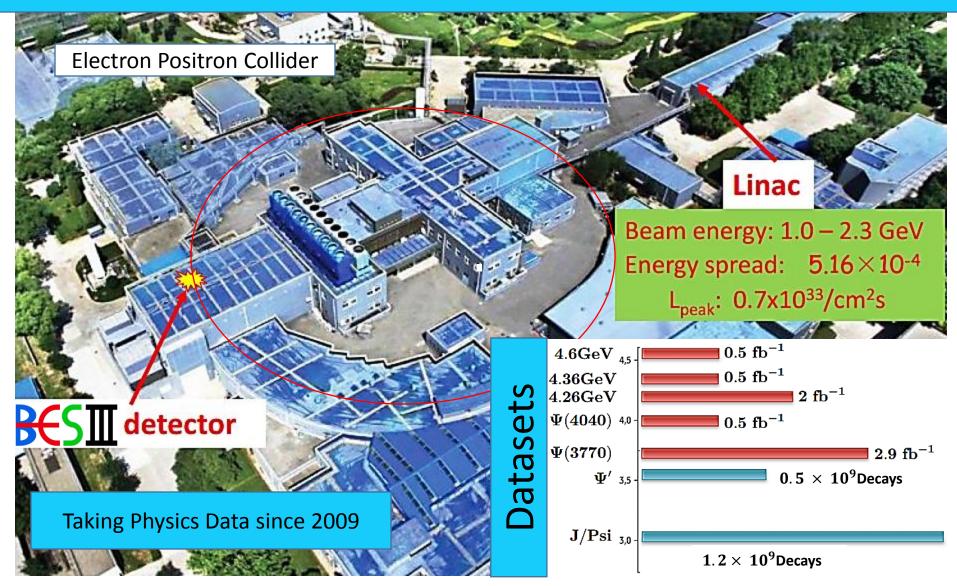
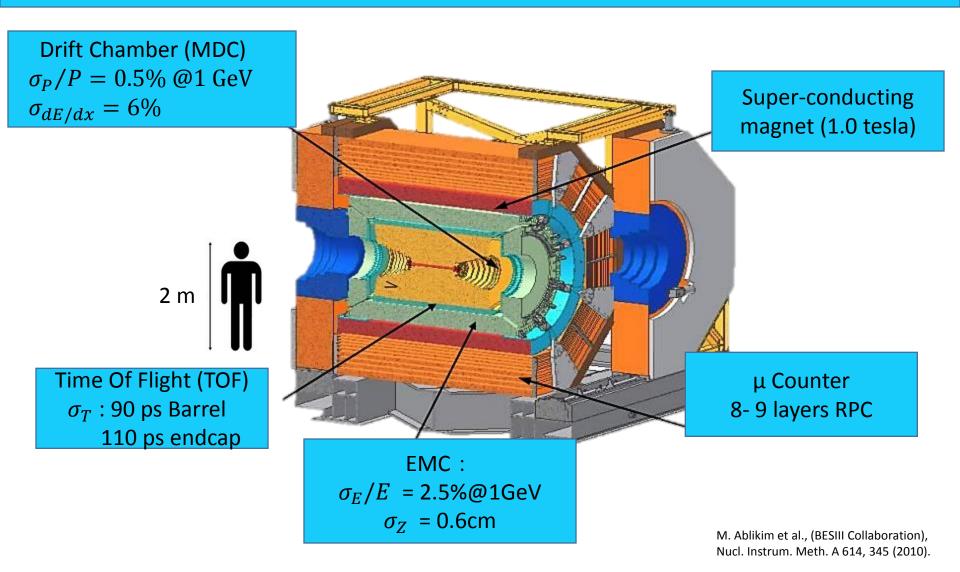


