

30th Anniversary

Measurement of hadron pair production cross sections at BESIII

Haiming HU (IHEP,CAS)

On behalf of BESIII Collaboration

Outline

- Motivation
- Data samples with BEPCII/BESIII

$$e^+e^- o p\overline{p}$$

- measurement of cross section
- extraction of form factors

$$e^+e^- \rightarrow \pi^+\pi^-\gamma$$

- measurement of cross section
- extraction of form factor
- Summary and prospect

Data samples of BESIII


Till June, 2015

Taking data	Total Num. / Lum.	Taking time
<i>J</i> /ψ	225+1086 M	2009+2012
$\psi(2S)$	106+350 M	2009+2012
ψ(3770)	2916 pb^{-1}	2010~2011
τ scan	24 pb^{-1}	2011
Y(4260)/Y(4230)/Y(4360)/scan	806/1054/523/488 pb ⁻¹	2012~2013
4600/4470/4530/4575/4420	$506/100/100/42/993 \text{ pb}^{-1}$	2014
J/ψ line-shape scan	$100 \; \mathrm{pb^{-1}}$	2012
R scan (2.23, 3.40) GeV	12 pb ⁻¹	2012
R scan (3.85, 4.59) GeV	795 pb^{-1}	2013~2014
R scan (2.0, 3.08) GeV	~525 pb ⁻¹	2014~2015
Y(2175)	~100 pb ⁻¹	2015 3

$e^+e^- o p\overline{p}$

The valence-quark picture of proton in quark model: The dynamic structure of proton can be measured in two processes:

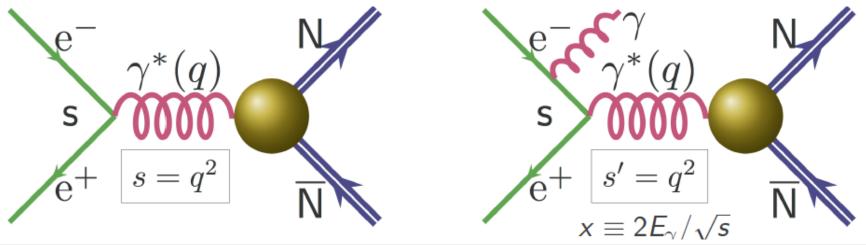
$$e^{\pm}p \rightarrow e^{\pm}p \text{ (space-like }q^{2}<0)$$

$$p_{\mu}=(E_{p},\vec{p})$$

Vector current of the interaction vertex with hadronic structure

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_n}F_2(q^2)$$

Structure functions F_1 and F_2 can be recombined into two form factors


Electronic: $G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2)$ $\tau = \frac{q^2}{4m_p^2}$, $\kappa_p = \frac{g_p - 2}{2} = \mu_p - 1$ Magnetic: $G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$

More directly perceived through the senses, G_E and G_M relate to the spetial distribution of charge and magnetization in Breit frame,

e.g, the charge density distribution.
$$\rho(\vec{r}) = \int \frac{d^3q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{E(\vec{q})} G_E(\vec{q}^2)$$

Two methods

For time-like process

	Energy Scan	Initial State Radiation
E _{beam}	discrete	fixed
\mathcal{L}	low at each beam energy	high at one beam energy
σ	$\frac{d\sigma_{p\overline{p}}}{d(\cos\theta)} = \frac{\alpha^2\beta C}{4q^2} [G_M ^2 (1+\cos^2\theta)]$	$\frac{d^2 \sigma_{p\overline{p}\gamma}}{dx d\theta_{\gamma}} = W(s, x, \theta_{\gamma}) \sigma_{p\overline{p}}(q^2)$ $W(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} (\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2})$
	$+\frac{4m_{p}^{2}}{q^{2}} G_{E} ^{2}\sin^{2}\theta$	$W(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$
q^2	single at each beam energy	from threshold to s
- :	·	1

Cross section

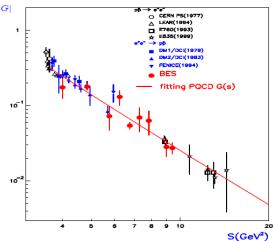
For the process $e^+e^- \rightarrow p\overline{p}$, differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} C[|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E(s)|^2 \sin^2 \theta]$$

$$\beta = \sqrt{1 - 4M^2/s}$$

 $\tau = s/4M^2$

$$y = \pi \alpha M / \beta \sqrt{s}$$


the Born cross section

$$\sigma = \frac{4\alpha^2 \pi \beta}{3s} C[|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2]$$

Coulomb correction C is subtle and important near threshold $(\beta \rightarrow 0)$.

