

Physics at BESIII: recent highlights

Myroslav Kavatsyuk
KVI, University of Groningen
For the BESIII collaboration

- BESIII and physics goals
- Precision charmonium spectroscopy

Hadron Landscape

Hadron-physics challenges:

- Understanding of established states: precision spectroscopy
- Nature of exotic states: search and spectroscopy of unexpected states

BESIII has rich physics and high discovery potential

BESIII Detector

1.0 Tesla super-conducting magnet

Muon counters:
 9/8 RPC layers (barrel/endcaps)

 Cut-off momentum: $0.4 \mathrm{GeV} / \mathrm{c}$CsI(TI) ElectroMagnetic Calorimeter: $\sigma_{E} / E($ at 1 GeV$)$: 2.5% $\sigma_{z, \phi}$ (at 1 GeV): 6 mm

Time Of Flight (TOF):

$\sigma_{T}: 100 / 110 \mathrm{ps}$ (barrel/endcaps)
Drift chambers (MDC):

$$
\begin{aligned}
& \sigma_{\mathrm{p}} / \mathrm{p}(\text { at } 1 \mathrm{GeV}): 0.5 \% \\
& \sigma_{\mathrm{dE} / \mathrm{dx}}: 6 \%
\end{aligned}
$$

M. Ablikim et al., Nucl. Instr. and Meth. A 614 (2010) 345-399

BESIII Milestones

- July 18, 2008 First $\mathrm{e}^{+} \mathrm{e}^{-}$collision event in BESIII
- Apr. 14, $2009 \sim 108$ M $\Psi '$ events

$$
\sim 4 \times \text { CLEO-c }
$$

$\sim 42 \mathrm{pb}^{-1}$ at 3.65 GeV)

- July 28, 2009
$\sim 225 \mathrm{M} \quad \mathrm{J} / \Psi$ events
$\sim 4 \times$ BESII
- 2010-2011
- May 2011
~ $2.9 \mathrm{fb}^{-1} \quad \Psi^{\prime \prime}$
~ $11 \times$ CLEO-c
$\sim 70 \mathrm{pb}^{-1} \quad$ scanning of the Ψ " region
$\sim 0.5 \mathrm{fb}^{-1} \quad 4.01 \mathrm{GeV}$ (D_{s} and XYZ spectroscopy)
~ 0.4 B $\quad \Psi^{\prime}$ events
~ $16 \times$ CLEO-c
$\sim 1 \mathrm{~B} \quad \mathrm{~J} / \Psi$ events $\sim 18 \times \mathrm{BESII}$
- 2013

$$
\begin{aligned}
\sim 525 \mathrm{pb}^{-1} & \mathrm{E}_{\mathrm{cm}}=4.26 \mathrm{GeV} \\
\sim 520 \mathrm{pb}^{-1} & \mathrm{E}_{\mathrm{cm}}=4.36 \mathrm{GeV} \\
\sim 0.8 \mathrm{fb}^{-1} & \mathrm{E}_{\mathrm{cm}}=4.26 \mathrm{GeV}
\end{aligned}
$$

Record Luminosity so far: $7 \times \mathbf{1 0}^{\mathbf{3 2}} \mathbf{c m}^{-2} \mathbf{s}^{-1}(8 \times$ CESRc or $45 \times$ BEPC $)$

High luminosity, clean environment

Access to weakly populated channels of particular interest

Precision charmonium spectroscopy

Charmonium Physics

Charmonium (a bound state of cc quarks) bridge between perturbative and strong QCD

Strong-interaction coupling constant

Precise data on the key charmonium states and transitions

Insight into the strong interactions at long-distance scales (test of Potential models, lattice QCD, EFT)

State Properties as a Probe

Precise measurement of charmonium masses and widths

Mass [MeV]

Test of potential models and lattice QCD

Potential model: if P-wave

 spin-spin interaction is non-zero:$\Delta \mathrm{M}_{\mathrm{hf}}(1 \mathrm{P})=\mathrm{M}\left(\mathrm{h}_{\mathrm{c}}\right)-\left\langle\mathrm{m}\left(1^{3} \mathrm{P}_{\mathrm{J}}\right)\right\rangle \neq 0$
$\left\langle m\left(1^{3} P_{J}\right)\right\rangle=\sum_{J=0}^{2} M_{\chi c J}(2 J+1) / 9$
Expected value $\Delta M_{h f}(1 P)=0$

Hyperfine splitting: $\mathbf{M}(\mathbf{J} / \Psi)-\mathbf{M}\left(\eta_{\mathrm{c}}\right)$: important input to test lattice QCD, dominated by error on $M\left(\eta_{c}\right)$!

