Charm Physics at BESIII (Leptonic and semi-leptonic D decays)

Hailong Ma (For BESIII Collaboration)

International Workshop on Physics at Future High Intensity Collider @ 2-7GeV in China, January 13-17 2015

University of Science and Technology of China, Hefei, Anhui, China

1

- Introduction
- **Data Sample**
- $D^+ \rightarrow \mu^+ v$ ■ $D^0 \rightarrow K(\pi)^- e^+ v$ What happen in the past 26 years? > Precision measurements at BESIII > Opportunity in the next 20 years?

Summary

I would like to thank Prof. Steve Olsen for his helpful suggestions to improve my slides!

Why they are important?

Leptonic and semi-leptonic D decays are ideal window to probe for weak and strong effects

• Precision measurements of decay constants f_{D+} , f_{Ds+} , form factors $f_{+}^{D \to K(\pi)}(q^2)$ of semi-leptonic decays of $D_{(s)}$ mesons will calibrate LQCD calculations at higher accuracy. Once they pass experimental tests, the precisely LQCD calculated f_D/f_B , f_{Ds}/f_{Bs} and $f_{+}^{D \to K(\pi)}(0)/f_{+}^{B \to K(\pi)}(0)$ will be helpful for measurements in B decays

• Recently improved LQCD calculations on $f_{D(s)+}[0.5(0.5)\%]$, $f_+^{D \to K(\pi)}(0)$ [2.4(4.4)%] provide good chance to precisely measure the CKM matrix element $|V_{cs(d)}|$, which are important for the unitarity test of the CKM matrix and search for NP beyond the SM₃

Data Sample

2.92 fb⁻¹ data were taken around 3.773 GeV

Singly Tagged D⁰ and D⁻ Mesons

$D^0\overline{D}^0$ and D^+D^- are produced in pair at $\psi(3770)$

Singly tagged \overline{D}^0 and D^- mesons are reconstructed by hadron decays with large branching fraction and less combinatorial backgrounds

At the recoil side of singly tagged \overline{D}^0 and D^- mesons, leptonic and semi-leptonic decays can be studied

D+ Leptonic Decays

In the SM:
$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{m_{D_{(s)}^+}^2}\right)^2$$

Bridge to precisely measure

- Decay constant f_{D(s)+} with input |V_{cd(s)}|^{CKMfitter}
- CKM matrix element |V_{cd(s)}| with input f^{LQCD}_{D(s)+}

MARKIII, 9.6 pb⁻¹ at ψ"

BESI, 22.3 pb⁻¹ at 4.03 GeV

2004-2008, CLEO-c, 818 pb⁻¹ at ψ"

WA75, Fixed target experiment

E653, Fermilab fixed target experiment

CLEOII, 2.13 fb⁻¹ at 10.6 GeV

L3, Z→qq, 49.6 pb⁻¹ at 91.2 GeV

■ OPAL, 3.9×10⁶ e⁺e⁻→qq

ALPHA, 3.97×10⁶ Z hadronic decay

Improved B[D⁺ \rightarrow µ⁺v], f_{D+} and |V_{cd}| at BESIII

$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$

2.92 fb⁻¹ data@ 3.773 GeV PRD89(2014)051104R

Comparisons of B[$D^+ \rightarrow \mu^+ v_{\mu}$] and f_{D_+}

Comparisons of Existing f_{D+} , f_{Ds+} and f_{D+} : f_{Ds+}

Taken from Gang Rong's talk at CKM2014

Precisions of the
LQCD calculations
of f_{D+} , f_{D+} , f_{D+} : f_{D+}
reach 0.5%, 0.5%
and 0.3%, which are
challenging the
experiments

 The experimentally measured and the theoretically calculated f_{D+}, f_{Ds+}, f_{D+}:f_{Ds+} differ by about 2σ