$$C = \frac{y}{1 - exp(-y)}$$

Due to the limited statistics, early experiments assume $|G_E| = |G_M| = |G|$

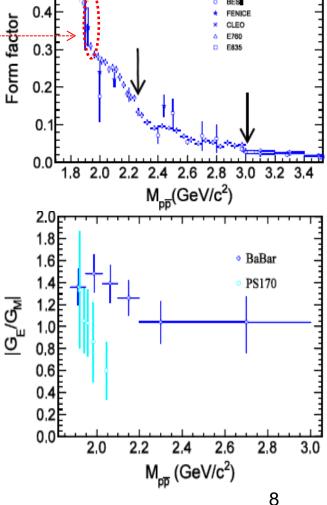
BES Collaboration, Phys. Lett. B630, (2005)14

BESII measured |G| and parameterized as (Λ :QCD scale, A: free parameter)

$$|G(s)| = \frac{A}{s^2 \ln^2(s/\Lambda^2)}$$

Some question to make clear

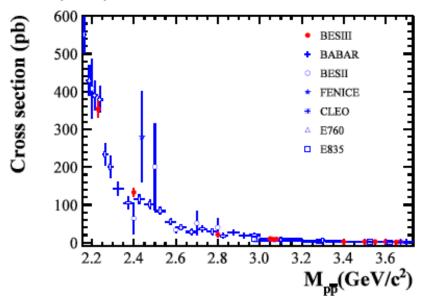
Recent years, statistics of data samples increased, the behavior of form

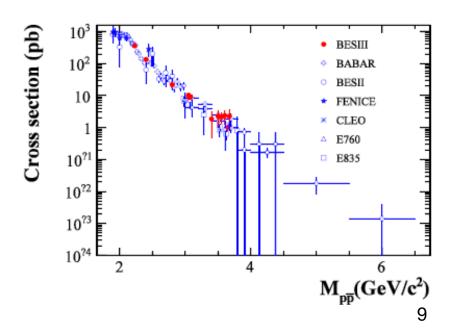

factor seems clear, but some questions still left:

Steep rise toward threshold?

Two rapid decreases around 2.25 and 3.0 GeV? Are they true?

- Poor precision (~11%, 43%)
- Limited energy range which one is reliable?

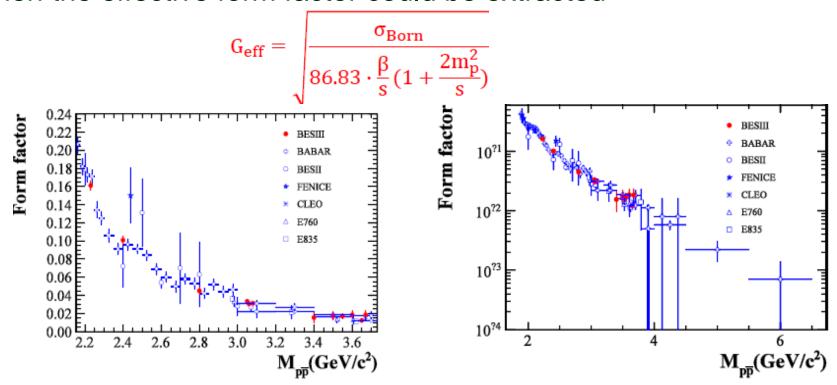



Measurement of cross section

Experimental formula for cross section:

$$\sigma_{\text{Born}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{L \cdot \varepsilon \cdot (1 + \delta)}$$

- ➤ N_{obs}: the observed number of signal in data
- ➤ N_{bkg}: the number of background evaluated from MC
- L: the integral luminosity
- > ε: detection efficiency by MC sample, with Conexc generator
- \triangleright (1+ δ): radiative correction factor



Extraction of effective form factor

In order to compare with earlier measurements, we still assume $|G_E| = |G_M| \equiv |G_{eff}|$, and the cross section reads

$$\sigma = \frac{\pi \alpha^2}{3 m_p^2 \tau} \left[1 + \frac{1}{2\tau} \right] |G_{\text{eff}}|^2$$

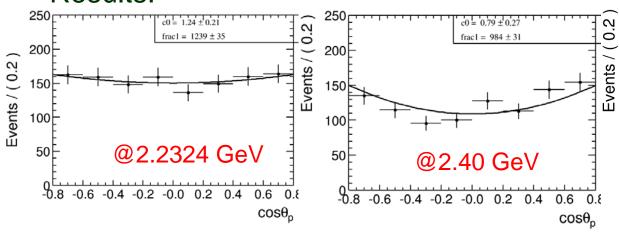
Then the effective form factor could be extracted

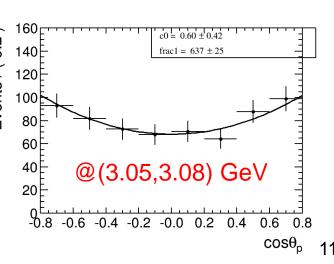
The result with BESIII data are consistent with other measurements within errors.