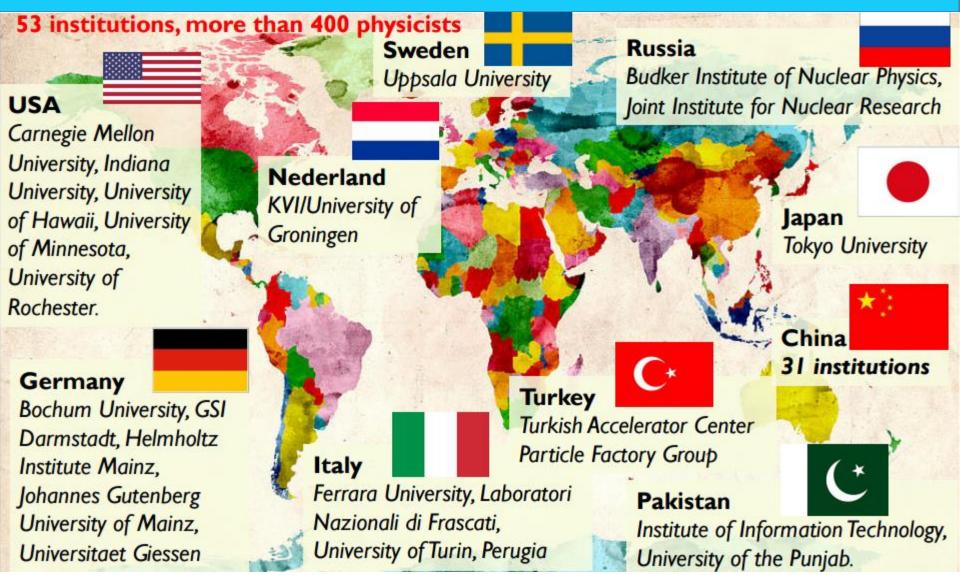
Measurement of absolute branching fractions of Charmed Baryon Λ_C^{\pm} at BESIII



Dan Ambrose University of Minnesota CIPANP 2015 May 20, 2015

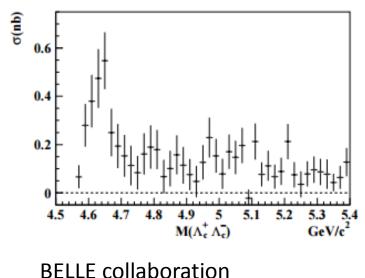

Overview

- BESIII experiment
- Λ_C^{\pm} 12 Hadronic Branching Fractions
 - Motivation
 - Analysis
 - Global Fit of Branching Fractions
- Λ_C^{\pm} Semi-leptonic $\mathcal{B}(\Lambda_C^+ \to \Lambda e^+ \nu_e)$
 - Motivation
 - Analysis
- Summary


BEPCII and **BESIII**

BESIII Detector

BESII Collaboration

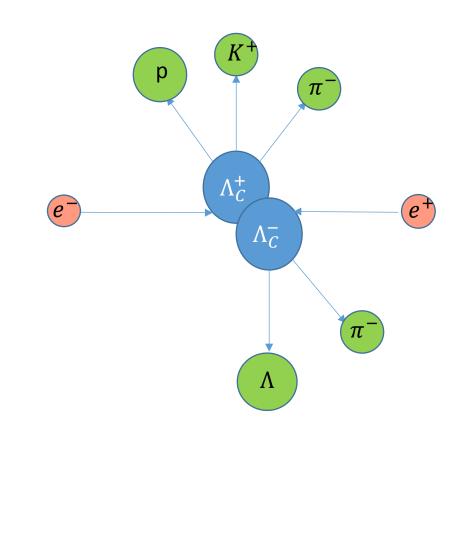


Motivation

- Λ_C^{\pm} , the first discovered charmed baryon, was discovered about 35 years ago.
- Most of branching fractions (BF) are measured relative to $\Lambda_C^+ \rightarrow p K^- \pi^+$ which is determined on model assumption.
- Absolute branching fractions of Λ_C^{\pm} decays was not well determined until BELLE's first "model-independent" measurement last year:
 - B (Λ⁺_C→pK⁻π⁺)=(6.84±0.24−0.27+0.21)% [arXiv:1312.7826] precision reaches to 4.7%
 - much higher than PDG value **B** $(\Lambda_C^+ \rightarrow pK^-\pi^+)=(5.0 \pm 1.3)\%$ precision at ~20-40%
- Another model-independent measurement of $B(\Lambda_C^+ \rightarrow pK^-\pi^+)$, along with the first model-independent measurements of many other modes is interesting.

