Hadron spectroscopy at BESIII

Guofa XU IHEP, Beijing For BESIII Collaboration

- Introduction
- Hadron Spectroscopy

Scalar(0⁺⁺) -- f₀(1370), f₀(1500), f₀(1710)

>Pseudoscalar(0⁻⁺) --η(1440)/η(1405)/η(1475), X(18XX)

• Summary

Beijing Electron Positron Collider II (BEPC II)

28th Blois

BESIII Collaboration

May 20, 2016

28th Blois

BESIII started data taking for physics since 2009

- $1.3 \times 10^9 \, \text{J}/\psi$
- $5 \times 10^8 \psi(2S)$
- 2.9 fb⁻¹ @ ψ_{3770}
- $0.5~{
 m fb^{-1}} @ \psi_{4040}$
- 2.3 fb⁻¹ @ 4230/4260 MeV
- 0.5 fb⁻¹ @ 4360 MeV
- 0.5 fb⁻¹ @ 4600 MeV
- 1 fb⁻¹ @ ψ_{4415}
- 0.1 fb⁻¹ @ 4470/4530 MeV
- 0.04 fb⁻¹ around Λ_c threshold
- 1 fb⁻¹ @ 4420 MeV
- R scan:
 - 2-3 GeV, 19 points, ~0.5 fb⁻¹
 - 3.85-4.59 GeV, 104 points, ~0.8 fb⁻¹ •

MORE:

- 3554 MeV 24 pb⁻¹ τ mass; 4100-4400 MeV 0.5 fb⁻¹ coarse scan
- On-going data taking

May 20, 2016

28th Blois

¥(4.41)

 $\Omega_c \Omega_c$

ឃុំបុំ

Ecm (GeV)

-V-1

¥(4.16)

19997 19997		$u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$u\overline{s}, d\overline{s}; \overline{d}\overset{2}{s}, -\overline{u}s$	f'	f	5			
1 ¹ S ₀	0-+	π	K	η	$\eta^\prime(958)$				
1 ³ S ₁	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	-		T	
1 ¹ P ₁	1+-	$b_1(1235)$	K_{1B}^{\dagger}	h ₁ (1380)	$h_1(1170)$			•	
1 ³ <i>P</i> ₀	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$			-	
1 ⁸ <i>P</i> ₁	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	PDG2016		$= \eta_{c}(2S)$	$+\chi_{2}(1P)$
1 ³ P ₂	2++	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_2(1270)$	e V			
1 ¹ D ₂	2-+	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		•	term m = m = m = m = m = m = m = m = m = m	G
1 ³ <i>D</i> ₁	1	ho(1700)	$K^*(1680)$		$\omega(1650)$	las		•	5
1 ³ D ₂	2		$K_{2}(1820)$					Œ	
1 ³ D ₃	3	$ ho_3(1690)$	$K_{3}^{*}(1780)$	$\phi_3(1850)$	$\omega_3(1670)$				≭ f _J (2220)
1 ³ <i>F</i> ₄	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	2 –	f (1710)		2
1 ³ G5	5	ρ ₅ (2350)	$K_{5}^{*}(2380)$				$\int_{0}^{1} (1710)$	$\pm n(1475)$	$\pm f_{.}(1525)$
1 ³ H ₆	6++	a ₆ (2450)			<i>f</i> ₆ (2510)		$\frac{1}{4}$ f ₀ (1370)	$\frac{4}{2}$ $\eta(1405)$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
2 ¹ S ₀	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$] 1	T 0.00 50	- II(1275)	1 200
2 ⁸ S ₁	1	$\rho(1450)$	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$		0^{++}	0^{-+}	2^{++}

|| = 0

Suggested $q\overline{q}$ quark-model assignments for some of the observed light mesons.