Extraction of electromagnetic $|G_E/G_M|$ ratio

Angular distribution:

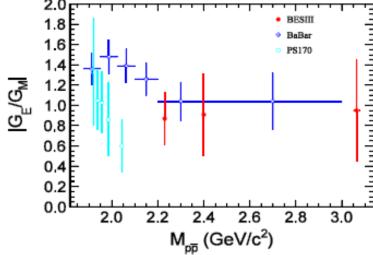
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(q^2) = \frac{\alpha^2 \beta}{4s} |G_{\mathbf{M}}(s)|^2 \left[\left(1 + \cos^2 \theta_{\mathbf{p}} \right) + \frac{R_{\mathbf{em}}^2}{\tau} \sin^2 \theta_{\mathbf{p}} \right]$$


- $R_{em} = G_E(q^2)/G_M(q^2)$
- θ_p : polar angle of proton
- Fit function:


$$\frac{dN}{d\cos\theta_{p}} = N_{\text{norm}} \left[\left(1 + \cos^{2}\theta_{p} \right) + \frac{R_{\text{em}}^{2}}{\tau} \sin^{2}\theta_{p} \right]$$

the overall normalization

$$N_{\text{norm}} = \frac{2\pi\alpha^2\beta L}{4s} \left[1.94 + 5.04 \frac{m_p^2}{s} R^2 \right] G_{\text{M}}(s)^2$$


Results:

Extraction of electromagnetic $|G_E/G_M|$ ratio

- Method of moment:
- second moment of $\cos \theta_p$: $\langle \cos^2 \theta_p \rangle = \frac{1}{N_{norm}} \int \cos^2 \theta_p \frac{d\sigma}{d\Omega} d\cos \theta_p$
- Estimator of $\cos\theta_p$: $\langle \cos^2\theta_p \rangle = \overline{\cos^2\theta_p} = \frac{1}{N} \sum_{i=1}^{N} \cos^2\theta_p / \epsilon_i$
- Extraction of $|G_E/G_M| = R = \sqrt{\frac{s}{4m_p^2} \frac{\langle \cos^2\theta_p \rangle 0.243}{0.108 0.648 \langle \cos^2\theta_p \rangle}}$
- Uncertainty: $\langle \cos^2 \theta_p \rangle : \sigma_{\langle \cos^2 \theta_p \rangle} = \sqrt{\frac{1}{N-1} \left[\langle \cos^4 \theta_p \rangle \langle \cos^2 \theta_p \rangle \right]}$
- Result:

Result measured with BESIII is consistent with BaBar's, but not with PS170.

Extraction of electromagnetic ratio $|G_E/G_M|$

$\sqrt{s} \; ({ m MeV})$	$ G_E/G_M $	$ G_M \ (\times 10^{-2})$	χ^2/ndf	
		Fit on $\cos \theta_p$		
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	1.04	
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	0.74	
(3050.0, 3080.0)	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	0.61	
	method of moment			
2232.4	0.83 ± 0.24	18.60 ± 5.38	_	
2400.0	0.85 ± 0.37	11.52 ± 5.01	-	
(3050.0, 3080.0)	0.88 ± 0.46	3.34 ± 1.72	-	

Phys. Rev. D 91, 112004. (June 9, 2015)

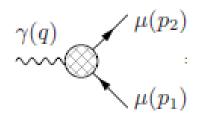
$e^+e^- \rightarrow \pi^+\pi^-\gamma$

The Dirac equation of a charged fermion in electromagnetic field (\vec{A}, \vec{B})

$$i\hbar \frac{\partial}{\partial t} \varphi = \left[\frac{1}{2m} (\vec{P} + \frac{e}{c} \vec{A})^2 + \frac{e\hbar}{2mc} \vec{\sigma} \cdot \vec{B} - e\phi \right] \varphi$$

point-like fermion has magnetic moment

$$\vec{\mu} = -\frac{e\hbar}{2mc}\vec{\sigma} = -\frac{e}{mc}\vec{S}$$


define Bohr magneton:

$$\mu_B = \frac{e\hbar}{2mc}$$

the magnetic moment of bare fermion:

$$\mu = g\mu_B S$$
 $g = 2$

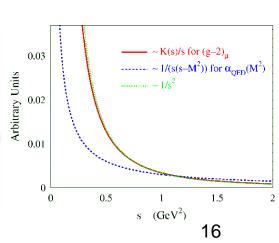
Considering the radiative correction of the vertex

The Standard Model (SM) prediction for muon (g-2):