Charge conjugate modes are implied in the following slides

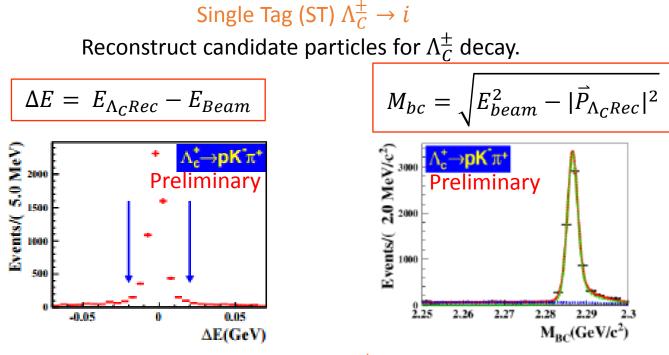
Dataset $\sqrt{s} = 4.6$ GeV



Phys. Rev. Lett. 101 (2008) 172001

- 567 pb⁻¹ Worlds first and only dataset at $\Lambda_C^+ \Lambda_C^-$ threshold
- Creation of $\Lambda_C^+ \Lambda_C^-$ pairs allows for a model independent double-tagging (DT) method

Λ_C selection



12 modes used in reconstruction of Λ_C covers ~1/3 of the total decays.

Constructing particles from final state particles:

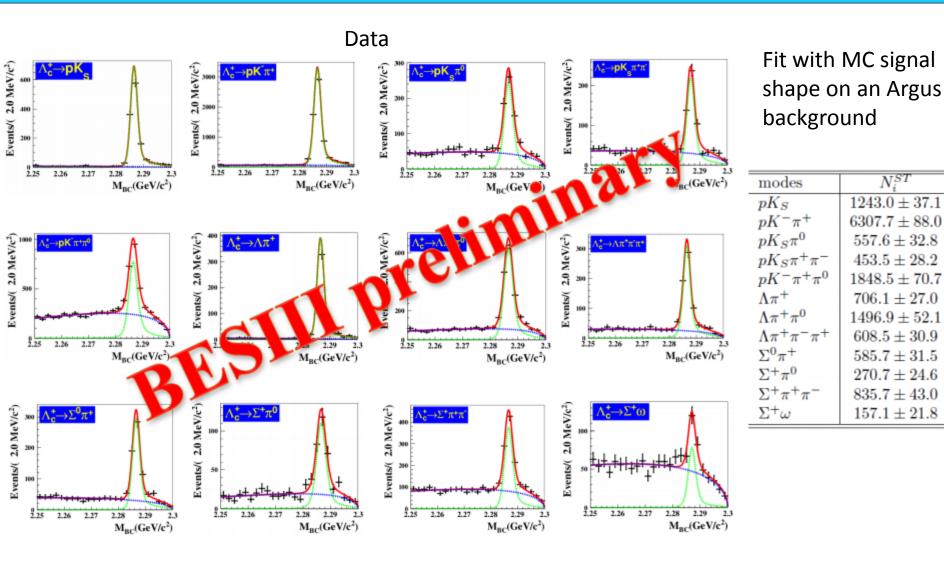
- $K_S \rightarrow \pi^+ \pi^-$
- $\pi^0 \to \gamma \gamma$
- $\Lambda \rightarrow p\pi^-$
- $\Sigma^0 \to \Lambda \gamma$
- $\Sigma^+ \rightarrow p \pi^0$
- $\omega \to \pi^+ \pi^- \pi^0$