 $l = \frac{1}{2}$

| = 0

] = 1

Lattice QCD predictions for glueball masses

 $n^{2s+1}\ell_J = J^{PC}$

Scalar (0++)

> Eur. Phys. J. C 21, 531–543 (2001)

✓ f₀(1370): Large nn̄, small ss̄ and significant Glue content

✓ $f_0(1500)$: $s\bar{s}$ and $n\bar{n}$ out of phase ✓ $f_0(1710)$: Large $s\bar{s}$ content

> Physics Reports 389 (2004) 61

- ✓ f₀(1370) Largely $n\overline{n}$
- ✓ f₀(1500) mainly Glue
- ✓ $f_0(1710)$ mainly $s\bar{s}$

PRL 110, 021601 (2013)

✓ f₀(1710) dominant Glueball components

J^{PC}	$r_0 M_G$	$M_G ({ m MeV})$
0^{++}	4.16(11)(4)	1710(50)(80)
2^{++}	5.83(5)(6)	2390(30)(120)
0^{-+}	6.25(6)(6)	2560(35)(120)
1^{+-}	7.27(4)(7)	2980(30)(140)
2^{-+}	7.42(7)(7)	3040(40)(150)
3^{+-}	8.79(3)(9)	3600(40)(170)
3^{++}	8.94(6)(9)	3670(50)(180)
$1^{}$	9.34(4)(9)	3830(40)(190)
$2^{}$	9.77(4)(10)	4010(45)(200)
$3^{}$	10.25(4))(10)	4200(45)(200)
2^{+-}	10.32(7)(10)	4230(50)(200)
0^{+-}	11.66(7)(12)	4780(60)(230)

first studied by

- Crystal Ball (1982): $f_0(1710)$
- Crystal Barrel (1995): $f_0(1500)$ [pp→π⁰ηη]
- E835 (2006): $f_0(1500)$ [pp→π⁰ηη] $f_0(1710)$ [pp→π⁰ηη]
- WA102, GAMS: **f**₀(1500) [ηη mode]

BESIII: PWA of $J/\psi \rightarrow \gamma \eta \eta, \eta \rightarrow \gamma \gamma$

- $f_0(1710)$ and $f_0(2100)$ are dominant scalars
- f₀(1500) exists (8.2σ)
- f_2 '(1525) is the dominant tensor
- $f_2(1810)$ and $f_2(2340)$ exist (6.4 and 7.6 σ)
- No evidence for $f_J(2220)$

Resonance Mass(MeV/ c^2) Width(MeV/ c^2) $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ Significance

$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2 σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0 σ
$f_0(2100)$	$_{2081\pm13^{+24}_{-36}}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
$f_{2}^{'}(1525)$	$1513 \pm 5^{+4}_{-10}$	75_{-10-8}^{+12+16}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229_{-42-155}^{+52+88}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4 σ
$f_2(2340)$	$2362_{-30-63}^{+31+140}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

PRD 92, 052003(2015)

- Model-independent PWA;
- Provide a description of the scalar and tensor components of the $\pi^0\pi^0$ system;
- 0^{++} : $\sigma(f_0(500)), f_0(1370), f_0(1500), f_0(1710), \text{ and } f_0(2020);$
- 2++: dominant by f₂(1270);

11

18

Decay rate of pure glueball from LQCD

 \blacktriangleright Pure scalar-glueball rate in J/ ψ radiative decays $BR(J/\psi \rightarrow \gamma G(0^{++})) = 3.8(9) \times 10^{-3}$ neng Gui et al. (2013) 021601 $\mathsf{BR}(\mathsf{J}/\psi \to \gamma \mathsf{f}_0(1710) \to \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$ BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \pi \pi$)=(4.0±1.0)×10⁻⁴ BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \omega \omega$)=(3.1±1.0)×10⁻⁴ BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta$)=(2.35^{+0.13+1.24}_{-0.74})×10⁻⁴ \blacktriangleright Pure Tensor-glueball rate in J/ ψ radiative decays $BR(J/\psi \rightarrow \gamma G(2^{++})) = 1.1(2) \times 10^{-2}$ -Bo Yang et al. 11.091601 Large decay rate is predicted **Need more experimental information!**

Pseudoscalar (0⁻⁺)--η(1440)

First observed in $p\overline{p}$

Nuovo Cimento 50A(1967)393

$$\checkmark p\bar{p} \rightarrow \eta (1440)\pi^{+}\pi^{-}(,\eta \rightarrow K\overline{K}\pi)$$

✓ Mass: 1425±7 MeV, Width: 80±10 MeV

>η(1405) and η(1475) observed in different decay modes

$\checkmark \pi^- p$: PRD40(1989)693, PLB516(2001)264

✓ Radiative J/ψ decay: PRL65(1990)2507, PRD46(1992)1951

✓ pp̄ annihilation at rest: PLB361(1995)187, PLB400(1997)226, PLB462(1999)453,
 PLB545(2002)261

Pseudoscalar (0⁻⁺)--η(1405)/η(1475)

The Structure of $\eta(1440)$

Experiment

 $\checkmark\eta(1440)$ split to $\eta(1405)$ and $\eta(1475)$ (from PDG04)

✓ η(1405)→ηππ , or through $a_0(980)\pi$ (or direct) to KKπ

√η(1475)→K*(892)K

➢Quark-model

- η (1295): the first radial excitation of the η '
- $\eta(1475)$: the first radial excitation of the η
- η(1405) ?