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had,LO}} + a_{\mu}^{\text{had,HO}} + a_{\mu}^{\text{had,LBL}} + a_{\mu}^{\text{weak}}$$

$$= (\text{QED}) + (11658470.35 \pm 0.28)10^{-10} \text{ (5-loop!)}$$

$$+ (\text{had,LO}) + (684.7 \text{ to } 709.0 \pm 6)10^{-10} \text{ (Big spread, largest error)}$$


$$+ (\text{had,HO}) + (\text{had,HO}) + (\text{had,LBL}) + (\text{weak}) + (15.4 \pm 0.2)10^{-10} \text{ (2-loop)}$$

 $a_{\mu}^{\text{had,LO}}$ from data via dispersion integral

$$\mathbf{a}_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{4m_{\tau}^2}^{\infty} \sigma_{\text{had}}^0(s) K(s) ds$$

Recent data included CMD-2, SND, BES 2-5 GeV, ALEPH τ . NEW: CMD-2 prelim update

 $\sigma_{\rm had}^0$ bare cross-section for ${\rm e^+e^-} \to {\rm hadrons}$, i.e. taking out radiative corrections. QED kernel $K(s) \sim m_u^2/3s$, gives strong weight to low energy data.

Discrepancy between SM and experiments:

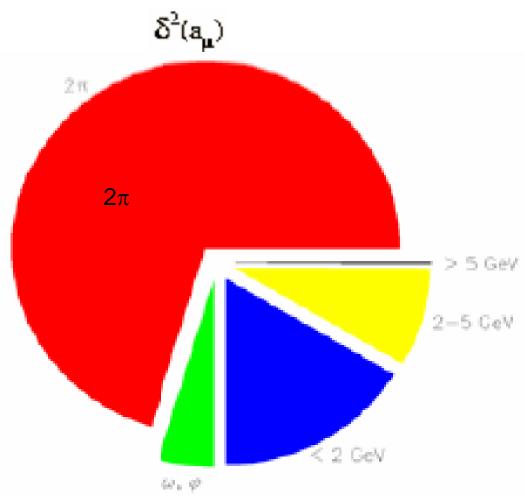
$$a_{\mu}^{\text{EXP}}$$
 = 116592089 (63) × 10⁻¹¹

E821 - Final Report: PRD73 (2006) 072 with latest value of λ=μ_μ/μ_p (Codata '06)

$a_{\mu}^{\rm SM} \times 10^{11}$	$(\Delta a_{\mu} = a_{\mu}^{ ext{EXP}} - a_{\mu}^{ ext{SM}}) imes 10^{11}$	σ
[1] 116 591 773 (53)	316 (82)	3.8
[2] 116 591 782 (59)	307 (86)	3.6
[3] 116 591 834 (49)	255 (80)	3.2
[4] 116 591 773 (48)	316 (79)	4.0
[5] 116 591 929 (52)	160 (82)	2.0

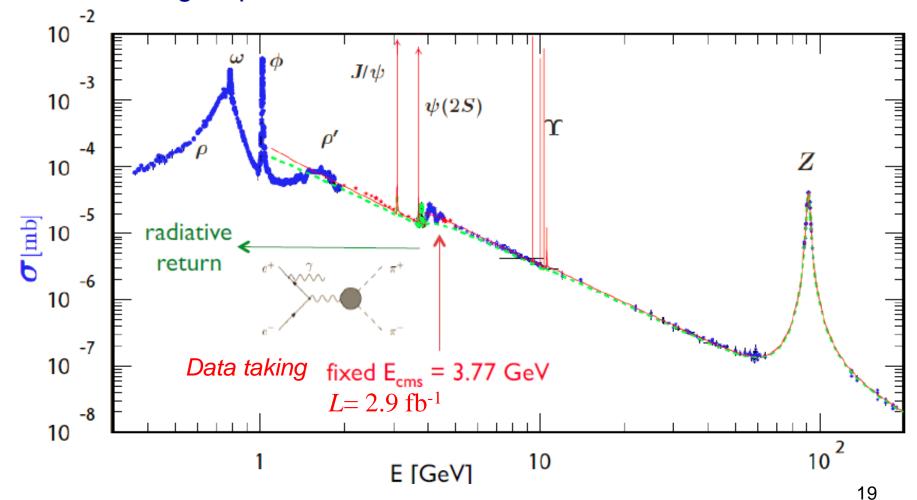
- [1] HMNT06, PLB649 (2007) 173.
- with $a_{\mu}^{HHO}(|b|) = 105 (26) \times 10^{-11}$
- [2] F. Jegerlehner and A. Nyffeler, arXiv:0902.3360.
- [3] Davier et al, arXiv:0908.4300 August 2009 (includes BaBar)
- [4] Hagiwara, Liao, Martin, Nomura, Teubner, Oct '09 (preliminary)
- [5] Davier et al, arXiv:0906.5443v2 August 2009 (τ data).