Tagging method

Double Tag (DT) $\Lambda_C^+ \rightarrow i$, $\Lambda_C^- \rightarrow j$

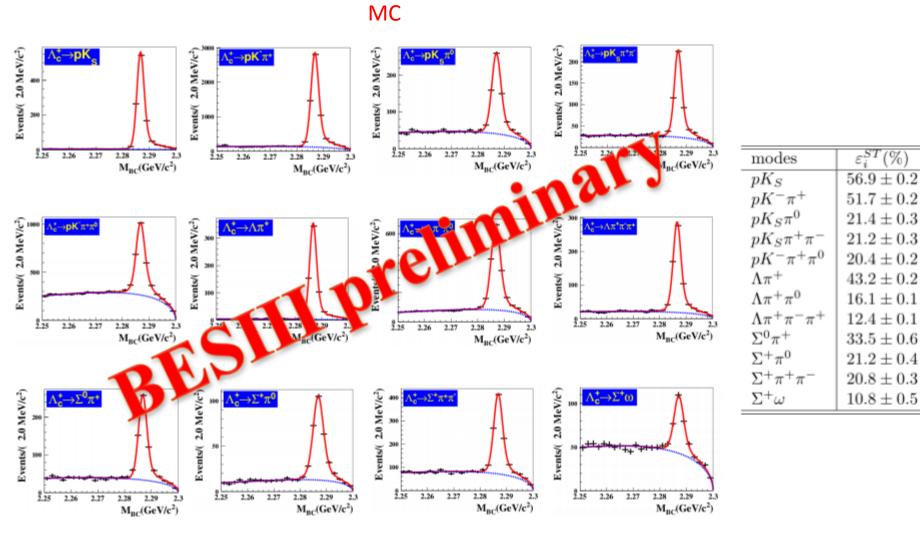
Reconstruct candidates particles for both Λ_C^+ and Λ_C^- decays.

- Used to cancel out model dependence
- Background reduced
- Statistically suffer

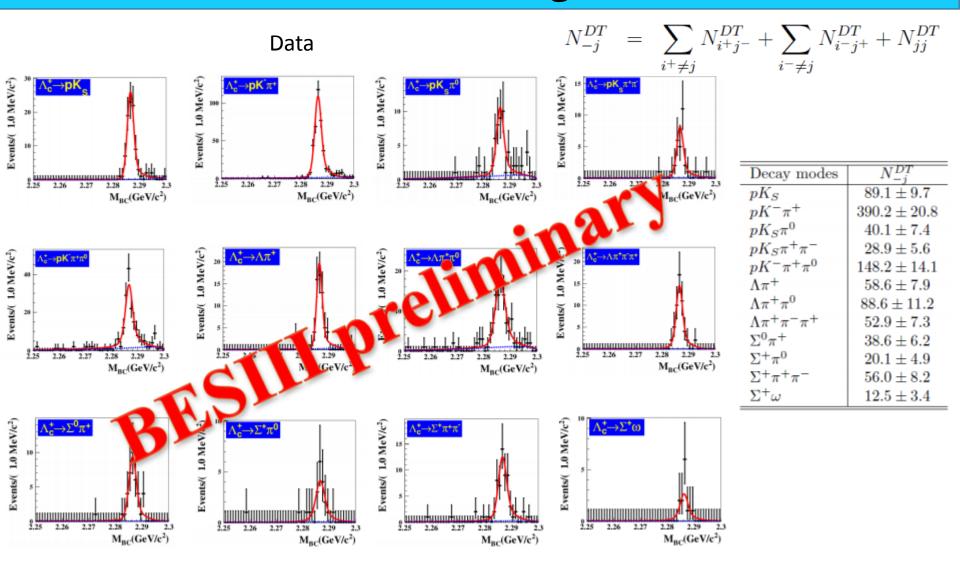

Single Tags:Double Tags:
$$N_{\Lambda_c \overline{\Lambda_c}} \cdot Br_{i^+} \cdot \varepsilon_{i^+}^{ST} = N_{i^+}^{ST}$$
 $N_{\Lambda_c \overline{\Lambda_c}} \cdot Br_{i^+} \cdot Br_{j^-} \cdot \varepsilon_{i^+j^-}^{DT} = N_{i^+j^-}^{DT}$ $N_{\Lambda_c \overline{\Lambda_c}} \cdot Br_{i^-} \cdot \varepsilon_{i^-}^{ST} = N_{i^-}^{ST}$ $N_{\Lambda_c \overline{\Lambda_c}} \cdot Br_{i^-} \cdot Br_{j^+} \cdot \varepsilon_{i^-j^+}^{DT} = N_{i^-j^+}^{DT}$

