

S-wave charmonium decays at BESIII

LI Gang
(for the collaboration of BESIII)

Institute of High Energy Physics, Beijing, China
QWG2011, Darmstadt, Oct 4-7, 2011

OUTLINE

- Introduction
- Latest results on S-wave charmonium decays
 - \checkmark J/ ψ → ppbar, nnbar \checkmark J/ ψ →3 π
 - $\checkmark \psi' \rightarrow \gamma P \text{ decay}$
 - $\sqrt{\eta_c} \rightarrow VV$
 - $\langle \eta_c \rightarrow PP \rangle$
- Summary

BESIII Detector

BESIIII detector: all new!

CsI calorimeter
Precision tracking
Time-of-flight + dE/dx PID

Magnet: 1 T Super conducting

Data samples

So far BESIII has collected :

- 2009: 106 Million ψ'
- 2009: 225 Million J/ψ
- 2010-11: 2.9 fb⁻¹ ψ (3770) (3.5 × CLEO-c 0.818fb⁻¹)
- May 2011: 0.5fb⁻¹ @4009 MeV for Ds and XYZ spectroscopy

BESIII will also collect:

- more J/ψ, ψ', ψ(3770)
- data at higher energies (for XYZ searches, R and Ds physics)

Measurements of $J/\psi \rightarrow \bar{p}p$, $\bar{n}n$

pQCD → both amplitudes real

$$R = \frac{Br(J/\psi \to n\overline{n})}{Br(J/\psi \to p\overline{p})} = \left| \frac{A_{3g} + A_{\gamma}^{n}}{A_{3g} + A_{\gamma}^{p}} \right|^{2}$$

$$A_{3g}$$
, $A_{\gamma} \ni \Re$ R << 1
 $A_{3g} \perp A_{\gamma}$ R ≈ 1

High precision

□ BESII: $Br(J/\psi \rightarrow p\bar{p}) = (2.26 \pm 0.01 \pm 0.14) \times 10^{-3} (PLB591,42)$

☐ FENICE: $Br(J/\psi \rightarrow n\bar{n}) = (2.31 \pm 0.49) \times 10^{-3} (PLB444,111)$

Suffering from a large error

Preliminary results of $J/\psi \rightarrow p\bar{p}$, $n\bar{n}$

 $J/\psi \rightarrow p\bar{n}\pi^{-}$ control sample

BESIII Preliminary Results

$$B(J/\psi \rightarrow n\pi) = (2.07 \pm 0.01 \pm 0.14) \cdot 10^{-3}$$

B(J /
$$\psi$$
 \rightarrow pp) = (2.112 \pm 0.004 \pm 0.027)·10⁻³

PDG

$$B(J/\psi \rightarrow n\bar{n}) = (2.2 \pm 0.4) \cdot 10^{-3}$$

B(J/
$$\psi \rightarrow p\bar{p}$$
) =(2.17 ± 0.07)·10⁻³

$$B(J/\psi \rightarrow n\bar{n}) \approx B(J/\psi \rightarrow p\bar{p})$$

a phase $\sim 90^\circ$ between strong and e.m. amplitud

Measuring the phase between strong and em amplitudes

both interfere differently with non-resonant continuum

Proposed:

J/ψ line-shape scan

Look for interference pattern

(model independent)

J/ψ , $\psi'\rightarrow 3\pi$

3π is the largest hadronic decay modes of J/ψ
 B(J/ψ→3π)=(2.07±0.12)%

Highly suppressed in ψ' decays
 B(ψ'→3π)=(0.00168±0.0026)%
 (large error due to limited statistics)

R= B(
$$\psi' \rightarrow 3\pi$$
)/ B(J/ $\psi \rightarrow 3\pi$) <1%<<12% $\rightarrow \rho \pi$ puzzle

The puzzle can be investigated based on 106M ψ' and 225M J/ψ at BESIII

J/ψ , $\psi'\rightarrow 3\pi$

Violating the 12% rule

 $(1.00 \pm 0.01 \ (stat.)^{+0.06}_{-0.05} \ (syst.))\%$

PWA will be performed

to investigate the intermediate resonances

$\psi' \rightarrow \gamma P(\pi^0, \eta, \eta')$, arise surprises

V $\rightarrow\gamma$ P are important tests for various mechanisms: Vector meson Dominance Model (VDM); Couplings & form factor; Mixing of η-η'(-η_c); FSR by light quarks; 12% rule and "ρ π puzzle".

$$R_{(c\bar{c})} = \frac{Br((c\bar{c}) \rightarrow \gamma \eta)}{Br((c\bar{c}) \rightarrow \gamma \eta')}$$
 $LO\text{-pQCD}$
 $\downarrow \downarrow$
 $R_{\Psi'} \simeq R_{J/\Psi}$
PRP 112,173 (1984)

CLEO-c: J/
$$\psi$$
, ψ' , $\psi'' \rightarrow \gamma$ P

 $R_{J/\psi} = (21.1 \pm 0.9)\%$
No Evidence for $\psi' \rightarrow \gamma \pi^0$ or $\gamma \eta$
 $Br(\psi' \rightarrow \gamma \eta') = (1.19 \pm 0.09)\%$
 $R_{\psi'} < 1.8\%$ at 90% CL

 $R_{\psi'} < R_{J/\psi}$

PRD 79, 111101 (2009)