LQCD prediction:
$\Delta M(1 S)=116.5 \pm 3.2 \mathrm{MeV}$
[Phys. Rev. D 86, 094501 (2012)]

State Properties as a Probe

Mass and width measured with comparable or better precision:
$\eta_{\mathrm{c}}{ }^{\prime}(3638)$
[Phys. Rev. Lett. 109, 042003 (2012)]

- $M=3637.6 \pm 2.9 \pm 1.6 \mathrm{MeV}$
- $\Gamma=16.9 \pm 6.4 \pm 4.8 \mathrm{MeV}$
h_{c} (3525)
[Phys. Rev. Lett. 104, 132002 (2010)]
- $M=3525.40 \pm 0.13 \pm 0.18 \mathrm{MeV}$
- $\Gamma=0.73 \pm 0.45 \pm 0.28 \mathrm{MeV}$
first measurement!
[Phys. Rev. D 86, 092009 (2012)]
- $\mathrm{M}=3525.31 \pm 0.11 \pm 0.14 \mathrm{MeV}$
$\cdot \Gamma=0.7 \pm 0.28 \pm 0.22 \mathrm{MeV}$
η_{c} (2980)
[Phys. Rev. Lett. 108, 222002 (2012)]
- $M=2984.3 \pm 0.6 \pm 0.6 \mathrm{MeV}$ understood resonance shape!
- $\Gamma=32.0 \pm 1.2 \pm 1.0 \mathrm{MeV}$ [Phys. Rev. D 86, 092009 (2012)]
- $M=2984.49 \pm 1.16 \pm 0.52 \mathrm{MeV}$
- $\Gamma=36.4 \pm 3.2 \pm 1.7 \mathrm{MeV}$

State Properties as a Probe

Precise measurement of charmonium masses and widths

Mass [MeV]

Test of potential models and lattice QCD

Potential model: if P-wave

 spin-spin interaction is non-zero:$$
\begin{aligned}
\Delta \mathrm{M}_{\mathrm{hf}}(1 \mathrm{P}) & =\mathrm{M}\left(\mathrm{~h}_{\mathrm{c}}\right)-\left\langle\mathrm{m}\left(1^{3} \mathrm{P}_{\mathrm{J}}\right)\right\rangle \neq 0 \\
\left\langle m\left(1^{3} P_{J}\right)\right\rangle & =\sum_{J=0}^{2} M_{\chi c J}(2 \mathrm{~J}+1) / 9
\end{aligned}
$$

$\Delta M_{h f}(1 P)=-0.19 \pm 0.11 \pm 0.14 \mathrm{MeV}$ Consistent with zero!

Hyperfine splitting: $\mathbf{M}(\mathbf{J} / \Psi)-\mathbf{M}\left(\boldsymbol{\eta}_{\mathrm{c}}\right)$: important input to test lattice QCD, dominated by error on $M\left(\eta_{c}\right)$!
$\Delta \mathrm{M}(1 \mathrm{~S})=112.5 \pm 0.8 \mathrm{MeV}$ Good agreement with LQCD Better precision than LQCD!