Phys. Rev. D87, 014023(2013)

• $\eta(1405)$ and $\eta(1475)$ are the same state with a mass shift in different modes

Pseudoscalar (0⁻⁺)--η(1405)/η(1475)

√η(1405)→γρ η(1475)→γφ

Decay mode	Mass (MeV/ c^2)	Width (MeV/ c^2)	$B(J/\psi \to \gamma X)B(X \to \gamma V)$ $(\times 10^{-4})$	Experiment
$f_1(1285) \rightarrow \gamma \rho^0$	1281.9 ± 0.6	24.0 ± 1.2	0.34 ± 0.09	PDG [1]
	1271 ± 7	31 ± 14	$0.25 \pm 0.07 \pm 0.03$	MarkIII [7]
	$1276.1 \pm 8.1 \pm 8.0$	$40.0 \pm 8.6 \pm 9.3$	$0.38 \pm 0.09 \pm 0.06$	BESII
$\eta(1440) \rightarrow \gamma \rho^0$	1400-1470	50-80	$0.64 \pm 0.12 \pm 0.07$	PDG [1]
	1432 ± 8	90 ± 26	$0.64 \pm 0.12 \pm 0.07$	MarkIII [7]
	$1424\pm10\pm11$	$101.0 \pm 8.8 \pm 8.8$	$1.07 \pm 0.17 \pm 0.11$	BESII
$\eta(1440) \rightarrow \gamma \phi$			< 0.82 (95% C.L.)	BESII

Fig. 2. The $\gamma\rho$ invariant mass distribution. The insert shows the full mass scale where the $\eta(958)$ is clearly observed.

Pseudoscalar (0⁻⁺)--n(1405)/n(1475)

	Resonance	Mass (MeV/c ²)	Γ (MeV/c²)	B.F.(×10 ⁻⁶)
Destructive	f ₁ (1285)	PDG	PDG	0.30±0.12±0.17
interference	η(1405/1475)	(⁴ 1479±11±21	133±35±20	11.8±2.2±1.9
	X(1835)	1812±59±42	161±47±24	9.0±2.6±2.2
Constructive	f ₁ (1285)	PDG	PDG	0.29±0.12±0.17
interference	η(1405/1475)	1479±11±16	132±36±31	7.9±1.3±1.9
	X(1835)	1813±61±45	$160 \pm 81 \pm 43$	$1.6 \pm 0.5 \pm 0.3$

√η**(1475)**→γφ

Result (BESIII preliminary)

Assuming $\eta(1405)$ and $\eta(1475)$ belong to one meson [1]: $\Gamma(\eta(1405/1475) \rightarrow \gamma \rho) : \Gamma(\eta(1405/1475) \rightarrow \gamma \phi) = 3.8 : 1$

> The structure in $\gamma \phi$ favors η (1475).

One state assumption: the ratio between $\gamma\rho$ and $\gamma\phi$ final states is a little bit larger than the prediction in Ref[1].

Two states assumption: $\eta(1475)$ probably the first radial excitation of the η

The partial width relationship of γho and $\gamma\phi$ final states					
DESIII prov	Constructive	Destructive			
$\Gamma(f_1(1285) \rightarrow \gamma \rho)[3]: \Gamma(f_1(1285) \rightarrow \gamma \phi)^{-1} m_{inal}$	(128.8 ± 96.7):1	(129.3 ±99.8):1			
$\Gamma(\eta(1405/1475) \rightarrow \gamma \rho)[4]: \Gamma(\eta(1405/1475) \rightarrow \gamma \phi)$	(6.6 ± 2.1) : 1	(9.9 \pm 2.8) : 1			

[1] X. G. Wu et, al. Phys. Rev. D 87, 014023.[2] L. Kopke and N. Wermes Phys. Rep. 174, 67.

[3] BES Collaboration Phys. Lett. B 594, 47.[4] Particle Data Group Chin. Phys. C 38, 090001.

