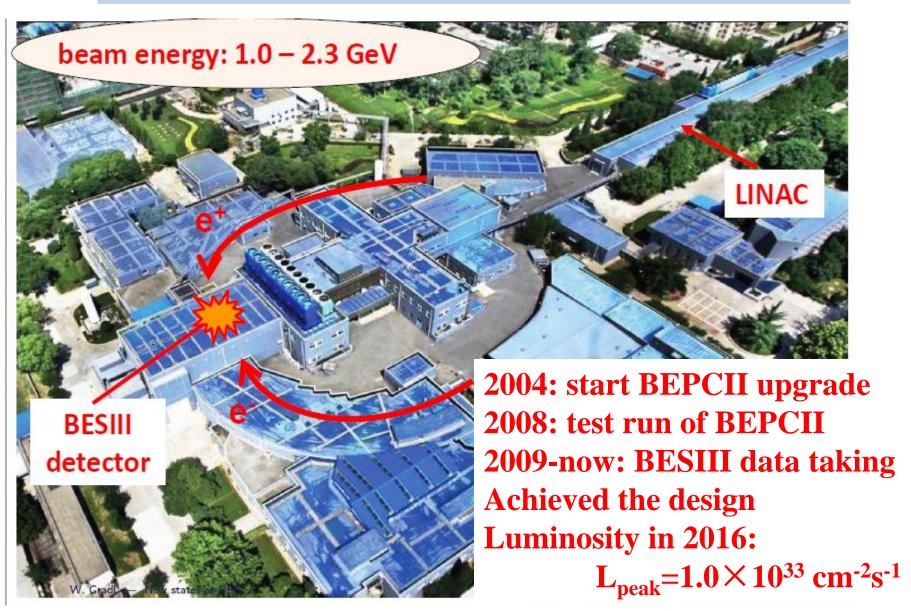
Charm Physics at

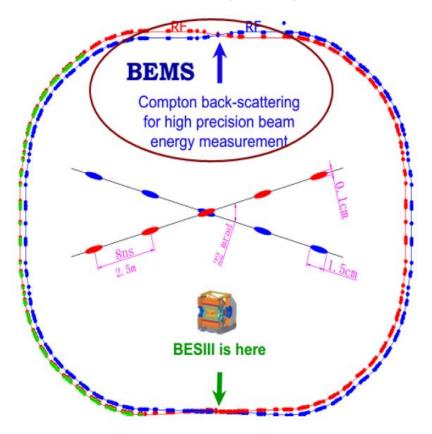
Peirong Li(李培荣)

on behalf of BESIII collaboration

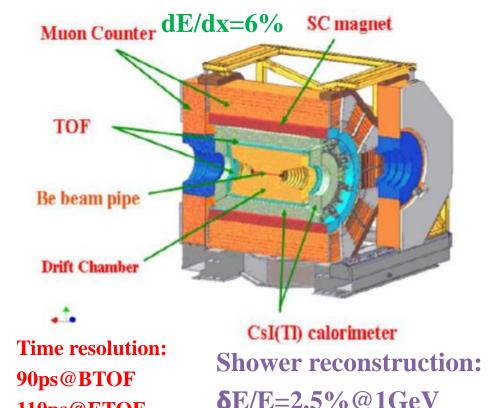

University of Chinese Academy of Sciences

Outline

- Introduction
- $\blacksquare \Lambda_c^+$ decays
 - $\rightarrow \Lambda_c^+$ semi-leptonic decays
 - $\rightarrow \Lambda_c^+$ hadronic decays
- D decays
 - > D semi-leptonic decays
 - D hadronic decays
- Summary



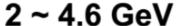
Beijing Electron Positron Collider (BEPCII)