	Experiments	Femilab Lattice+MILC (2014)		HPQCD (2012)	
	Averaged	Expected	Δ	Expected	Δ
f _{D+} (MeV)	203.9±4.7	212.6±0.4 ^{+1.0} -1.2	1.8 σ	208.3±3.4	<mark>0.8</mark> σ
f _{Ds+} (MeV)	256.9±4.4	249.0±0.3 ^{+1.1} -1.5	1.7σ	246.0±3.6	<mark>1.4</mark> σ
f _{D+} :f _{Ds+}	1.260±0.036	1.1712±0.0010 ^{+0.0029} -0.0032	2.5 σ	1.187±0.013	<mark>1.9</mark> σ

Improving measurement with larger data sample is necessary!

Semi-leptonic Decay $D^{0} \rightarrow K(\pi)^{-}e^{+}v$

Bridge to precisely measure:

- Form factors $f_+^{D \to K(\pi)}(0)$ with input $|V_{cd(s)}|^{CKMfitter}$
 - Single pole form - Modified pole model $f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - \frac{q^{2}}{M_{\text{pole}}^{2}}} \qquad \qquad f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - \frac{q^{2}}{M_{\text{pole}}^{2}})(1 - \alpha \frac{q^{2}}{M_{\text{pole}}^{2}})}$ $\begin{aligned} \mathbf{ISGW2 \ model} \\ f_{+}(q^{2}) &= f_{+}(q^{2}_{\max}) \left(1 + \frac{r^{2}_{\mathrm{ISGW2}}}{12} (q^{2}_{\max} - q^{2}) \right)^{-2} \\ f_{+}(t) &= \frac{1}{P(t)\Phi(t,t_{0})} a_{0}(t_{0}) \left(1 + \sum_{k=1}^{\infty} r_{k}(t_{0}) [z(t,t_{0})]^{k} \right) \end{aligned}$ - ISGW2 model
- CKM matrix element $|V_{cs(d)}|$ with input $f_{+}^{LQCD,D \rightarrow K(\pi)}(0)$

During the past 26 years, studies of $D \rightarrow K(\pi)I^+v$ are made by MARKIII, E691, CLEO, CLEOII, BESII, FOCUS, BELLE, Babar and CLEO-c

Before 2010, the LQCD calculated $f_{+}^{D \rightarrow K(\pi)}(0)$ precision is at 10% level, thus limiting $|V_{cs(d)}|$ measurement 16

Improved B[D⁰ \rightarrow K(π)⁻e⁺v] at BESIII

Comparisons of B[$D^0 \rightarrow K(\pi)^- e^+ v$]

18

Extracted Parameters of Form Factors

Improved Form factor $f_{\perp}^{D \rightarrow K(\pi)}(0)$ at **BESIII**

Improved |V_{cs(d)}| at BESIII

Method 2 suffers larger theoretical uncertainty in $f_{+}^{D \rightarrow K(\pi)}(0)$ [2.4(4.4)%]

Summary of BESIII results

• With 2.92 fb⁻¹ data taken at 3.773 GeV by BESIII, we study the leptonic decay of $D^+ \rightarrow \mu^+ v$ and the semi-leptonic decay $D^0 \rightarrow K(\pi)^- e^+ v$

• We provide improved measurement of decay constant f_{D+} and form factor $f_{+}^{D \to K(\pi)}(q^2)$, which are important to test and calibrate LQCD calculations accurately

We provide improved measurement of CKM matrix element |V_{cs(d)}|, which is important for unitarity test of the CKM matrix

■ BESIII will take 3 fb⁻¹ data at 4.17 GeV in 2016, improved measurement of f_{Ds+} and $|V_{cs}|$ by $D_s^+ \rightarrow I^+v$ is expected in the near future

Why HIEPA is expected?