Assuming CPV is negligible, $Br_{i+} = Br_{i-} = Br_i$ However detection efficiencies measured for both ±

$$\begin{split} N_{-j}^{DT} &= \sum_{i^{+} \neq j} N_{i^{+}j^{-}}^{DT} + \sum_{i^{-} \neq j} N_{i^{-}j^{+}}^{DT} + N_{jj}^{DT} \\ &= \left(\mathcal{B}_{j} \right) \left(\sum_{i^{+} \neq j} \frac{N_{i^{+}}^{ST}}{\varepsilon_{i^{+}}^{ST}} \cdot \varepsilon_{i^{+}j^{-}}^{DT} + \sum_{i^{-} \neq j} \frac{N_{i^{-}}^{ST}}{\varepsilon_{i^{-}}^{ST}} \cdot \varepsilon_{i^{-}j^{+}}^{DT} + \frac{(N_{j^{+}}^{ST} + N_{j^{-}}^{ST})/2}{(\varepsilon_{j^{+}}^{ST} + \varepsilon_{j^{-}}^{ST})/2} \cdot \frac{\varepsilon_{j^{-}j^{+}}^{DT} + \varepsilon_{j^{+}j^{-}}^{DT}}{2} \right) \end{split}$$


Ratio of DT yield to the ST yields provides absolute measurement of branching fraction