$\Psi^{\prime} \rightarrow \tau^{0} \cap_{c} \cap_{c} \rightarrow \prod_{c}$

- η_{c}-resonance: interference with non-resonant backgrounds \rightarrow difficult to measure
- Only recently consistent results were obtained [Phys. Rev. Lett. 102, 011801 (2009), Phys. Lett. B 706, 139 (2011), Phys. Rev. D 84, 012004 (2011),

Phys. Rev. Lett. 108, 222002 (2012)]

[Phys. Rev. Lett. 108, 222002 (2012)]

- $h_{c} \rightarrow \gamma \eta_{c}$ E1 transition:
small non-resonant background \rightarrow the η_{c} line shape is less distorted
- Consistent and precise measurement of h_{c} and η_{c} parameters
- Determined branching ratios for 16 exclusive η_{c} decays (5 measured for the first time)

[Phys. Rev. D 86, 092009 (2012)] 10

Transitions as a Probe

- In the potential approach:
$R=\frac{\Gamma(J / \Psi \rightarrow \gamma \gamma \gamma)}{\Gamma(J / \Psi \rightarrow e e)}=\frac{64\left(\pi^{2}-9\right)}{243 \pi} \alpha\left(1-7.3 \frac{\alpha_{s}}{\pi}\right)$
[M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008)] assuming $\alpha_{\mathrm{s}}=0.19 \rightarrow R=3 \times 10^{-4}$
- The rates ratio - sensitive only to QCD radiative corrections:

Test of understanding of the QCD radiative effects

- $\mathrm{B}(\mathrm{J} / \Psi \rightarrow 3 \gamma)=(11.3 \pm 1.8 \pm 2.0) \times 10^{-6}$
- $B\left(\eta_{c} \rightarrow 2 \gamma\right)=(2.6 \pm 0.7 \pm 0.7) \times 10^{-4}$

Measured $R=(1.95 \pm 0.37) \times 10^{-4}$
Consistent with the CLEOc result:

$$
R=(2.0 \pm 0.6) \times 10^{-4}
$$

$\Psi^{\prime} \rightarrow \pi^{+} \pi^{-} J / \Psi \rightarrow \gamma \gamma \gamma$
$\Psi^{\prime} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \Psi \rightarrow \gamma \eta_{\mathrm{c}} \rightarrow \gamma \gamma$
Two-photon mass

[Phys. Rev. D87 032003 (2013)]

Measurement of transition rates yields necessary information for development of models

Transitions as a Probe

Transition rates measured with better

 precision or for the first time: $\quad B\left(\Psi^{\prime} \rightarrow \gamma \eta_{c}{ }^{\prime} \rightarrow K K \pi\right)=$$(1.30 \pm 0.20 \pm 0.30) \times 10^{-5}$
[Phys. Rev. Lett. 109, 042003 (2012)]
$B\left(\Psi^{\prime} \rightarrow \pi^{0} h_{c}\right)=(8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$
$B\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(54.3 \pm 6.7 \pm 5.2) \%$
[Phys. Rev. Lett. 104, 132002 (2010)]
$\mathrm{B}\left(\Psi^{\prime} \rightarrow \gamma \mathrm{J} / \Psi\right)=$
$(3.3 \pm 0.6+0.8-1.1) \times 10^{-4}$
[Phys. Rev. Lett 109, 172002 (2012)]
$\Gamma\left(\chi_{\mathrm{c} 2} \rightarrow \gamma \gamma\right)=0.63 \pm 0.04 \pm 0.04 \mathrm{keV}$
$\Gamma\left(\chi_{c o} \rightarrow \gamma \gamma\right)=2.33 \pm 0.20 \pm 0.13 \mathrm{keV}$ [Phys. Rev. D 85, 112008 (2012)]
BESIII can access suppressed transitions of interest Talk by Olga Bondarenko
(Thursday, 14:30)

Exotic hadron matter

Other QCD Exotic Objects

QCD predicts exotic objects:

- hybrids (resonances of quark-antiquark and excited glue)
- glueballs (excited states of glue)

Glueballs and hybrids properties are determined by the long-distance features of QCD