BESIII Preliminary

TABLE V. The mass, width, and branching fractions of J/ψ decays into $\{\omega, \phi\}X(1440)$.

$J/\psi \rightarrow \omega X(1440)$	$J/\psi \rightarrow \omega X(1440)$
$(X \rightarrow K_S^0 K^+ \pi^- + \text{c.c.})$	$(X \to K^+ K^- \pi^0)$
$M = 1437.6 \pm 3.2 \text{ MeV}/c^2$	$M = 1445.9 \pm 5.7 \text{ MeV}/c^2$
$\Gamma = 48.9 \pm 9.0 \text{ MeV}/c^2$	$\Gamma = 34.2 \pm 18.5 \text{ MeV}/c^2$
$B(J/\psi \rightarrow \omega X(1440) \rightarrow \omega K_S^0 K^+ \pi^- + \text{c.c.}) = (4.$	$86 \pm 0.69 \pm 0.81) \times 10^{-4}$
$B(J/\psi \rightarrow \omega X(1440) \rightarrow \omega K^+ K^- \pi^0) = (1.92 \pm 0)$	$0.57 \pm 0.38) \times 10^{-4}$
$B(J/\psi \to \phi X(1440) \to \phi K_S^0 K^+ \pi^- + \text{c.c.}) < 1.9$	3×10^{-5} (90% C.L.)
$B(J/\psi \rightarrow \phi X(1440) \rightarrow \phi K^+ K^- \pi^0) < 1.71 \times 10^{-10}$	0^{-5} (90% C.L.)

M. Ablikim et al, Phys. Rev. D77, 032005(2008)

BESIII: J/ ψ →ωη $\pi\pi$

TABLE I. Summary of measurements of the mass, width, and the product branching fraction of $\mathcal{B}(J/\psi \to \omega X) \times \mathcal{B}(X \to a_0^{\pm}(980)\pi^{\mp}) \times \mathcal{B}(a_0^{\pm}(980) \to \eta \pi^{\pm})$ where X represents $f_1(1285)$, $\eta(1405)$ and X(1870). Here the first errors are statistical and the second ones are systematic.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26 \substack{+0.72 \\ -0.36}$

FIG. 4 (color online). Results of the fit to the $M(\eta \pi^+ \pi^-)$ mass distribution for events with either the $\eta \pi^+$ or $\eta \pi^-$ in the $a_0(980)$ mass window. The dotted curve shows the contribution of non- ω and/or non- $a_0(980)$ background, the dashed line also includes the contribution from $J/\psi \rightarrow b_1(1235)a_0(980)$, and the dot-dashed curve indicates the total background with the nonresonant $J/\psi \rightarrow \omega a_0^{\pm}(980)\pi^{\mp}$ included. $\chi^2/d.o.f.$ is 1.27 for this fit.

M. Ablikim et al, Phys. Rev. Lett. 107, 182001(2011)

2016年5月20日星期五

南开研讨会

$\eta(1405)$ in J/ψ $\rightarrow \gamma 3\pi$

PRL 108, 182001 (201

The isospin violated decay $\eta(1405) \rightarrow f_0(980)\pi^0$ is observed for the first time with a significance >10 σ .

Resonance	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	Branching ratios
$\frac{\eta(1405)(\pi^+\pi^-\pi^0)}{\eta(1405)(\pi^0\pi^0\pi^0)}$	$\frac{1409.0 \pm 1.7}{1407.0 \pm 3.5}$	48.3 ± 5.2 55.0 ± 11.0	$ \begin{array}{l} (1.50 \pm 0.11 \pm 0.11) \times 10^{-5} \\ (7.10 \pm 0.82 \pm 0.72) \times 10^{-6} \end{array} $

Measured results of $\eta(1440)$ at BES2/BESIII

BES2 BESIII

	ηππ	$K\overline{K}\pi$	3π	γν
γ	η(1405) (2.6±0.7)·10⁻⁴	η (1440)	η(1405) 3π (1.50±0.11±0.11)·10 ⁻⁵ 3π ⁰ (7.10±0.82±0.72)·10 ⁻⁶	η(1405) → γρ (1.07±0.17±0.11)·10 ⁻⁴ η(1475) → γφ (7.9±1.3±1.9/ 11.8±2.2±1.9)·10 ⁻⁶
ω	η(1405) (1.89±0.21± ^{0.21} _{0.23})·10 ⁻⁴	η(1440) K _s Kπ: (4.86±0.69±0.81)·10 ⁻⁴ K ⁺ K ⁻ π ⁰ : (1.92±0.57±0.38)·10 ⁻⁴		
ф	η(1405) (2.01±0.58±0.82)·10 ⁻⁵ (<4.45·10 ⁻⁵ @90%CL)	η <mark>(1440)</mark> K _s Kπ <1.93·10 ⁻⁵ @90%CL K ⁺ K ⁻ π ⁰ <1.71·10 ⁻⁵ @90%CL		
ρ				