Ratio of the contribution of theoretical uncertainty of (g-2) from the measured hadronic cross section in different energy region:

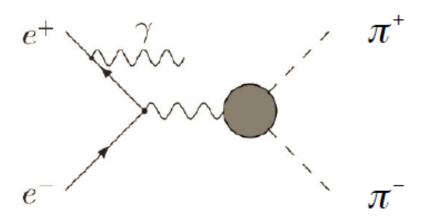

 $a_{\mu}^{\text{had,LO}}$ from data via dispersion integral $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{\text{had}}^0(s) K(s) ds$

$$K(s) \propto 1/s$$
 $\sigma(s) \propto 1/s$

The largest contribution is below 1 GeV.


Channel $e^+e^- \rightarrow \pi^+\pi^-$ is the most important one

Initial state radiation


In the e^{\pm} collider, photon emitted from initial e^{\pm} decrease the effective $s' = s(1 - E_{\gamma}/E)$ continuously, this makes measurement at lower different energies possible.

Initial state radiation (ISR return)

Study the channel

$$e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$$

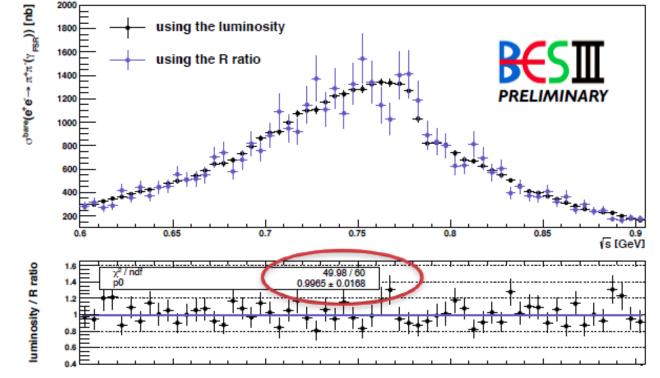
to measure the cross section of $e^+e^- \rightarrow \pi^+\pi^-$

via

$$\frac{d\sigma_{ISR}(M_{2\pi})}{dM_{2\pi}} = \frac{2M_{2\pi}}{s}W(s,x,\theta_{\gamma})\cdot\sigma(M_{2\pi})$$
 (no

(neglecting FSR)

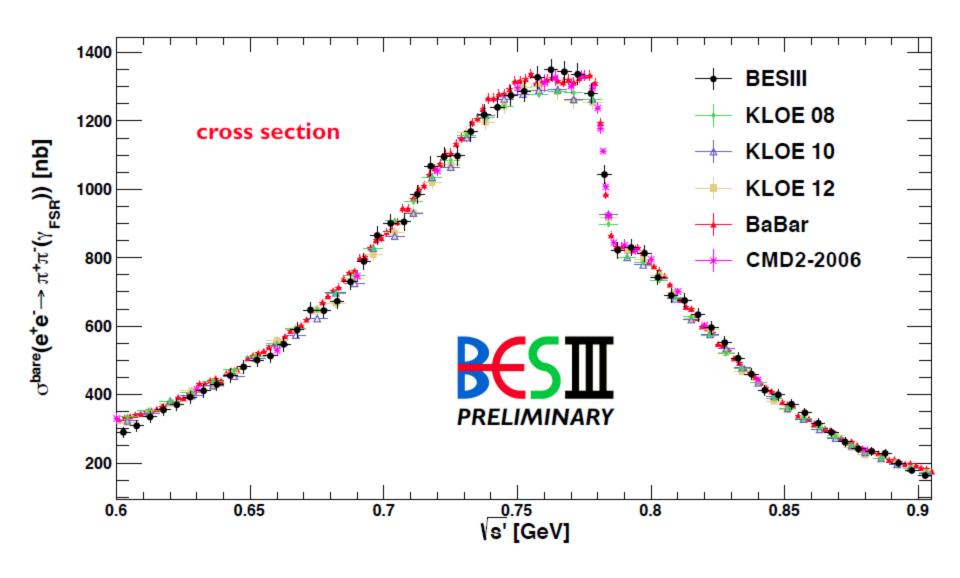
invariant mass of 2π


Radiator function

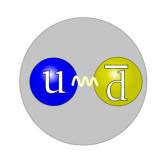
Two normalization methods

Normalization to integrated luminosity

$$\sigma^{bare}(e^+e^- \to \pi^+\pi^-(\gamma_{FSR})) = \frac{N_{\pi\pi\gamma}/\varepsilon}{L_{\rm int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1 + \delta_{FSR})}$$