Insight into
QCD vacuum 14

Glueball Searches with BESIII PWA of J/ $\Psi \rightarrow \gamma \eta \eta$

Radiative J/ Ψ decay - a gluon-rich process \rightarrow
one of the most promising hunting grounds for glueballs

| Resonance | Mass $\left(\mathrm{MeV} / c^{2}\right)$ | Width $\left(\mathrm{MeV} / c^{2}\right)$ | $\mathcal{B}(J / \psi \rightarrow \gamma X \rightarrow \gamma \eta \eta)$ | Significance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{0}(1500)$ | 1468_{-15-74}^{+14+23} | $136_{-26-100}^{+41+28}$ | $\left(1.65_{-0.31-1.40}^{+0.26+0.51}\right) \times 10^{-5}$ | 8.2σ |
| $f_{0}(1710)$ | $1759 \pm 6_{-25}^{+14}$ | $172 \pm 10_{-16}^{+32}$ | $\left(2.35_{-0.11-0.74}^{+0.13+1.24}\right) \times 10^{-4}$ | 25.0σ |
| $f_{0}(2100)$ | $2081 \pm 13_{-36}^{+24}$ | 273_{-24-23}^{+27+70} | $\left(1.13_{-0.10-0.28}^{+0.09+0.64}\right) \times 10^{-4}$ | 13.9σ |
| $f_{2}^{\prime}(1525)$ | $1513 \pm 5_{-10}^{+4}$ | 75_{-10-8}^{+12+16} | $\left(3.42_{-0.51-1.30}^{+0.43+1.37}\right) \times 10^{-5}$ | 11.0σ |
| $f_{2}(1810)$ | 1822_{-24-57}^{+29+66} | $229_{-42-155}^{+52+88}$ | $\left(5.40_{-0.67-2.35}^{+0.60+3.42}\right) \times 10^{-5}$ | 6.4σ |
| $f_{2}(2340)$ | $2362_{-30-63}^{+31+140}$ | $334_{-54-100}^{+62+165}$ | $\left(5.60_{-0.65-2.07}^{+0.62+2.37}\right) \times 10^{-5}$ | 7.6σ |

[arXiv:1301.0053, Accepted by PRD]

- Scalar contributions mainly from $f_{0}(1500), f_{0}(1710)$ and $f_{0}(2100)$
- Production rate of $f_{0}(1710)$ consistent with predicted glueball production [Phys. Rev. Lett. 110, 021601 (2013)] \rightarrow
$\mathrm{f}_{0}(1710)$ has a larger overlap with the glueball compared to other glueball candidates

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# $\#$)	Year	Status
X (3872)	3871.52 ± 0.20	$\begin{gathered} 1.3 \pm 0.6 \\ (<2.2) \end{gathered}$	$1^{++} / 2^{-+}$	$\begin{aligned} & B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right) \\ & p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)+\ldots \\ & B \rightarrow K(\omega J / \psi) \\ & B \rightarrow K\left(D^{* 0} D^{0}\right) \\ & B \rightarrow K(\gamma J / \psi) \\ & B \rightarrow K(\gamma \psi(2 S)) \end{aligned}$	Belle $[85,86]$ (12.8), BARAR [87] (8.6) CDF [88-90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BaBaR [98] (3.5), Belle [99] (0.4)	2003	OK
$X(3915)$	3915.6 ± 3.1	28 ± 10	$0 / 2^{7+}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
X (3940)	3942_{-8}^{+9}	37_{-17}^{+27}	$?^{7+}$	$\begin{aligned} & e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right) \\ & e^{+} e^{-} \rightarrow J / \psi(\ldots) \end{aligned}$	$\begin{aligned} & \text { Belle [103] (6.0) } \\ & \text { Belle [54] (5.0) } \end{aligned}$	2007	$\mathrm{NC!}$
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma(D D)$	BABAR [27] (np), Belle [21] (np)	2007	OK
$Y(4008)$	$4008{ }_{-49}^{+121}$	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [104] (7.4)	2007	$\mathrm{NC!}$
$Z_{1}(4050)^{+}$	4051_{-43}^{+24}	82_{-65}^{+51}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC!}$
$Y(4140)$	4143.4 ± 3.0	15_{-7}^{+11}	$?^{2+}$	$B \rightarrow K(\phi J / \psi)$	CDF [106, 107] (5.0)	2009	$\mathrm{NC!}$
$X(4160)$	4156_{-25}^{+29}	139_{-65}^{+113}	$?^{?+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right)$	Belle [103] (5.5)	2007	$\mathrm{NC!}$
$Z_{2}(4250)^{+}$	42488_{-45}^{+185}	177_{-72}^{+321}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC!}$
$Y(4260)$	4263 ± 5	108 ± 14	1^{--}	$\begin{aligned} & e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right) \end{aligned}$	$\begin{gathered} \text { BARAR }[108,109](8.0) \\ \text { CLEO [110] (5.4) } \\ \text { Belle [104] (15) } \\ \text { CLEO [111] (11) } \\ \text { CLEO [111] (5.1) } \end{gathered}$	2005	OK
$Y(4274)$	$4274.4{ }_{-6.7}^{+8.4}$	32_{-15}^{+22}	$?^{7+}$	$B \rightarrow K(\phi J / \psi)$	CDF [107] (3.1)	2010	$\mathrm{NC!}$
$X(4350)$	$4350.6_{-5.1}^{+4.6}$	$13.3{ }_{-10.0}^{+18.4}$	0,2++	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle [112] (3.2)	2009	$\mathrm{NC!}$
$Y(4360)$	4353 ± 11	96 ± 42	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	BaBar [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	$4443{ }_{-18}^{+24}$	107_{-71}^{+113}	?	$B \rightarrow K\left(\pi^{+} \psi(2 S)\right)$	Belle [115, 116] (6.4)	2007	$\mathrm{NC!}$
X (4630)	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [25] (8.2)	2007	$\mathrm{NC!}$
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle [114] (5.8)	2007	$\mathrm{NC!}$
$\underline{Y} Y_{b}(10888)$	10888.4 ± 3.0	$30.7{ }_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(n S)\right)$	Belle [37, 117] (3.2)	2010	$\mathrm{NC}!$