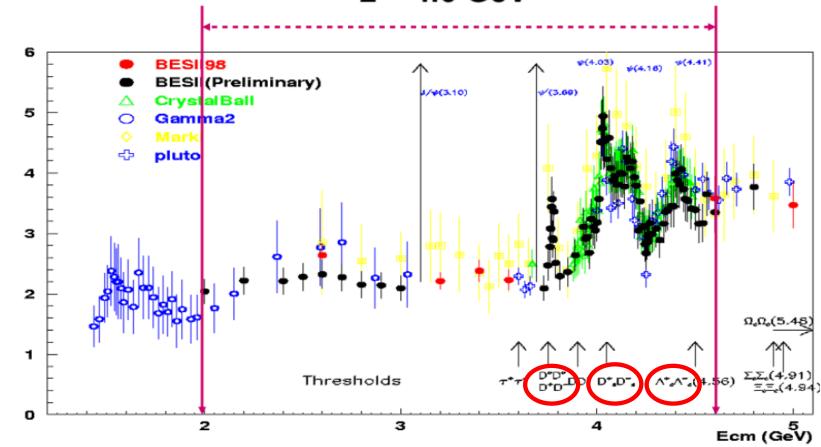

The BESIII Detector @ BEPCII

NIM A614, 345 (2010)

Excellent tracking:

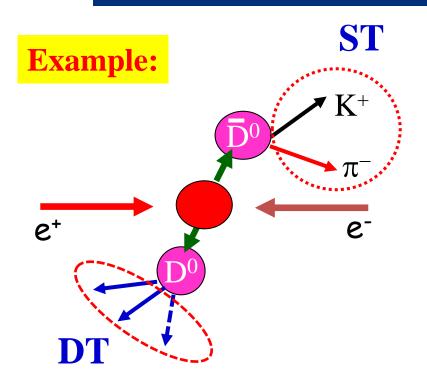
δp/p=0.5%@1GeV




The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

110ps@ETOF

Data samples in this talk



- 0.57 fb⁻¹ data@4.599 GeV for $\Lambda_c^+\Lambda_c^-$ production;
- 2.93 fb $^{-1}$ data@3.773 GeV for D 0 D 0 , D $^{+}$ D $^{-}$ production;
- 0.48 fb⁻¹ data@4.009 GeV for $D_s^+D_s^-$ production;

Analysis Technique

ST: Find only one D/Λ_c

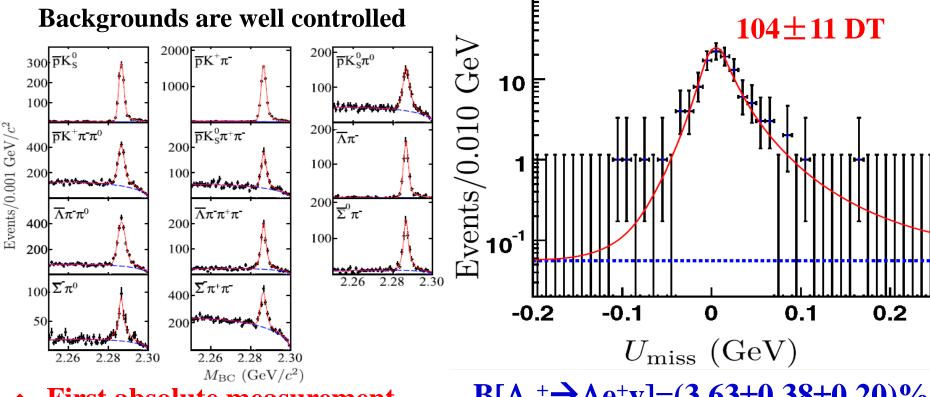
DT: Find both of them

$$\Delta E \equiv E_{D/\Lambda_c^+} - E_{\text{beam}}$$

$$M_{BC} \equiv \sqrt{E_{\text{beam}}^2/c^4 - \overrightarrow{p}_{D/\Lambda_c^+}^2/c^2}$$

$$U_{miss} \equiv E_{miss} - c |\overrightarrow{p}_{miss}|$$

The advantage of data at threshold:


- Charmed hadrons can be fully reconstructed by hadronic decays with large Branching Fractions(BF).
- Double Tag technique make one can access to absolute BFs and dynamics in the other side decays with clean background.
- Most systematic uncertainty in tag side are cancelled out.