• Normalization to $\mu^+\mu^-\gamma$ events, i.e. R ration $\pi^+\pi^-\gamma/\mu^+\mu^-\gamma$ $\longrightarrow L_{\rm int}$, $H_{\rm rad}$, $\delta_{\rm vac}$ canceled

Luminosity / R ratio – 1 = (0.35 ± 1.68) %


limited by μ⁺μ⁻γ statistics

Cross section

Extraction of form factor

The picture of pion structure in quark model:

Not a point-like particle ⇒ pion form factor

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

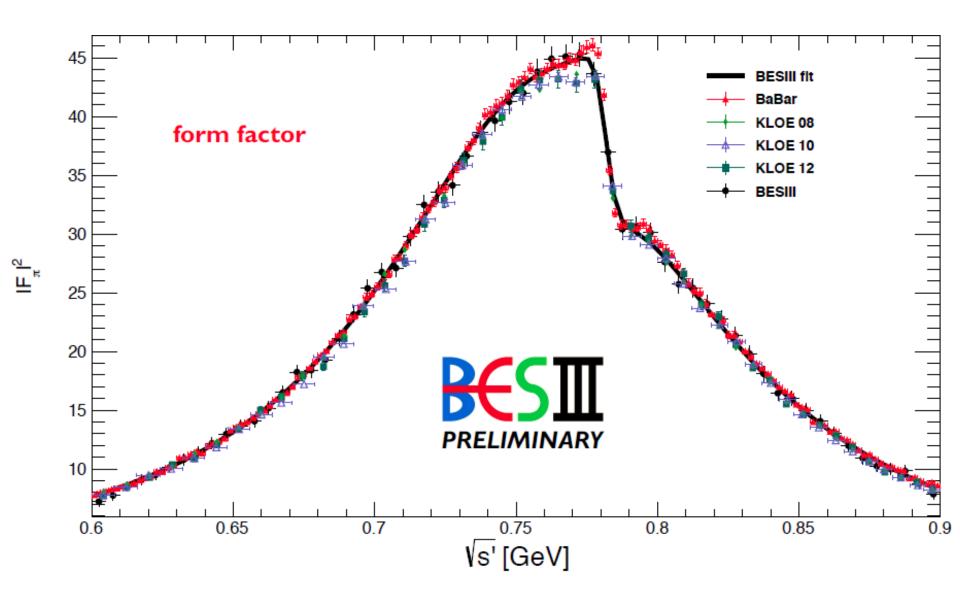
$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

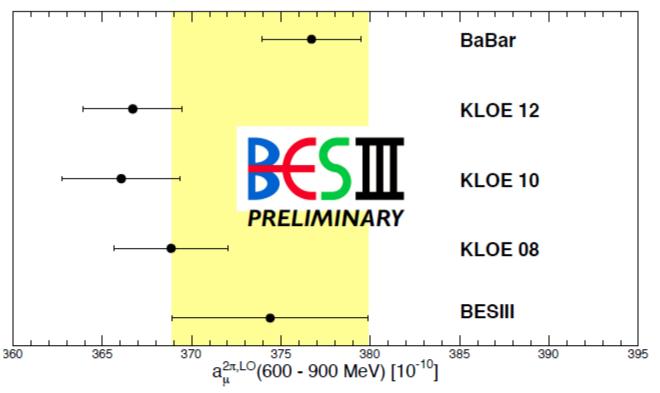
$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') , \beta_{\pi}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi\alpha\beta_{\pi}^{3}(s')}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}$$


$$|F_{\pi}|^{2}(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})(s') = \sqrt{1 - \frac{4m_{\pi}^{2}}{s'}}\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-})$$

$$|F_{\pi}|$$


 χ^2 / ndf = 33.2 / 51

Fit function: Gounaris-Sakurai Parameterization

Form factor

Result for (g-2)

Experiment	$a_{\mu}^{2\pi,LO}$ (600 – 900 MeV) [10 ⁻¹⁰]
BaBar	$376.7 \pm 2.0_{\text{stat}} \pm 1.9_{\text{sys}}$
KLOE 08	$368.9 \pm 0.4_{\text{stat}} \pm 2.3_{\text{sys,exp}} \pm 2.2_{\text{sys,theo}}$
KLOE 10	$366.1 \pm 0.9_{\text{stat}} \pm 2.3_{\text{sys,exp}} \pm 2.2_{\text{sys,theo}}$
KLOE 12	$366.7 \pm 1.2_{\text{stat}} \pm 2.4_{\text{sys,exp}} \pm 0.8_{\text{sys,theo}}$
BESIII (preliminary)	$374.4 \pm 2.6_{stat} \pm 4.9_{sys}$

Summary

proton pairs

- The effective form factors are measured with improved errors.
- The ratio $|G_E/G_M|$ were extracted at three energy points with uncertainty of 25% 30% (statistic error dominant).
- The ratio $|G_E/G_M|$ are close to unity in 2.2 3.08 GeV.

pion pairs

- The cross section and form factor are measured with ISR return.
- The difference of Δa_{ii} between experiments and theory is confirmed.
- Systematic uncertainty (~1.3%) still dominant.