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# $\#$)	Year	Status
X (3872)	3871.52 ± 0.20	$\begin{gathered} 1.3 \pm 0.6 \\ (<2.2) \end{gathered}$	$1^{++} / 2^{-+}$	$\begin{aligned} & B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right) \\ & p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)+\ldots \\ & B \rightarrow K(\omega J / \psi) \\ & B \rightarrow K\left(D^{* 0} D^{0}\right) \\ & B \rightarrow K(\gamma J / \psi) \\ & B \rightarrow K(\gamma \psi(2 S)) \end{aligned}$	Belle $[85,86]$ (12.8), BABAR [87] (8.6) CDF [88-90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BaBaR [98] (3.5), Belle [99] (0.4)	2003	OK
$X(3915)$	3915.6 ± 3.1	28 ± 10	$0 / 2^{7+}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
$X(3940)$	3942_{-8}^{+9}	37_{-17}^{+27}	$?^{7+}$	$\begin{aligned} & e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right) \\ & e^{+} e^{-} \rightarrow J / \psi(\ldots) \end{aligned}$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma(D D)$	BABAR [27] (np), Belle [21] (np)	2007	OK
$Y(4008)$	$4008{ }_{-49}^{+121}$	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [104] (7.4)	2007	$\mathrm{NC}!$
$Z_{1}(4050)^{+}$	$4051{ }_{-4.3}^{+24}$	82_{-65}^{+51}	?	$B \rightarrow K\left(\pi^{+} \chi_{<1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC}!$
$Y(4140)$	4143.4 ± 3.0	15_{-7}^{+11}	$?^{2+}$	$B \rightarrow K(\phi J / \psi)$	CDF [106, 107] (5.0)	2009	NCl
X (4160)	4156_{-25}^{+29}	139_{-65}^{+113}	$?^{?+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right)$	Belle [103] (5.5)	2007	$\mathrm{NC}!$
$Z_{2}(4250)^{+}$	42488_{-45}^{+185}	177_{-72}^{+321}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC}!$
$Y(4260)$	4263 ± 5	108 ± 14	1^{--}	$\begin{aligned} & e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right) \end{aligned}$	BABAR $[108,109](8.0)$ CLEO $[110](5.4)$ Belle $[104]$ (15) CLEO [111] (11) CLEO [111] (5.1)	2005	OK
$Y(4274)$	$4274.4{ }_{-6.7}^{+8.4}$	32_{-15}^{+22}	$?^{7+}$	$B \rightarrow K(\phi J / \psi)$	CDF [107] (3.1)	2010	NC
$X(4350)$	$4350.6^{+4.6}$	$13.3^{+18.4}$	0,2++	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle [112] (3.2)	2009	$\mathrm{NC!}$
$Y(4360)$	4353 ± 11	96 ± 42	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	$4443_{-18}^{+2!}$	$107{ }_{-71}^{+118}$?	$B \rightarrow K\left(\pi^{+} \psi(2 S)\right)$	Belle [115, 116] (6.4)	2007	$\mathrm{NC!}$
X (4630)	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [25] (8.2)	2007	NC
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle [114] (5.8)	2007	$\mathrm{NC!}$
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7{ }_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(n S)\right)$	Belle [37, 117] (3.2)	2010	NC !

