XVI International Conference on Hadron Spectroscopy

Exotic Z_c states at BESIII

Wei Shan^{1,2}

(on the behalf of BESIII collaboration) ¹ Peking University ² IHEP

Hadron2015, Newport News, VA, September 13-18, 2015

Outline

DIntroduction \Box Charged Z_c states at BESIII $(Z_c (3900)^{\pm}, Z_c (3885)^{\pm}, Z_c (4020)^{\pm}, Z_c (4025)^{\pm}))$ \square Neutral Z_c states at BESIII $(Z_c (3900)^0, Z_c (3885)^0, Z_c (4020)^0, Z_c (4025)^0)$ **D**Summary and Outlook

Charged Z_c States at BESIII

Discovery of $Z_c(3900) \pm$

Search for $Z_c(3900) \pm \rightarrow$ light hadrons

No significant $Z_c \to \omega \pi$ $\sigma[e^+e^- \to \pi^{\pm}Z_c \ (3900)^{\mp}, Z_c \ (3900) \to \omega\pi] < 0.26 \text{ pb } @4.23 \text{ GeV}$ $\sigma[e^+e^- \to \pi^{\pm}Z_c \ (3900)^{\mp}, Z_c \ (3900) \to \omega\pi] < 0.18 \text{ pb } @4.26 \text{ GeV}$ $\text{Br}(Z_c \ (3900) \to \omega\pi) < 0.2\% \ (\Gamma_{\omega\pi} < 70 \text{ keV}) @90\% \text{ C.L.}$

It may indicate that the annihilation of $c\bar{c}$ in $Z_c(3900) \pm is$ suppressed.

Observation of $Z_c(4025)^{\pm}$ in $e^+e^- \rightarrow (D^*\overline{D}^*)^{\pm}\pi^{\mp}$ A structure near $D^*\overline{D}^*$ mass threshold is observed

Neutral Z_c States at BESIII

Observation of $Z_c(3885)^0$ in $e^+e^- \rightarrow (D\overline{D}^*)^0\pi^0$

summed over data at all energy points(4.23&4.26 GeV) Double D tag analysis strategy:

Observation of $Z_c(4020)^0$ in $e^+e^- \rightarrow \pi^0\pi^0h_c$

Narrow neutral structure on $\pi^0 h_c$ mass spectrum

summed over data at all energy points(4.23, 4.26 & 4.36 GeV)

m = (4023.9 \pm 2.2 \pm 3.8) MeV/c²

 Γ is fixed to be same as its charged partner $Z_c(4020)^{\pm}$

Cross sections for $e^+e^- \rightarrow \pi^+\pi^-h_c$ and $e^+e^- \rightarrow \pi^0\pi^0h_c$ are consistent with isospin conservation!

Isospin triplet is established $Z_c(4020)^{\pm/0}$

Observation of $Z_c(4025)^0$ in $e^+e^- \rightarrow (D^*\overline{D}^*)^0\pi^0$

arXiv:1507.02404

Double D tag analysis strategy:

Particle will be detected

Particle will not be detected

 $\begin{array}{l} \mathsf{m}_{\mathsf{pole}} = (4025.5^{+2,0}_{-4.7} \pm 3.1) \ \mathsf{MeV/c^2} \\ \mathsf{\Gamma}_{\mathsf{pole}} = (23.0 \pm 6.0 \pm 1.0) \ \mathsf{MeV} \\ \sigma[e^+e^- \rightarrow Z_c (3885)^0 \pi^0 \rightarrow (D\overline{D}^*)^0 \pi^0] \\ = (61.6 \pm 8.2 \pm 9.0) \ \mathsf{pb} \ @4.23 \ \mathsf{GeV} \\ \sigma[e^+e^- \rightarrow Z_c (3885)^0 \pi^0 \rightarrow (D\overline{D}^*)^0 \pi^0] \\ = (43.4 \pm 8.0 \pm 5.4) \ \mathsf{pb} \ @4.26 \ \mathsf{GeV} \\ \texttt{15} \ \mathsf{Another} \ \mathsf{isospin triplet} \ \mathsf{is established} \\ Z_c (4025)^{\pm/0} \end{array}$

Summary of Z_c states at \mathbb{H}

State	Mass (MeV/c²)	Width (MeV)	Decay	Process
Z _c (3900)±	3899.0±3.6±4.9	46±10±20	$\pi^{\pm}J/\psi$	$e^+e^- o \pi^+\pi^- J/\psi$
Z _c (3900) ⁰	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- o \pi^0\pi^0 J/\psi$
	3883.9±1.5±4.2 Single D tag	24.8±3.3±11.0 Single D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- ightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$
Z _c (3885) [±]	3881.7±1.6±2.1 Double D tag	26.6±2.0±2.3 Double D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- ightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$
Z _c (3885) ^o	3885.7 ^{+4.3} ±8.4 (prelim	$35^{+11}_{-12} \pm 15$	$(D\overline{D}^*)^0$	$e^+e^- ightarrow (D\overline{D}^*)^0 \pi^0$
Z_c(4020) [±]	4022.9±0.8±2.7	7.9±2.7±2.6	$\pi^{\pm}h_{c}$	$e^+e^- ightarrow \pi^+\pi^-h_c$
Z _c (4020) ⁰	4023.9±2.2±3.8	fixed	$\pi^0 h_c$	$e^+e^- ightarrow \pi^0\pi^0h_c$
Z_c(4025) [±]	4026.3±2.6±3.7	24.8±5.6±7.7	$D^*\overline{D}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^{\pm}\pi^{\mp}$
Z _c (4025) ⁰	4025.5 ^{+2,0} _{-4.7} ±3.1	23.0±6.0±1.0	$D^*\overline{D}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^0\pi^0$

What's the nature of these Z_c states?

- > Tetraquark state?
- $> D^{(*)}\overline{D}^{(*)}$ molecule state?
- > Hadro-charmonium?
- Meson loop?
- ► FSI?
- > ISPE model?
- > Cusp?

Summary & Outlook

- Recent results of charged and neutral Z_c states (Z_c (3900)^{±/0}, Z_c (3885)^{±/0}, Zc (4020)^{±/0}, Z_c (4025)^{±/0}) at BESIII are presented.
- > Great efforts are needed to understand these Z_c states both by the theorists and experimenters.
- More data are expected to study exotic Z_c states. (to pin down their spin-parity, search for other decay modes...)
- More exciting results of BESIII will be coming soon, and new Z_c states will come into a 'zoo' of exotic states.

Back up

Bird view of BEPCII

LINAC

BESIII detector

South

Storage ring

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking

BESIII detector