Status of X(18??) at BESIII

- $X(p\overline{p})$: $J^{P} = 0^{-}$, $J/\psi \rightarrow \gamma p\overline{p}$,
- X(1835): J^P = 0⁻, J/ψ→γπ⁺π⁻η['],
- X(1840): J^P unknown, J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$, PRD88,091502
- X(1870): J^P unknown, J/ψ→ωηπ⁺π⁻,
- X(1810): $J^{P} = 0^{+}$, $J/\psi \rightarrow \gamma \omega \phi$,

PRL108,112003 PRL106, 072002 PRD88,091502 PRL107, 182001 PRD 87, 032008

X(18??) near proton-antiproton threshold :

- X(1840) is in agreement with X(1835) and X(*pp*), while its width is significantly different
- Are they the same particles?
- More studies are needed

$X(p\overline{p})/X(1860)$ in $J/\psi \rightarrow \gamma p\overline{p}$

- Strong enhancement first observed at BESII [PRL 91,022001(2003)] and confirmed by CLEO-c [PRD82,092002(2012)];
- CLEO-c [PRD82,092002(2012)];
 PWA was firstly performed at BESIII;
 Significance of the X(pp̄) component > 30σ, >5σ for the other components;
 The 0⁻⁺ assignment is better that other J^{PC};
 M=1832±¹⁹₅(stat)±¹⁸₁₇(syst)±19(mode)MeV/c²;

- **Γ<76MeV/c²** (90% C.L.);

No similar structure was observed in J/ $\psi \rightarrow \omega p\overline{p}$ or J/ $\psi \rightarrow \phi p\overline{p}$;

arXiv:1512.08197

Confirm X(1835) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Resonance	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	N _{event}	
$f_1(1510)$	1522.7 ± 5.0	48 ± 11	230 ± 37	>5.7σ
X(1835)	1836.5 ± 3.0	190.1 ± 9.0	4265 ± 131	>20σ
<i>X</i> (2120)	2122.4 ± 6.7	83 ± 16	647 ± 103	>7.2σ
X(2370)	2376.3 ± 8.7	83 ± 17	565 ± 105	>6.4σ

- X(1835) was first observed at BES, and then confirmed at BESII [PRL95,262001(2005)];
- the angular distribution of the radiative photon is consistent with expectations for pseudoscalar;
- Many interpretation: pp bound state? Glueballs? Radial excitation of the η' meson?,...
- Needed higher statistic

Fit to Mass spectra of $\eta' \pi^+ \pi^-$: MODEL I

• Using the Flatté formula for the line shape

•
$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}, \sum_k g_k^2 \rho_k \simeq g_0^2 (\rho_0 + \frac{g_{p\bar{p}}^2}{g_0^2} \rho_{p\bar{p}})$$

• $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the summation of all other channels

The state around 1.85 GeV/ c^2	
\mathcal{M} (MeV/ c^2)	$1638.0 \begin{array}{c} ^{+121.9}_{-121.9} \begin{array}{c} ^{+127.8}_{-254.3} \end{array}$
$g_0^2 ((\text{GeV}/c^2)^2)$	$93.7 \begin{array}{c} +35.4 \\ -35.4 \\ -43.9 \end{array}$
$g_{p\bar{p}}^2/g_0^2$	$2.31 \begin{array}{c} +0.37 \\ -0.37 \end{array} \begin{array}{c} +0.83 \\ -0.60 \end{array}$
$M_{pole} (MeV/c^2) *$	$1909.5 \begin{array}{c} +15.9 \\ -15.9 \\ -27.5 \end{array}$
$\Gamma_{\rm pole} ({\rm MeV}/c^2) ^*$	$273.5 \begin{array}{c} +21.4 \\ -21.4 \\ -64.0 \end{array}$
Branching Ratio	$(3.93 {}^{+0.38}_{-0.38} {}^{+0.31}_{-0.84}) \times 10^{-4}$