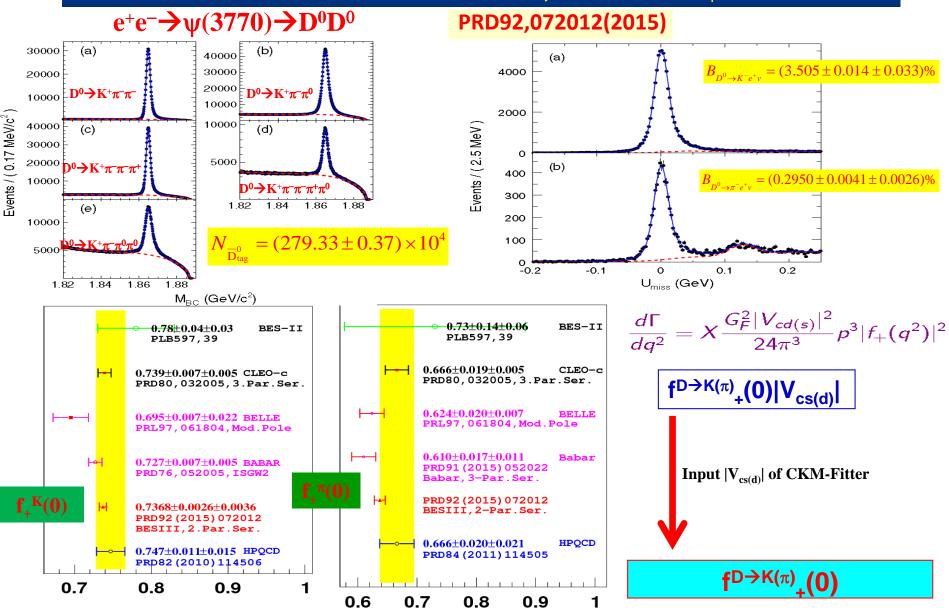
Absolute BF for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

14415 ± 159 events with 11 ST modes

PRL115, 221805 (2015)

- First absolute measurement
- $B[\Lambda_c^+ \rightarrow \Lambda e^+ v] = (3.63 \pm 0.38 \pm 0.20)\%$
- **♦** Important for test and calibrate the LQCD calculations
- **♦** Useful for determining CKM matrix elements
- **◆** Test the theoretical predications (ranges from 1.4% to 9.2%)

Absolute BFs of Λ_c^+ hadronic decays

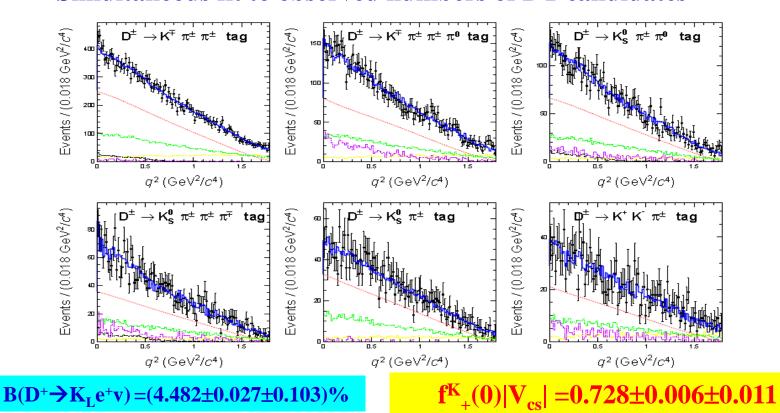

- Measurement using the threshold pair-productions via e^+e^- annihilations is unique:
 - the most simple and straightforward
 - kinematics do not allow additional particle produced along with the $\Lambda_c^+ \Lambda_c^-$ pair

PRL116, 052001 (2016)

Mode	This work (%)	PDG (%)	BELLE B
pK_s^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$ ho K_S^0 \pi^+ \pi^-$	$1.53 \pm 0.11 \pm 0.09$	$\boldsymbol{1.30 \pm 0.35}$	
$ ho K^- \pi^+ \pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

- A global least-square fitter is utilized to improve the measured precision for $12 \Lambda_c^+$ hadronic decay channels.
- BESIII BF for $\Lambda_c^+ \rightarrow pK^-\pi^+$ is smaller.
- Improved absolute BF of pK⁻π⁺ together with BELLE's result are key to calibrate other decays.
- ◆ The precision of absolute BFs of 12 modes are improved significantly.