Studies of $Y(4260)$ at BESIII

$\mathrm{Y}(4260)$:

- Does not fit any potential model.
- Has a small coupling to open charm
- $\mathrm{J}^{\mathrm{PC}}=1^{-}$
- A hybrid candidate according to Lattice QCD calculations! [JHEP 1207, 126 (2012)]

[Phys. Rev. Lett. 110, 252001 (2013)]

Dalitz Plot: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$

- Clear peak at $3.9 \mathrm{GeV}: \mathrm{Z}_{\mathrm{c}}{ }^{ \pm}(3900)$,
- Peak at lower energy -
kinematic reflection
(changes its position
with $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{CM}$ energy)
$Y(4260)$

π^{\mp}

The $Z_{c}(3900)$

- Fit with S-wave Breit-Wigner
- $M=(3899.0 \pm 3.6 \pm 4.9) \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=(46 \pm 10 \pm 20) \mathrm{MeV}$
[Phys. Rev. Lett. 110, 252001 (2013)]
Discovered by BESIII, promptly confirmed by:

Belle: [Phys. Rev. Lett. 110, 252002 (2013)]
$\mathrm{M}=3894.5 \pm 6.6 \pm 4.5 \mathrm{MeV} / \mathrm{c}^{2}$
$\Gamma=63 \pm 24 \pm 26 \mathrm{MeV}$

Cleo-c: [arXiv:1304.3036]

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# $\#$)	Year	Status
X (3872)	3871.52 ± 0.20	$\begin{gathered} 1.3 \pm 0.6 \\ (<2.2) \end{gathered}$	$1^{++} / 2^{-+}$	$\begin{aligned} & B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right) \\ & p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)+\ldots \\ & B \rightarrow K(\omega J / \psi) \\ & B \rightarrow K\left(D^{* 0} D^{\mathrm{D}}\right) \\ & B \rightarrow K(\gamma J / \psi) \\ & B \rightarrow K(\gamma \psi(2 S)) \end{aligned}$	Belle $[85,86]$ (12.8), BABAR [87] (8.6) CDF [88-90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BaBar [98] (3.5), Belle [99] (0.4)	2003	OK
$X(3915)$	3915.6 ± 3.1	28 ± 10	$0 / 2^{7+}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
$X(3940)$	3942_{-8}^{+9}	37_{-17}^{+27}	$?^{7+}$	$\begin{aligned} & e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right) \\ & e^{+} e^{-} \rightarrow J / \psi(\ldots) \end{aligned}$	$\begin{aligned} & \text { Belle [103] (6.0) } \\ & \text { Belle [54] (5.0) } \end{aligned}$	2007	$\mathrm{NC!}$
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma(D D)$	BABAR [27] (np), Belle [21] (np)	2007	OK
$Y(4008)$	$4008{ }_{-49}^{+121}$	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [104] (7.4)	2007	$\mathrm{NC!}$
$Z_{1}(4050)^{+}$	4051_{-43}^{+24}	82_{-65}^{+51}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC!}$
$Y(4140)$	4143.4 ± 3.0	15_{-7}^{+11}	$?^{7+}$	$B \rightarrow K(\phi J / \psi)$	CDF [106, 107] (5.0)	2009	$\mathrm{NC}!$
$X(4160)$	4156_{-25}^{+29}	$139{ }_{-65}^{+113}$	$?^{7+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right)$	Belle [103] (5.5)	2007	$\mathrm{NC!}$
$Z_{2}(4250)^{+}$	42488_{-45}^{+185}	177_{-}^{+321}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC!}$
$Y(4260)$	4263 ± 5	108 ± 14	1^{--}	$\begin{aligned} & e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right) \end{aligned}$	$\begin{gathered} \text { BABAR }[108,109](8.0) \\ \text { CLEO }[110](5.4) \\ \text { Belle }[104](15) \\ \text { CLEO [111] (11) } \\ \text { CLEO [111] (5.1) } \end{gathered}$	2005	OK
$Y(4274)$	$4274.4{ }_{-6.7}^{+8.4}$	32_{-15}^{+22}	$?^{2+}$	$B \rightarrow K(\phi J / \psi)$	CDF [107] (3.1)	2010	$\mathrm{NC!}$
$X(4350)$	$4350.6_{-5.1}^{+4.6}$	$13.3{ }_{-10.0}^{+18.4}$	0,2++	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle [112] (3.2)	2009	$\mathrm{NC!}$
$Y(4360)$	4353 ± 11	96 ± 42	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	BaBar [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	$4443{ }_{-18}^{+24}$	$107{ }_{-71}^{+113}$?	$B \rightarrow K\left(\pi^{+} \psi(2 S)\right)$	Belle [115, 116] (6.4)	2007	$\mathrm{NC!}$
X (4630)	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [25] (8.2)	2007	NC!
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle [114] (5.8)	2007	$\mathrm{NC!}$
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(n S)\right)$	Belle [37, 117] (3.2)	2010	$\mathrm{NC!}$