Single Tag Λ_C^{\pm} yields


 N_{\cdot}^{ST}

Single Tag Λ_{C}^{\pm} efficiencies

 $\varepsilon_i^{ST}(\%)$

Double Tag Λ_C^{\pm} yields

DT efficiency

DT modes	p^-K_S	$p^-K^+\pi^-$	$p^-K_S\pi^0$	$p^-K_S\pi^-\pi^+$	$p^-K^+\pi^-\pi^0$	$\Lambda \pi^-$
pK_S	31.7 ± 0.2	29.2 ± 0.1	12.8 ± 0.1	11.7 ± 0.1	13.5 ± 0.1	24.5 ± 0.2
$pK^{-}\pi^{+}$	29.2 ± 0.1	26.7 ± 0.1	11.8 ± 0.1	10.8 ± 0.1	12.7 ± 0.1	21.8 ± 0.2
$pK_S\pi^0$	12.8 ± 0.1	11.8 ± 0.1	5.1 ± 0.1	4.4 ± 0.1	5.5 ± 0.1	10.1 ± 0.1
$pK_S\pi^+\pi^-$	11.7 ± 0.1	10.8 ± 0.1	4.4 ± 0.1	4.8 ± 0.1	4.9 ± 0.1	8.6 ± 0.1
$pK^-\pi^+\pi^0$	13.5 ± 0.1	12.7 ± 0.1	5.5 ± 0.1	4.9 ± 0.1	6.8 ± 0.1	10.1 ± 0.1
$\Lambda \pi^+$	24.6 ± 0.2	21.9 ± 0.2	10.1 ± 0.1	8.6 ± 0.1	10.1 ± 0.1	18.2 ± 0.3
$\Lambda \pi^+ \pi^0$	9.9 ± 0.1	8.9 ± 0.0	3.9 ± 0.0	3.3 ± 0.0	4.4 ± 0.0	7.5 ± 0.1
$\Lambda \pi^+ \pi^- \pi^+$	6.6 ± 0.1	6.1 ± 0.1	2.6 ± 0.0	2.4 ± 0.0	2.8 ± 0.0	4.9 ± 0.1
$\Sigma^0 \pi^+$	18.4 ± 0.2	17.2 ± 0.1	7.6 ± 0.1	6.2 ± 0.1	8.2 ± 0.1	13.8 ± 0.3
$\Sigma^+ \pi^0$	12.9 ± 0.2	11.7 ± 0.1	5.0 ± 0.1	4.5 ± 0.1	5.1 ± 0.1	10.1 ± 0.2
$\Sigma^+\pi^+\pi^-$	12.3 ± 0.1	11.4 ± 0.1	4.8 ± 0.1	4.3 ± 0.1	5.3 ± 0.1	9.3 ± 0.1
$\Sigma^+\omega$	7.0 ± 0.1	6.4 ± 0.1	2.6 ± 0.1	2.2 ± 0.1	3.1 ± 0.1	5.3 ± 0.2
DT modes	$\Lambda \pi^- \pi^0$	$\Lambda\pi^{-}\pi^{+}\pi^{-}$	$\Sigma^0 \pi^-$	$\Sigma^{-}\pi^{0}$	$\Sigma^{-}\pi^{-}\pi^{+}$	$\Sigma^-\omega$
pK_S	9.9 ± 0.1	6.6 ± 0.1	18.5 ± 0.2	12.9 ± 0.2	12.3 ± 0.1	6.9 ± 0.1
$pK^{-}\pi^{+}$	8.9 ± 0.0	6.1 ± 0.1	17.1 ± 0.1	11.7 ± 0.1	11.4 ± 0.1	6.4 ± 0.1
$pK_S\pi^0$	3.9 ± 0.0	2.6 ± 0.0	7.6 ± 0.1	5.0 ± 0.1	4.7 ± 0.1	2.6 ± 0.1
$pK_S\pi^+\pi^-$	3.3 ± 0.0	2.4 ± 0.0	6.2 ± 0.1	4.6 ± 0.1	4.4 ± 0.1	2.2 ± 0.1
$pK^-\pi^+\pi^0$	4.4 ± 0.0	2.8 ± 0.0	8.2 ± 0.1	5.1 ± 0.1	5.3 ± 0.1	3.1 ± 0.1
$\Lambda \pi^+$	7.5 ± 0.1	4.9 ± 0.1	13.8 ± 0.3	10.2 ± 0.2	9.2 ± 0.1	5.3 ± 0.2
$\Lambda \pi^+ \pi^0$	3.0 ± 0.0	1.8 ± 0.0	5.8 ± 0.1	4.0 ± 0.1	3.8 ± 0.0	2.1 ± 0.0
$\Lambda \pi^+ \pi^- \pi^+$	1.8 ± 0.0	1.3 ± 0.0	3.8 ± 0.1	2.7 ± 0.1	2.6 ± 0.0	1.4 ± 0.0
$\Sigma^0 \pi^+$	F0101	3.8 ± 0.1	11.3 ± 0.3	8.0 ± 0.2	7.3 ± 0.1	4.2 ± 0.1
2 7	5.8 ± 0.1	3.0 ± 0.1	a week and the set			
$\Sigma^+\pi^0$	5.8 ± 0.1 4.0 ± 0.1	3.8 ± 0.1 2.7 ± 0.1	8.0 ± 0.2	4.8 ± 0.2	4.8 ± 0.1	2.7 ± 0.1
A 377 A 10 A 4			A STATE OF A	$\begin{array}{c} 4.8\pm0.2\\ 4.8\pm0.1\end{array}$		$2.7 \pm 0.1 \\ 2.6 \pm 0.1$

Each number is the average of the two efficiencies ε_{j+i-}^{DT} and ε_{j-i+}^{DT}

Table 7: DT efficiencies in percentage.