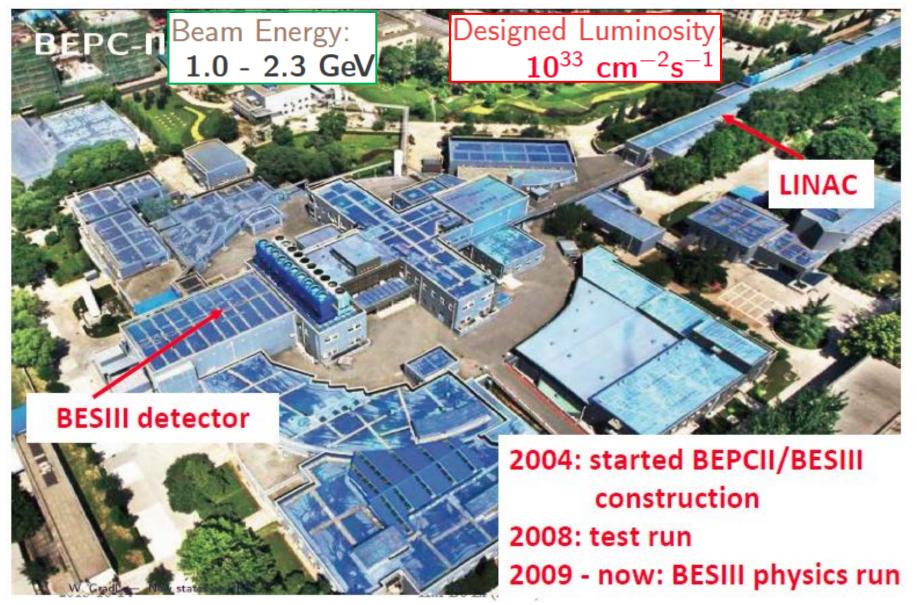
Prospect

Data samples between 2.0 – 3.08 GeV collected in 2015

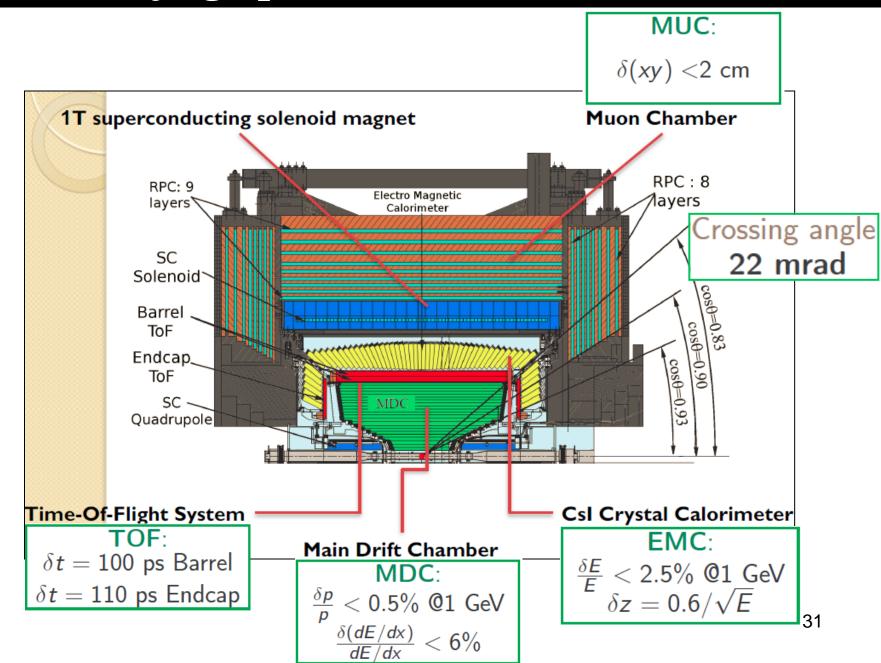
E_{cm}	E_{th}	L_{Needed}	t_{beam}	Purpose
(GeV)	(GeV)	(pb^{-1})	(days)	•
2.0	, ,	≥8.95	14.6	Nucleon FFs
2.1		10.8	14.8	Nucleon FFs
2.15		2.7	2.29	Y(2175)
2.175		10(+)	8.5	Y(2175)
2.2		13	11	Nucleon FFs, Y(2175)
2.2324	2.2314	11	4	Hyp threshold $(\Lambda \overline{\Lambda})$
2.3094	2.3084	20	16	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^0\overline{\Lambda})$
2.3864	2.3853	20	8.7	Hyp Threshold $(\Sigma^0\overline{\Sigma}^0)$
				Hyp FFs
2.3960	2.3949	≥64	27.8	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^{-}\overline{\Sigma}^{+})$
2.5		0.4895	8h	R scan
2.6444	2.6434	65	18	Nucleon & Hyp FFs
				Hyp Threshold $(\Xi^{-}\overline{\Xi}^{+})$
2.7		0.5542	4.2h	R scan
2.8		0.6136	4h	R scan
2.9		100	18.5	Nucleon & Hyp FFs
2.95		15	2.8	$m_{p\bar{p}}$ step
2.981		15	2.8	η_c , $m_{par{p}}$ step
3.0		15	2.8	$m_{par{p}}$ step
3.02		15	2.8	$m_{par{p}}$ step
3.08		120	13.2	Nucleon FFs $(+30 \text{ pb}^{-1})$