$$
\begin{gathered}
Z_{c}(3900)-\text { first } \\
\text { confirmed } Z \text { state! }
\end{gathered}
$$

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# $\#$)	Year	Status
X (3872)	3871.52 ± 0.20	$\begin{gathered} 1.3 \pm 0.6 \\ (<2.2) \end{gathered}$	$1^{++} / 2^{-+}$	$\begin{aligned} & B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right) \\ & p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)+\ldots \\ & B \rightarrow K(\omega J / \psi) \\ & B \rightarrow K\left(D^{* 0} D^{0}\right) \\ & B \rightarrow K(\gamma J / \psi) \\ & B \rightarrow K(\gamma \psi(2 S)) \end{aligned}$	Belle $[85,86]$ (12.8), BABAR [87] (8.6) CDF [88-90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BaBar [98] (3.5), Belle [99] (0.4)	2003	OK
X (3915)	3915.6 ± 3.1	28 ± 10	$0 / 2^{7+}$	$\begin{aligned} & B \rightarrow K(\omega J / \psi) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi) \end{aligned}$	Belle [100] (8.1), BaBAR [101] (19) Belle [102] (7.7)	2004	OK
X (3940)	3942_{-8}^{+9}	37_{-17}^{+27}	$?^{7+}$	$\begin{aligned} & e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right) \\ & e^{+} e^{-} \rightarrow J / \psi(\ldots) \end{aligned}$	$\begin{gathered} \text { Belle [103] (6.0) } \\ \text { Belle [54] (5.0) } \end{gathered}$	2007	$\mathrm{NC!}$
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma(D D)$	BABAR [27] (np), Belle [21] (np)	2007	OK
$Y(4008)$	$4008{ }_{-49}^{+121}$	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [104] (7.4)	2007	$\mathrm{NC!}$
$Z_{1}(4050)^{+}$	4051_{-43}^{+24}	82_{-65}^{+51}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC!}$
$Y(4140)$	4143.4 ± 3.0	15_{-7}^{+11}	$?^{2+}$	$B \rightarrow K(\phi J / \psi)$	CDF [106, 107] (5.0)	2009	$\mathrm{NC!}$
$X(4160)$	4156_{-25}^{+29}	139_{-65}^{+113}	$?^{7+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D D^{*}\right)$	Belle [103] (5.5)	2007	$\mathrm{NC!}$
$Z_{2}(4250)^{+}$	42488_{-45}^{+185}	177_{-72}^{+321}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [105] (5.0)	2008	$\mathrm{NC!}$
$Y(4260)$	4263 ± 5	108 ± 14	1^{--}	$\begin{aligned} & e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \\ & e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right) \end{aligned}$	$\begin{gathered} \text { BABAR }[108,109](8.0) \\ \text { CLEO }[110](5.4) \\ \text { Belle }[104](15) \\ \text { CLEO [111] (11) } \\ \text { CLEO [111] (5.1) } \end{gathered}$	2005	OK
$Y(4274)$	$4274.4{ }_{-6.7}^{+8.4}$	32_{-15}^{+22}	$?^{2+}$	$B \rightarrow K(\phi J / \psi)$	CDF [107] (3.1)	2010	$\mathrm{NC!}$
X (4350)	$4350.6_{-5.1}^{+4.6}$	$13.3{ }_{-10.0}^{+18.4}$	0,2++	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle [112] (3.2)	2009	NC
$Y(4360)$	4353 ± 11	96 ± 42	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	BaBar [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	$4443{ }_{-18}^{+24}$	107_{-71}^{+113}	?	$B \rightarrow K\left(\pi^{+} \psi(2 S)\right)$	Belle [115, 116] (6.4)	2007	$\mathrm{NC!}$
X (4630)	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [25] (8.2)	2007	$\mathrm{NC!}$
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle [114] (5.8)	2007	$\mathrm{NC!}$
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7{ }_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(n S)\right)$	Belle [37, 117] (3.2)	2010	NC !