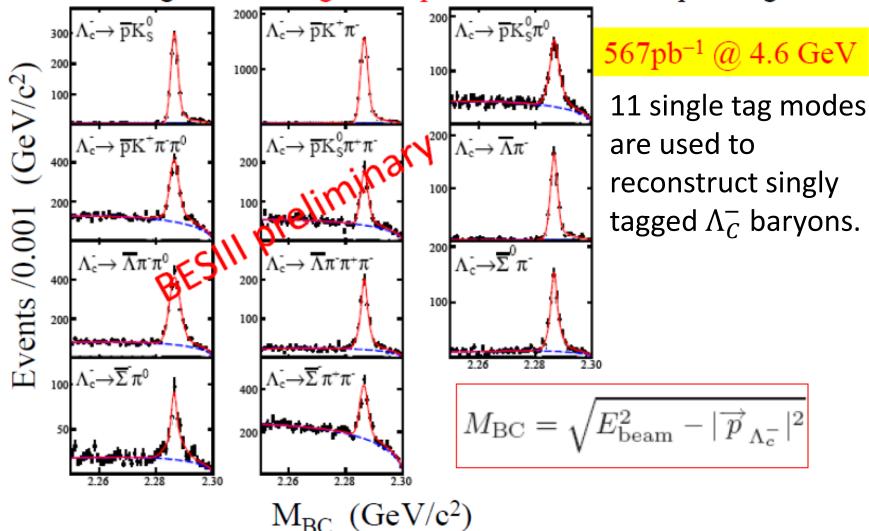
Branching Fraction Results

A least square global fitter: simultaneous fit to the all tag modes while constraining the total $\Lambda_c^+ \Lambda_c^-$ pair number, taking into account the correlations. *Chinese Phys. C 37, 106201 (2013)

	•		
Decay modes	global fit \mathcal{B}	PDG \mathcal{B}	Belle \mathcal{B}
pK_S	1.48 ± 0.08	1.15 ± 0.30	
$pK^{-}\pi^{+}$	5.77 ± 0.27	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S\pi^0$	1.77 ± 0.12	1.65 ± 0.50	
$pK_S\pi^+\pi^-$	1.43 ± 0.10	1.30 ± 0.35	
$pK^{-}\pi^{+}\pi^{0}$	4.25 ± 0.22	3.4 ± 1.0	
$\Lambda \pi^+$	1.20 ± 0.07	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	6.70 ± 0.35	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	3.67 ± 0.23	2.6 ± 0.7	
$\Sigma^0 \pi^+$	1.28 ± 0.08	1.05 ± 0.28	
$\Sigma^+ \pi^0$	1.18 ± 0.11	1.00 ± 0.34	
$\Sigma^{+}\pi^{+}\pi^{-}$	3.58 ± 0.22	3.6 ± 1.0	
$\Sigma^+ \omega$	1.47 ± 0.18	2.7 ± 1.0	

Semi-leptonic Motivation

- $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$ is a $c \rightarrow s l^+ v$ dominated process
- No direct absolute measurement of $B(\Lambda_c^+ \rightarrow \Lambda e^+ v_e)$ available. Direct measurement eagerly awaited for LQCD calculations. From indirect measurements

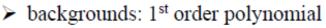

 $B(\Lambda_c^+ \to \Lambda e^+ v_e) = (2.1 \pm 0.6)\%$ PDG 2014

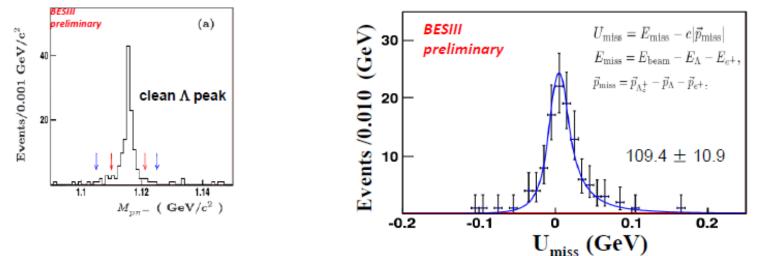
Using recent BELLE measurement of **B** ($\Lambda_c^+ \rightarrow pK^-\pi^+$), we get $(2.9 \pm 0.5)\%$

- Theoretical predictions for branching fraction of $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$ ranges from 1.4% to 9.2%.
- Thus, measuring $B(\Lambda_c^+ \rightarrow \Lambda e^+ v_e)$ will provide very important experimental information for
 - 1) Testing the theoretical predictions for $B(\Lambda_c^+ \rightarrow \Lambda e^+ v_e)$.
 - 2) Calibrating the LQCD calculations.
 - 3) Additionally can help in determining CKM elements.