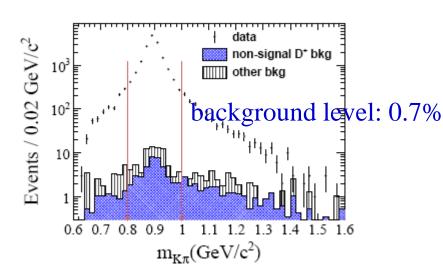
Measurement of B[D⁰ \rightarrow K(π)⁻e⁺v] and $f_{+}^{K(\pi)}(0)$



The most precise form factor measurement to calibrate the LQCD

Analysis of $D^+ \rightarrow K_L e^+ v$

- lacktriangle Regardless of long flight distance, K_L interact with EMC and deposit part of energy, thus giving position information
- ♦ After reconstructing all other particles, K_L can be inferred with position information and constraint U_{miss} → 0 [PRD92, 112008(2015)]


Simultaneous fit to observed numbers of DT candidates

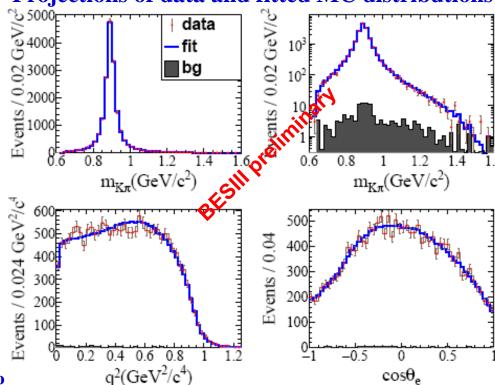
The first measurement of the BR for $D^+ \rightarrow K_L e^+ v_e$

Analysis of D⁺ \rightarrow K⁻ π ⁺e⁺v

$M_{K\pi}$ distribution

Fit Results of B

$$B(D^+ \rightarrow K^- \pi^+ e^+ v_e) = (3.71 \pm 0.03 \pm 0.08)\%$$

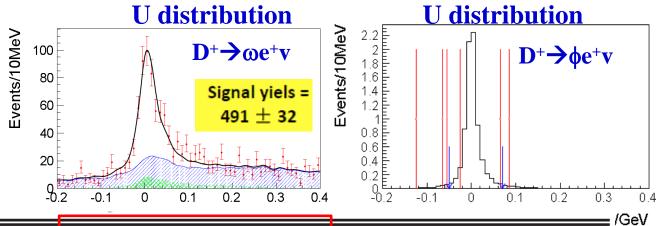

$$B(D^+ \rightarrow K^- \pi^+ e^+ v_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$$

Fitted fractions of the component

$$f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$$

 $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

arXiv:1512.08627

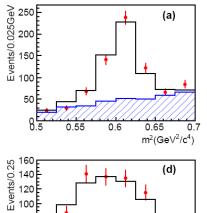

Projections of data and fitted MC distributions

■ Parameters of K*0(892)

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$

 $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$

Study of D⁺ $\rightarrow \omega e^+ v$ and search for D⁺ $\rightarrow \phi e^+ v$

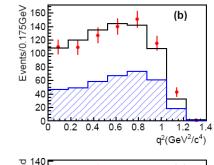

PRD92, 071101R(2015)

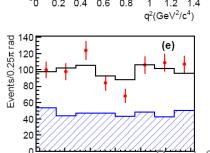
Red dots: data:

Arrows: signal region.

Mode	This work	Previous
$\omega e^+ \nu_e$	$(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$
$\phi e^+ \nu_e$	$< 1.3 \times 10^{-5} $ (90%C.L.)	$< 9.0 \times 10^{-5} (90\% \text{C.L.})$

- No significant excess of $D^+ \rightarrow \phi e^+ v$ is observed
- **Better precision of BFs**
- **Amplitude analysis of** $D^+ \rightarrow \omega e^+ v$ is performed for the first time




80 60

(d)

0.5

cos0.