Z states:

- Charged states
- Strongly coupled to charm

can not be conventional mesons

Nature of the Z (3900) Most popufar models

Tetraquark

Interact by gluonic color force [arXiv:1303.6857]
[arXiv:1304.0345, 1304.1301]

Hadronic molecule

2 color-neutral mesons Interact by pion exchange [arXiv:1303.6608] [arXiv:1304.2882, 1304.1850]
[arXiv: 1304.0380]
Other models:

- Meson loop [arXiv: 1303.6355, 1304.4458]
- Initial State Pion Emission (ISPE) model [arXiv: 1303.6842, 1304.5845]

Nature of the $Z_{c}(3900)$

Sensitive probes?

- Heavier/lighter states
- Hadronic molecule [PRD 77, 014029 (2008)]

- Tetraquark [arXiv:1303.6857]

- Decay modes and rates
- Hadronic molecule:
decays mainly to its constituents
- Tetraquark: $\Gamma\left(Z_{c}^{+} \rightarrow \pi^{+} J / \psi\right) \approx 29 \mathrm{MeV}$

Measurement coming soon... Stay tuned!

$$
\Gamma\left(Z_{\mathrm{c}}^{+} \rightarrow \mathrm{D}^{+} \overline{\mathrm{D}}^{00}, \overline{\mathrm{D}}^{0} \mathrm{D}^{+\dagger}\right) \approx 4 \mathrm{MeV}
$$

A lot of interesting results are already published by the BESIII collaboration

New exciting results are coming soon!

Summary

- BESIII is operational since 2008 and already has world's largest data samples of various Y and charmonium states
- BESIII - an ideal tool for precision studies of suppressed channels:
- clean environment
- well controlled systematics
- A lot of interesting results have been obtained:
- Precise measurements of resonance properties
- Discovery of unexpected states
- ... and we are looking forward to the future:
- More data available than presented in current analysis

Stay tuned!

Thank you for your attention and to the BESIII collaboration!

BESIII collaboration: >360 members in 53 institutions from 11 countries

Physics at BESIII

Charm physics:

- (semi)leptonic + hadronic decays
- decay constant, form factors
- CKM matrix: Vcd, Vcs
- $\mathrm{D}_{0}-\mathrm{D}_{0}$ mixing and CP violation
- rare/forbidden decays

Charmonium physics:

- transitions and decays
- spectroscopy of exotic states

Light hadron physics:

- meson \& baryon spectroscopy
- glueball \& hybrid
- two-photon physics
- e.m. form factors of nucleon

Tau physics:
systematics under control \rightarrow high precision

- tau decays near threshold
- tau mass scan

Dalitz Plot: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$

- Decay via $\mathrm{f}_{0}(980)$ and $\sigma(500)$
- No peak is generated by these resonances in the $\pi^{+} J / \Psi$ spectrum