Singly Tagged Λ_{C}^{-} baryons

✓ Fitting function: Signal Shape ⇔double-Gaussian plus Argus




Dan Ambrose, University of Minnesota

Candidate Events and Results

We detect a p, π^- and e^+ among the remaining tracks from the ST Λ_c^- and require p and π^- are from Λ .

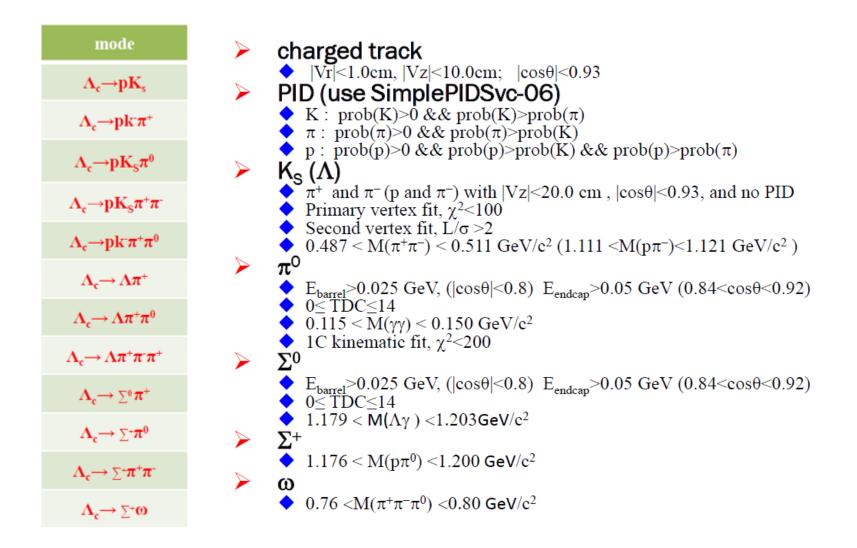
- ✓ Fitting function:
 - signals: Gaussian with two power law tails

After subtraction of the following backgrounds:

- non-ST events: negligible
- Λ sidebands: 1.4±0.8
- $\Lambda\mu^+\nu + \Lambda\pi^+\pi^0 + \Lambda\pi^+ = 4.5 \pm 0.5$

we obtain signal yields: 103.5 ± 10.9

Then
$$B(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.22)\%$$


Statistics limited measurement. Systematic error is smaller than statistical error.

Summary

- ➢ Based on the 567 pb⁻¹ of e⁺ e[−] collision data at center-ofmass energy of 4.6 GeV collected with the BESIII detector at BEPCII, we have a unique opportunity to measure Λ_C decay BFs at Λ⁺_CΛ⁻_C pair threshold.
- > BFs of 12 hadronic Λ_C decay modes are measured with DT method and a global fit to improve precision.
- ➢ BF of semi-leptonic Λ⁺_c → Λe⁺v_e decay is measured with a DT method.
- ➤ 12 of 13 modes are the first model-independent measurements of the absolute branching fraction of $Λ_C$ decays.
- Significant statistical improvement over current PDG measurements

Thank you

Λ_C selection criteria

Global fit

Matrix of efficiency-corrected yields (c): $c = E^{-1}n$ E is the signal efficiencies matrix (24x24) n is the yields contain ST and DT (24x1)

Least squares fitter constrains all BF simultaneously: $\chi^2 \equiv (c - \tilde{c})^T V_c^{-1} (c - \tilde{c}) + 2\lambda_{\alpha}^T g(\tilde{c}, m)$ Where m indicates unknown parameters(12 BF and $N_{\Lambda_c \overline{\Lambda_c}}$, 13x1) λ are the vectors of Lagrange multipliers Minimizing χ^2 optimizes the value of m *Chinese Phys. C 37, 106201 (2013)