Results of form factor ratios:

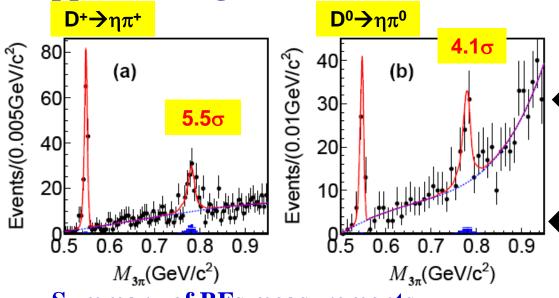
$$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

Beauty2016, Marseille, France

-0.5

0.5


120 F 100

20

12

Observation/Evidence for SCS decay $D^{+(0)} \rightarrow \omega \pi^{+(0)}$

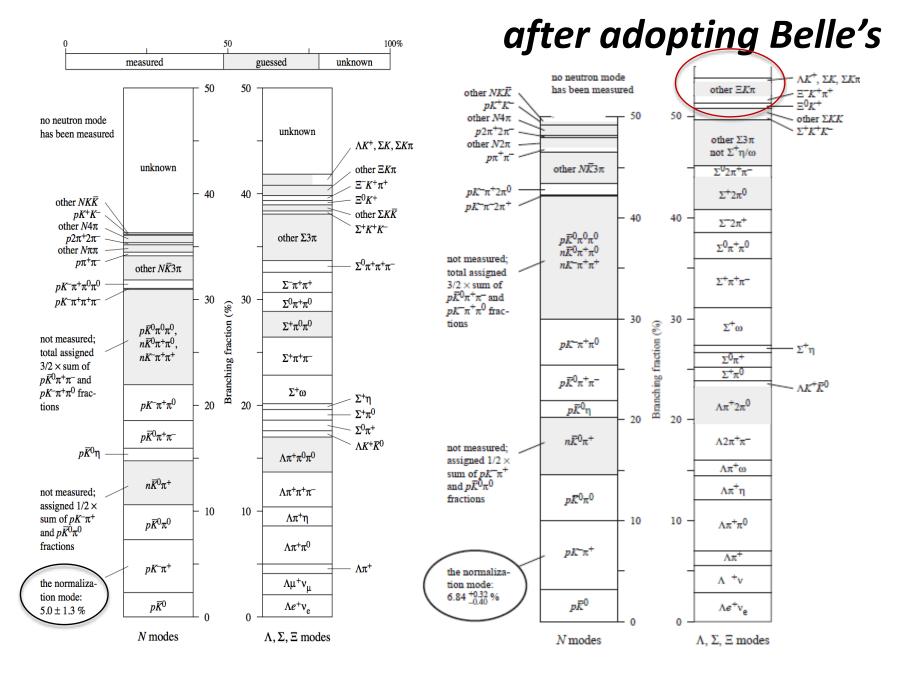
Suppress background via DT method

Summary of BFs measurements

PRL116, 082001 (2016)
----------------------	---

- ♦ Predications of B[D→ω π] at 1.0 × 10⁻⁴ level.
 - D→ωπ were studied at CLEO-c with ST method, but only set BF upper limits
- Mode This work Previous measurements $D^+ \to \omega \pi^+ \ (2.79 \pm 0.57 \pm 0.16) \times 10^{-4} \ < 3.4 \times 10^{-4} \ at \ 90\% \ C.L.$ $D^0 \to \omega \pi^0 \ (1.17 \pm 0.34 \pm 0.07) \times 10^{-4} \ < 2.6 \times 10^{-4} \ at \ 90\% \ C.L.$ $D^+ \to \eta \pi^+ \ (3.07 \pm 0.22 \pm 0.13) \times 10^{-3} \ (3.53 \pm 0.21) \times 10^{-3}$ $D^0 \to \eta \pi^0 \ (0.65 \pm 0.09 \pm 0.04) \times 10^{-3} \ (0.68 \pm 0.07) \times 10^{-3}$

◆ Improve understanding of SU(3) flavor symmetry breaking effects in D decays and benefitting theoretical prediction of CP violation in D decays