Leptonic decay $D_{(s)}^+ \rightarrow I^+ v$

- Measurement of $f_{D(s)+}$ and $|V_{cd(s)}|$ is limited by data size
- More precise f_{D+}, f_{D+}, f_{D+}:f_{Ds} is expected
 - 1. Challenge from LQCD calculation with 0.5%, 0.5% and 0.3% precisions
 - 2. ~2 σ difference between experiment and theoretical calculation

Semi-leptonic decay $D^0 \rightarrow K(\pi)^-e^+v$

- Measurement of $f_+^{D \to \pi}(0)$ is limited by data size
- Measurement of $|V_{cs(d)}|$ is limited by $f_{+}^{LQCD,D \rightarrow K(\pi)}(0)$

Improving $|V_{cs(d)}|$, $f_{D(s)+}$, $f_{+}^{D \to K(\pi)}(0)$ statistical precisions by an order of magnitude at HIEPA?

Prospects at HIEPA?

Opportunity: If we have 300 fb⁻¹ data at 3.773 GeV and 300 fb⁻¹ data at 4.17/4.03 GeV, what precisions we can reach?

Statistical error Systematic error 12 fb⁻¹ **300 fb⁻¹** ~3 fb⁻¹ ∆f_{D+}/f_{D+} ~0.9%^{BESIII} 2.6% 1.3% 0.26% ~1.5%^{CLEO-c} 0.6%/1.0% 0.11%/0.20% ∆f_{Ds+}/f_{Ds+} 1.1%/2.0% ~0.5%^{BESIII} 0.35% 0.18% 0.04% $\Delta f_{D \to K} / f_{D \to K}$ ~0.7%^{BESIII} $\Delta \mathbf{f}_{\mathsf{D} \to \pi} / \mathbf{f}_{\mathsf{D} \to \pi}$ 1.26% 0.63% 0.13% |V_{cs}|^{Ds+→I+v} ~2.0%^{CLEO-c} 1.8%/3.0% 0.9%/1.5% 0.18%/0.30% |V_{cs}|^{D0→K-e+v} 2.5%^{BESIII}(2.4%^{LQCD}) 0.35% 0.18% 0.04% **|V**_{cd}|^{D+→μ+v} 2.1%^{BESIII}(1.9→0.5%^{LQCD}) 2.6% 1.3% 0.26% |V_{cd}|^{D0→π-e+v} 4.5%^{BESIII}(4.4%^{LQCD}) 1.26% 0.63% 0.13%

Roughly estimate based on BESIII and CLEO-c experiments

Challenges:

• Measuring $|V_{cs(d)}|$ by D \rightarrow K(π)e⁺v will be limited by LQCD calculation precision of $f_+^{D\rightarrow K(\pi)}(0)$, whether it can reach 0.5% level? • Measuring f_{Ds+} and $|V_{cs}|$ will be limited by systematic error of selecting $D_s^+ \rightarrow l^+v$, whether it can reach 1.0% level?

Thank you!

Back-up slides

Comparisons of B[D⁺ \rightarrow $\mu^+ v_{\mu}$] and f_{D+}

Comparisons of $B[D_{(s)}^+ \rightarrow l^+ v]$

Taking from Gang Rong's talk at CHARM2012

Comparisons of $B[D_{(s)}^+ \rightarrow l^+ v]$ and $f_{D_+}^-$

Taking from Gang Rong's talk at CHARM2012

Based on the measured branching factions of D_{S^+} leptonic decays (after radiative correction), and with inputs of D_{S^+} mass, lepton mass, D_{S^+} lifetime and $|V_{cs}|$ =0.97345 from CKMfiter, we calculate the f_{Ds} .

Comparisons of existing $B[D_s^+ \rightarrow \mu(\tau)^+ v]$

Projections on Form Factors $f^{K(\pi)}_+(q^2)$

Comparisons of Form Factors

Experimental data calibrate LQCD calculation

Progress in LQCD Calculation

Taking from Aida X. El-Khadra's talk at Beauty2014

errors (in %) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014