 $M_{RC}(GeV/c^2)$

$$N_{-j}^{DT} = \sum_{i^+ \neq j} N_{i^+j^-}^{DT} + \sum_{i^- \neq j} N_{i^-j^+}^{DT} + N_{jj}^{DT}$$
 Where, $N_{i+j^-}^{DT}$ is the DT yield with $\Lambda_c^+ \rightarrow$ i and $\Lambda_c^- \rightarrow$ j.

with $\Lambda_c^+ \rightarrow i$ and $\Lambda_c^- \rightarrow j$.

 $M_{RC}(GeV/c^2)$

 $M_{RC}(GeV/c^2)$

 $M_{BC}(GeV/c^2)$

B€SIII preliminary

Decay modes	N_{-j}^{DT}
pK_S	89 ± 10
$pK^-\pi^+$	390 ± 21
$pK_S\pi^0$	40 ± 7
$pK_S\pi^+\pi^-$	29 ± 6
$pK^-\pi^+\pi^0$	148 ± 14
$\Lambda \pi^+$	59 ± 8
$\Lambda \pi^+ \pi^0$	89 ± 11
$\Lambda \pi^+ \pi^- \pi^+$	53 ± 7
$\Sigma^0\pi^+$	39 ± 6
$\Sigma^+\pi^0$	20 ± 5
$\Sigma^+\pi^+\pi^-$	56 ± 8
$\Sigma^+\omega$	13 ± 3

Hadronic branching fraction results (preliminary)

We perform a simultaneous fit to all tag modes while constraining the total Λ_c^+ pair number, taking into account the correlations.

Decay modes §	global fit ${\cal B}$	$\operatorname{PDG} \mathcal{B}$	Belle \mathcal{B}
oK_S	1.48 ± 0.08	1.15 ± 0.30	
$\rho K^-\pi^+$	5.77 ± 0.27	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$ ho K_S \pi^0$	1.77 ± 0.12	1.65 ± 0.50	
D · · · · ·	1.43 ± 0.10	1.30 ± 0.35	
$\rho K^-\pi^+\pi^0$	4.25 ± 0.22	3.4 ± 1.0	$\checkmark \mathcal{B}(pK^-\pi^+)$: BESIII
$\Lambda \pi^+$	1.20 ± 0.07	1.07 ± 0.28	precision comparable with
$\Lambda \pi^+ \pi^0$	6.70 ± 0.35	3.6 ± 1.3	_
$\Lambda \pi^+ \pi^- \pi^+$	3.67 ± 0.23	2.6 ± 0.7	Belle's result
$\Sigma^0\pi^+$	1.28 ± 0.08	1.05 ± 0.28	✓ BESIII rate $\mathcal{B}(pK^-\pi^+)$ is
$\Sigma^{+}\pi^{0}$	1.18 ± 0.11	1.00 ± 0.34	× 2
$\Sigma^{+}\pi^{+}\pi^{-}$	3.58 ± 0.22	3.6 ± 1.0	smaller
$\Xi^+\omega$	1.47 ± 0.18	2.7 ± 1.0	✓ Improved precisions of the
-			

stat. errors only

other 11 modes significantly

Measurement of the Branching Fraction for $\Lambda_c^+ \to \Lambda e^+ v_e$

Measuring $\Lambda_{\rm c}^+ o \Lambda e^+ v_e$ will provide experimental information for

- testing the theoretical predication for $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ v_e)$,
- and calibrating the LQCD calculations.

We perform the first absolute measurement of $\mathcal{B}(\Lambda_{\mathrm{c}}^+ \to \Lambda e^+ v_e)$.

subtraction of backgrounds:

- non-ST events: negligible
- Λ sidebands: 1.4±0.8
- $\Lambda \mu^+ \nu + \Lambda \pi^+ \pi^0 + \Lambda \pi^+ = 4.5 \pm 0.5$
- \rightarrow signal yields: 103.5 \pm 10.9

Result (preliminary): $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ v_e) = (3.63 \pm 0.38 \pm 0.??)\%$

scaled PDG **(2.9±0.5)%**

- Statistics limited measurement.
 - → systematic error smaller than statistical error
- Best precision to date: twofold improvement

Other Results

- $\rightarrow D^+ \rightarrow \mu^+ \nu_\mu$ (Phys. Rev. D **89**, 051104(R) (2014))
- $ightharpoonup D^+ o K_S^0 \pi^+ \pi^0$ (Phys. Rev. D **89**, 052001 (2014))
- $ightharpoonup D^0 o K^- e^+ v_e$ and $D^0 o \pi^- e^+ v_e$ (to be submitted soon)
- > Strong phase difference in $D^0 \to K^-\pi^+$ (Phys. Lett. B **734**, 227(2014))
- $> y_{cp} \text{ in } D^0 \overline{D}^0 \text{ oscillation (Phys. Lett. B$ **744** $, 339 (2015)) }$
- \triangleright BF of D^{*0} decay (Phys. Rev. D **91**, 031101(R) (2015))
- $ightharpoonup BF(D_S^+ \to \eta' X) \text{ and } BF(D_S^+ \to \eta' \rho^+) \text{ (arXiv:1506.08952 [hep-ex])}$

Summary

- 1. BESIII released many new results with the world largest D meson sample at $\psi(3770)$.
- 2. BESIII started study of Λ_c^+ decays using the world largest data at Λ_c^+ -pair threshold (4.6GeV).
- 3. BESIII will take 3 fb⁻¹ data at 4.17GeV in 2016 to study the D_S^+ decays.
- 4. Many new exciting results are on their way !

Thank you!