

Peirong Li(李培荣)

on behalf of BESIII collaboration

University of Chinese Academy of Sciences (UCAS), Beijing

QCD15, Montpellier, France

• The BESIII experiment

• Λ_c^+ decays at threshold

- $\square \Lambda_c^+$ hadronic decays
- $\square \Lambda_c^+$ semi-leptonic decays

• Summary

Beijing Electron Positron Collider (BEPCII)

The BESIII Detector @ BEPCII

Peak Luminosity: 0.85x10³³cm⁻²s⁻¹ at ψ(3770) in 2014 Excellent tracking: δp/p=0.5%@1GeV dE/dx=6%

Energy range @BEPCII

2~4.6 GeV

- Rich of resonances: charmonia and charmed hadrons.
- Threshold characteristic(pairs of τ , *D*, *D*_s, Λ_c ...).
- Transition between smooth and resonances, perturbative and nonperturbative QCD.

QCD15, Montpellier, France

New data taken for Λ_c^+ analysis

In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance!

First time to systematically study charmed baryon at threshold!

Absolute BF of Λ_c^+ hadronic decays

$lacel{} \Lambda_c^+$ decay rates are still not well determined

- BFs of most decay modes (~85%) are measured relative to $\Lambda_c^+ \rightarrow pK^-\pi^+$
- No completely model-independent measurements of the absolute BF of $\Lambda_c^+ \rightarrow pK^-\pi^+$ (from Argus and CLEO very old results) uncertainties of BFs are 25%~40% in PDG2014

Belle's first precision measurement:

 $B(\Lambda_c^+ \to pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$ precision reaches to 4.7% Phys. Rev. Let

Phys. Rev. Lett. 113, 042002 (2014)

Measurement using the threshold pair-productions via e^+e^- annihilations is unique:

- the most simple and straightforward
- kinematics does not allow additional particle produced along with the $\Lambda_c^+ \Lambda_c^-$ pair
- Absolute measurement: fully reconstruct the pairs and take ratios of DT yields and ST yields to measure the BFs

after adopting Belle's

7/1/2015

QCD15, Montpellier, France

Detection of $\Lambda_c^+ \Lambda_c^-$ pairs

Use energy difference (ΔE) to improve S/B

Extract signal yields in the beam-constrained mass (M_{BC})

$$\Delta E = E - E_{beam}$$

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\overrightarrow{p}_{\Lambda_c^-}|^2}$$

charge conjugate modes are implied in the following slides.

 $\Sigma^+\omega$

QCD15, Montpellier, France

Hadronic branching fraction results

• a least square global fitter: simultaneous fit to the all tag modes while constraining the total Λ_c^{\pm} pair number, taking into account the correlations reference: Chinese Phys. C 37, 106201 (2013)

BESIII prel.

Decay modes	global fit \mathcal{B}	PDG \mathcal{B}	Bell	elle \mathcal{B}
pK_S	1.48 ± 0.08	1.15 ± 0.30		
$pK^{-}\pi^{+}$	5.77 ± 0.27	5.0 ± 1.3	6.84 ± 0	$0.24^{+0.21}_{-0.27}$
$pK_S\pi^0$	1.77 ± 0.12	1.65 ± 0.50		
$pK_S\pi^+\pi^-$	1.43 ± 0.10	1.30 ± 0.35		✓ $B(pK^{-}\pi^{+})$: BESIII precision
$pK^{-}\pi^{+}\pi^{0}$	4.25 ± 0.22	3.4 ± 1.0		
$\Lambda \pi^+$	1.20 ± 0.07	1.07 ± 0.28		comparable with Belle's
$\Lambda\pi^+\pi^0$	6.70 ± 0.35	3.6 ± 1.3		result
$\Lambda \pi^+ \pi^- \pi^+$	3.67 ± 0.23	2.6 ± 0.7		
$\Sigma^0 \pi^+$	1.28 ± 0.08	1.05 ± 0.28		✓ BESIII rate $B(pK^-\pi^+)$ is
$\Sigma^+\pi^0$	1.18 ± 0.11	1.00 ± 0.34		
$\Sigma^+\pi^+\pi^-$	3.58 ± 0.22	3.6 ± 1.0		smaller
$\Sigma^+ \omega$	1.47 ± 0.18	2.7 ± 1.0		(Descriptions of the others 11
				✓ Precisions of the other 11
only stat. errors				modes are also improved.

$B(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$ will provide important experimental information

- test the theoretical predications (ranges from 1.4% to 9.2%)
- calibrate the LQCD calculations
- determining CKM matrix elements.

No direct absolute measurement for $B(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$ available.

- ♦ $B(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (2.1 \pm 0.6)\%$ PDG2014
- scaling to (2.9 ± 0.5) %, when taking the Belle's $B(pK^-\pi^+)$

Production at threshold has advantages on this type of decays with missing particle!

BESIII 567pb⁻¹ data @4.6GeV will provide the measurement up to precision of δB/B~10% by using DT method Candidate events for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

- 11 ST modes are used, except $\Sigma^+ \omega$
- We detect *p*, π⁻, e⁺ among the remaining tracks form the ST Λ⁻_c
- require p and π^{-} are from Λ

Best precision to date

Summary

- BEPCII/BESIII accumulated 567pb⁻¹ data set @4.6GeV
- Open a door to study the lowest charmed baryon state Λ_c^+
 - Iow backgrounds and high detection efficiency
- Several physic potentials has been and is being explored
 - absolute BFs of hadronic decays model-independently
 - $\square \Lambda_{c}$ Semi-leptonic decays

Backup slides

Basic global fit logical

[Chinese Phys. C37(2013)106201]

$$N_i^{\rm ST} = N_{\Lambda_c^+ \overline{\Lambda}_c^-} \cdot \mathcal{B}_i \cdot \varepsilon_i^{\rm ST}$$

$$N_{-j}^{\mathrm{DT}} = N_{\Lambda_c^+ \overline{\Lambda}_c^-} \cdot \sum_i \mathcal{B}_i \cdot \mathcal{B}_j \cdot \varepsilon_{-j}^{\mathrm{DT}}$$

The efficiencies-corrected yields, denoted by $c = E^{-1}n$

Based on the lease square principle, The χ^2 can be constructed as $\chi^2 \equiv (\mathbf{c} - \tilde{\mathbf{c}})^T \mathbf{V}_{\mathbf{c}}^{-1} (\mathbf{c} - \tilde{\mathbf{c}})$