* The pole nearest to the $p\bar{p}$ mass threshold

$\log \mathcal{L} = 630549.5$

Significance of $g_{p\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ X(1920) is needed with 5.7 σ

Fit to Mass spectra of $\eta' \pi^+ \pi^-$: MODEL II

• Using coherent sum of two Breit-Wigner amplitudes

• <i>T</i> —	$\sqrt{ ho_{out}}$	$\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}$		
- 1 -	$\overline{M_1^2 - s - iM_1\Gamma_1}$	$\overline{M_2^2 - s - iM_2\Gamma_2}$		

X(1835)			
M (MeV/ c^2)	1825.3 +2.4 +17.3 -2.4 -2.4		
Γ (MeV/ c^2)	$245.2 \begin{array}{c} +14.2 \\ -12.6 \\ -9.6 \end{array}$		
B.R. (constructive interference)	$(3.01 {}^{+0.17}_{-0.17} {}^{+0.26}_{-0.28}) \times 10^{-4}$		
B.R. (destructive interference)	$(3.72 {}^{+0.21}_{-0.21} {}^{+0.18}_{-0.35}) \times 10^{-4}$		
X(1870)			
X(1870) M (MeV/c ²)	1870.2 +2.2 +2.3 -0.7		
X(1870) M (MeV/c ²) Γ (MeV/c ²)	$1870.2 \stackrel{+2.2}{_{-2.3}}\stackrel{+2.3}{_{-0.7}}$ $13.0 \stackrel{+7.1}{_{-5.5}}\stackrel{+2.1}{_{-3.8}}$		
X(1870) M (MeV/c²) Γ (MeV/c²) B.R. (constructive interference)	$1870.2 \stackrel{+2.2}{_{-2.3}} \stackrel{+2.3}{_{-0.7}}$ $13.0 \stackrel{+7.1}{_{-5.5}} \stackrel{+2.1}{_{-3.8}}$ $(2.03 \stackrel{+0.12}{_{-0.12}} \stackrel{+0.43}{_{-0.70}}) \times 10^{-7}$		

$\log \mathcal{L} = 630540.3$

Significance of X(1870) is larger than 7σ X(1920) is not significant

$\eta^{\prime}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ line shape near the $p\overline{p}$ mass threshold

- A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $p\overline{p}$ mass threshold is observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - > Simple Breit-Wigner function fails in describing the line shape near the $p\bar{p}$ mass threshold
- Two models have been used
 - \succ MODEL I: threshold structure due to the opening of the pp̄ decay mode
 - Using the Flatté formula
 - Strong X(1835) \rightarrow pp̄ coupling, with significance larger than 7σ
 - $M_{\text{pole}} = 1909.5 + 15.9 + 9.4 15.9 27.5 \text{ MeV}/c^2$
 - $\Gamma_{\text{pole}} = 273.5 + 21.4 + 6.1 64.0 \text{ MeV}/c^2$
 - MODEL II: interference between two resonances
 - Using coherent sum of two Breit-Wigner amplitudes
 - A narrow resonance below the $p\overline{p}$ mass threshold, with significance larger than 7σ
 - M = 1870. 2 $^{+2.2}_{-2.3} + ^{+2.3}_{-0.7}$ MeV/ c^2
 - $\Gamma = 13.0^{+7.1}_{-5.5} + \frac{12.1}{-3.8} \text{ MeV}/c^2$
- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to pp, or a narrow state just below the pp mass threshold
 - > Support the existence of a $p\overline{p}$ molecule-like state or bound state

X(1835) in $J/\psi \rightarrow K_S^0 K_S^0 \eta$ provi

provides a clear environment

BESIII: PRL115,091803

- $K^0{}_sK^0{}_s\eta$ and $\pi^0K^0{}_sK^0{}_s\eta$ bkgs are forbidden by exchange symmetry and CP conservation
- $1.3 \times 10^9 \text{ J}/\psi$ events
- (a) Structure around 1.85 GeV/c^2
- (b) Strong enhancement near the $K_{S}^{0}K_{S}^{0}$ threshold interpreted as the $f_{0}(980)$
- (c) Strong correlation between the $f_0(980)$ and the structure near 1.85 GeV/c²
- (d) $M(K^0_S K^0_S) < 1.1 \text{ GeV}/c^2 \text{ è}$ the structure near 1.85 GeV/c² became more pronounced