$\psi \rightarrow \gamma P at BESIII PRL 105, 261801 (2010)$

$$R_{\psi} = 1.10 \pm 0.38 \pm 0.07\% << R_{J/\psi}$$

Mode	B(ψ') [x10 ⁻⁶]	B(J/ψ) [x10 ⁻⁴]	Q (%)
$\gamma \pi^0$	1.58±0.42	0.35±0.03	4.5 ± 1.3
γη	1.38±0.49	11.04±0.34	0.13 ± 0.04
γη'	126±9	52.8±1.5	2.4 ± 0.2

Possible interpretation: Q. Zhao, Phys. Lett. B697, 52 (2011)

Search for $\eta'_c \rightarrow VV$

- First reported by Crystal Ball in 1982 from radiative decay of $\psi \prime$
 - $M_{\eta_c(2S)} = 3.592 \text{ GeV}/c^2$
 - $\triangleright \mathcal{B}(\psi\prime \rightarrow \gamma\eta_c(2S)) = 0.2\% \sim 1.3\%$
- Published results about $\eta_c(2S)$:

$$\blacktriangleright$$
 $B^{\pm} \rightarrow K^{\pm} \eta_c(2S), \eta_c(2S) \rightarrow K_S K^{\pm} \pi^{\mp}$

Belle

$$\gamma \gamma \rightarrow \eta_c(2S) \rightarrow K_S K^{\pm} \pi^{\mp}$$

CLEO

$$\gamma \gamma \rightarrow \eta_c(2S) \rightarrow K_S K^{\pm} \pi^{\mp}$$

BaBar

•
$$e^+e^- \rightarrow J/\psi c\bar{c}$$

BaBar

- Averaged value:
 - $M_{\eta_c(2S)} = 3638.1 \pm 1.5 \text{ MeV}/c^2$
 - $\Gamma_{\eta_c(2S)} = 12.3 \pm 3.1 \text{ MeV}/c^2$
- BESIII: $\mathcal{B}(\psi \prime \to \gamma \eta_c(2S)) = 4.4 \pm 0.9 \pm 2.8 \times 10^{-4}$

Talk of H.Liu

- $\eta'_c \rightarrow VV$ supposed to be highly suppressed by HSR
- High decay rate of $\eta'_c \rightarrow VV$ predicted by Q. Wang in **arXiv:1010.1343**

BESIII priliminary

The upper limits obvious smaller than the predictions, disfavor!

\overline{V}	$N_{\gamma VV}^{up}$	ε	$\mathcal{B}^{up}(\psi' \to \gamma \eta'_c \to \gamma VV)$	$\mathcal{B}^{up}(\eta_c \to VV)$ 1	$3^{theory}(\eta'_c \to VV)$
	,	(%)	(10^{-7})	(10^{-3})	(10^{-3})
$ ho^0$	19.2	14.3	12.7	3.1	6.4~28.9
K^{*0}	15.2	16.5	19.6	5.4	$7.9 \sim 35.8$
ϕ	3.9	19.9	7.8	2.0	2.1~9.8

Search for P and CP violation in

$$\eta_c/\eta/\eta' \rightarrow \pi\pi$$

- $\eta_c/\eta/\eta' \rightarrow \pi\pi$ violate the P and CP, provide an excellent laboratory for testing the validity of symmetries, because
- The branching fractions of potential processes, for examples via weak interaction, less than 10⁻¹⁵
- The detection of these decays at any level accessible today would signal P and CP violations from new sources
- See references:
 - C. Jarlskog and E. Shabalin, Phys. Scr. T99, 23 (2002)
 - E. Shabalin, Phys. Scr. T99, 104 (2002).
- •Such kind of search benefits from 225M J/y data

Upper limits determination

Numerical results

Process	$N_{ m sig}^{ m UP}$	ε (%)	$\sigma_{ m sys}$ (%)	S	$\mathcal{B}^{ ext{UP}}$	$\mathcal{B}^{ ext{UP}}_{ ext{PDG}}$
$\eta o \pi^+\pi^-$	48	54.28	7.3	0.8σ	3.9×10^{-4}	1.3×10^{-5}
$\eta' o \pi^+ \pi^-$	32	53.81	8.6	0.1σ	5.5×10^{-5}	2.9×10^{-3}
$\eta_{\it c} ightarrow \pi^+ \pi^-$	92	25.27	27	1.5σ	1.3×10^{-4}	6×10^{-4}
$\eta ightarrow \pi^0 \pi^0$	36	23.75	8.6	0.6σ	6.9×10^{-4}	3.5×10^{-4}
$\eta' ightarrow \pi^0 \pi^0$	110	23.18	8.5	2.6σ	4.5×10^{-4}	9×10^{-4}
$\eta_c \to \pi^0 \pi^0$	40	35.70	28	0.1σ	4.2×10^{-5}	4×10^{-4}

- The lowest upper limits obtained
- Provide experimental limits for the theoretical prediction

summary

- BESIII is successfully operating since 2008:
 - 1. collected huge data samples at J/ψ , ψ' , $\psi(3770)$, and $\psi(4040)$.
 - 2. more data (also at higher energies) in future.
- Important results obtained on S-wave charmonium J/ψ , ψ' , η_c , η_c (25)
- More exciting/interesting results are coming.

many thanks for your attention!

Obtained from 2900 pb⁻¹ Data @ 3.773 GeV

$\Gamma_{\chi\text{CJ}}$ is fixed at the PDG value

Charmonium spectrum below open charm threshold