Data: 19+2 energy points

Main goals


- 1. Cross section
- 2. Form factors
- 3. New states
- 4. R value

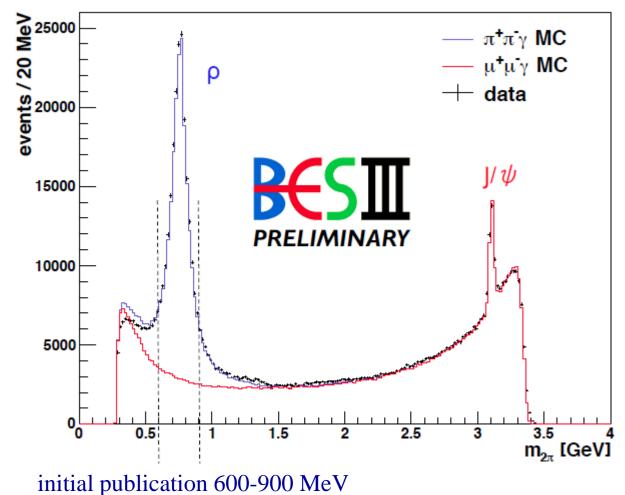
Prospect


- New data samples with larger statistics (~525pb⁻¹) between
 2.0–3.08 GeV at 21 energy points have collected in 2015.
- It may expect that more new results about handron production will be obtained at BESIII.

Back up

Beijing Electron-Positron Collider II (BEPCII)

Beijing Spectrometer III (BESIII)



Overview of measurements of proton form factors

Some experiments measured proton form factors in scan and ISR return methods:

Process	Date	Experiment	$q^2 (\text{GeV}^2/c^4)$	q ² point	Event	Precision
$e^+e^- o par p$	1972	FENICE/ADONE [17]	4.3	1	27	15%
	1979	DM1/ORSAY-DCI [18]	3.75-4.56	4	70	25.0%
	1983	DM2/ORSAY-DC1 [19]	4.0-5.0	6	100	19.6%
_	1998	FENICE/ADONE [20]	3.6-5.9	5	76	19.3%
	2005	BES/BEPC [21]	4.0-9.4	10	80	21.2%
	2006	CLEO/[22]	13.48	1	16	33.3%
$p^+p^- ightarrow e^+e^-$	$e^{+}e^{-}$ 1976 PS135/CERN [3.52	1	29	15.7%
	1994	PS170/CERN [25]	3.52-4.18	9	3667	6.1%
_	1993	E760/Fermi [26]	8.9-13.0	3	29	33.8%
	1999	E835/Fermi [27]	8.84-18.4	6	144	10.3%
	2003	E835/Fermi [28]	11.63-18.22	4	66	21.1%
$e^+e^- ightarrow \gamma + par{p}$	2006	BaBar/SLAC-PEPII [30]	3.57-19.1	38	3261	9.8%
	2013	BaBar/SLAC-PEPII [31]	3.57-19.1	38	6866	6.7%
	2013	BaBar/SLAC-PEPII [32]	9.61-36.0	8	140	18.4%

ISR return analysis

- data: $2.9 \text{fb}^{-1} @ \psi(3773)$
- detect ISR γ
- BG: μ⁺μ⁻γ
- Initial publication

Systematic uncertainties

source	uncertainty (%)	
photon efficiency correction	0.2	
pion tracking efficiency correction	0.3	
pion ANN efficiency correction	0.2	
pion e-PID efficiency correction	0.2	
ANN	negl.	
angular acceptance	0.1	
muon background subtraction	0.06	
non-muon background subtraction	0.03	
unfolding	0.2	
FSR correction δ_{FSR}	0.2	
vacuum polarization correction δ_{vac}	0.2	
radiator function	0.5	
Luminosity £	1.0 domi	nant
sum	1.3	