PWA of events with $M(K_{S}^{0}K_{S}^{0}) \le 1.1 \text{ GeV/c}^{2} \text{ and}$ $M(K_{S}^{0}K_{S}^{0}\eta) \le 2.8 \text{ GeV/c}^{2}$

X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

BESIII: PRL**115**,091803

Final fit results: the data can be best described with three components: $X(1835) \rightarrow f_0(980) \eta$, $X(1560) \rightarrow f_0(980) \eta$, and a non-resonant $f_0(1500) \eta$ component

✓ Mass/Width consistent with the X(1835) in

 $J/ψ \rightarrow \gamma \eta' \pi \pi$

- \checkmark Mass/spin consistent with those of the X($par{p}$)
- \checkmark Width is larger than the width of the X($par{p}$)

 $M = 1844 \pm 9 \text{ (stat)} \pm \frac{16}{25} \text{ (syst) MeV/c}^2 \qquad \Gamma = 192 \pm \frac{20}{17} \text{ (stat)} \pm \frac{62}{43} \text{ (syst) MeV} \text{ (>12.9 } \sigma \text{)}$ $BR = (3.3 \pm \frac{0.32}{0.30} \text{ (stat)} \pm \frac{1.96}{1.29} \text{ (syst)} \text{)} \times 10^{-5}$

28th Blois

X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- A structure at 1.84GeV/c² is observed in the mass spectrum 3(π⁺π⁻) with a significance of 7.6σ;
- M=1842.2±4.2^{+7.1}-2.6 MeV/c²; Γ=83±14±11 MeV/c²;

 $B(J/\psi \rightarrow \gamma X(1840)) \times B(X(1840) \rightarrow 3(\pi^+\pi^-)) = (2.44 \pm 0.36^{+0.60}_{-0.74}) \times 10^{-5}$

- ✓ The mass is consistent with that of X(1835), but the width is significantly different from either of them, and much smaller than $\Gamma_{X(1835)} = 190.1 \pm 9.0^{+38} \cdot _{.36} \text{ MeV/c}^2$;
- ✓ We cannot determine whether X(1840) is a new state a new decay modes of existing X(1835)?

X(1870) in J/ψ→ωηπ⁺π⁻

- First observation of $J/\psi \rightarrow \omega X(1870)$ and $X(1870) \rightarrow a_0 (980) \pm \pi^{\mp}$ with the significance 7.2 σ ;
- M=1877.3 \pm 6.3(stat) \pm ^{3.4}_{7.4}(syst) MeV/c²
- $\Gamma = 57 \pm 12(\text{stat}) \pm \frac{19}{4}(\text{syst}) \text{ MeV/c}^2;$
- f₁(1285) and η(1405) are also observed ^C/₄ with significances >10σ;
 the product branching fractions for ^A/₄
- the product branching fractions for X(1870), $f_1(1285)$ and $\eta(1405)$ are measured for the first time.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50\pm0.26^{+0.72}_{-0.36}$

Whether the resonant structure of X(1870) is due to the X(1835), the $\eta_2(1870)$, an interference of both, or a new resonance still needs further study!

X(1810) in PWA of $J/\psi \rightarrow \gamma \omega \phi$

- $J/\psi \rightarrow \gamma \omega \phi$ is Double OZI suppressed;
- The X(1810) is first observed by PWA at BESII [PRL 96, 162002 (2006)];
- Observed and confirmed at BESIII with the significance >30σ,;
- the J^{PC} of the X(1810) is 0⁺⁺;
- The enhancement is not compatible with either the X(1835) or the X(pp) due to the different masses and spin-parity.

Resonance	J^{PC}	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$>30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	20.4σ
$f_0(2020)$	0^{++}	1992	442	715 ± 45	100	2	13.9σ
η (2225)	0^{-+}	2226	185	70 ± 30	23	2	6.4σ
Coherent nonresonant component	0^+			319 ± 24	45	2	9.1 <i>o</i>

May 20, 2016

87,032008 >**30**σ

28th Blois

Summary

BESIII started data taking for physics since 2009

- World largest data samples at J/ ψ , ψ ', ψ (3770), ψ (4040), Y(4260) already collected, more data in future coming soon
- BESIII is in her golden age, more results will appear: charm meson, form factors, tau physics, two-photon, rare processes ...
- BESIII is playing leading role on hadron spectroscopy
- Expect more results from BESIII in the future !

Thanks!