Other Results

```
D^+ \to \mu^+ \nu_\mu (Phys. Rev. D 89, 051104(R) (2014))
D^+ \to K_s^0 \pi^+ \pi^0 (Phys. Rev. D 89, 052001 (2014))
D^0 \to \gamma \gamma and D^0 \to \pi^0 \pi^0 (Phys. Rev. D 91, 112015 (2015))
Strong phase difference in D^0 \to K^-\pi^+ (Phys. Lett. B 734, 227(2014))
y_{cp} \text{ in } D^0 - \overline{D}^0 \text{ oscillation (Phys. Lett. B 744, 339 (2015))
BF of D^{*0} decay (Phys. Rev. D 91, 031101(R) (2015))
BF(D_s^+ \to \eta' X) and BF(D_s^+ \to \eta' \rho^+) (arXiv:1506.08952 [hep-ex])
Observation of \Lambda_c^+ \rightarrow nK_s^0 \pi^+ [arXiv:1601.04241]
```

Summary

- ➤ With 2.92fb⁻¹ data taken at 3.773GeV, BESIII released many new results.
- ➤ BEPCII/BESIII accumulated 567pb⁻¹ data set @4.6GeV
- **Open a door to study the lowest charmed baryon state** Λ_c^+
 - ♦ low backgrounds and high detection efficiency
- Several physic potentials has been and is being explored
 - ◆ absolute BFs of hadronic decays model-independently
 - $\bullet \Lambda_{\rm c}$ semi-leptonic decays
- \triangleright BESIII is taking data at 4.18GeV to study the D_s^+ decays
- More fruitful results will come out!

Backup slides

Basic global fit logical

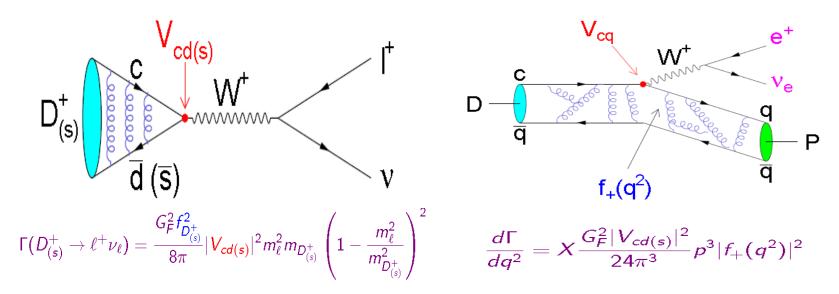
[Chinese Phys. C37(2013)106201]

$$N_i^{\rm ST} = N_{\Lambda_c^+ \overline{\Lambda}_c^-} \cdot \mathcal{B}_i \cdot \varepsilon_i^{\rm ST}$$

$$N_{-j}^{\mathrm{DT}} = N_{\Lambda_c^+ \overline{\Lambda}_c^-} \cdot \sum_{i} \mathcal{B}_i \cdot \mathcal{B}_j \cdot \varepsilon_{-j}^{\mathrm{DT}}$$

The efficiencies-corrected yields, denoted by $c = E^{-1}n$

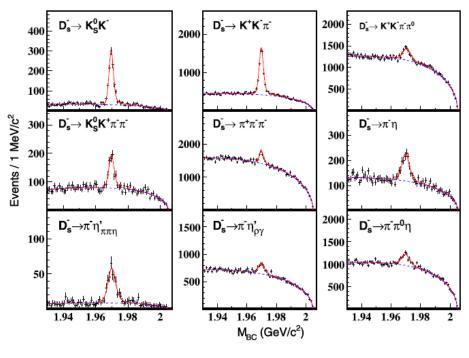
Based on the lease square principle, The χ^2 can be constructed as $\chi^2 \equiv (\mathbf{c} - \tilde{\mathbf{c}})^T \mathbf{V}_{\mathbf{c}}^{-1} (\mathbf{c} - \tilde{\mathbf{c}})$


motivation

Precision measurement of charm decays provide rich information to probe for strong and weak effects

- Unitarity test of CKM matrix: direct access quark mixing matrix element $|V_{cs(d)}|$ or strong phase constrained γ/ϕ_3
- LQCD calibration: precise decay constant $f_{D(s)+}$, form factors $f_{D\to K(\pi)}(q^2)$ and others
- **New physics BSM:** evidence of rare decay/CP violation, or significant deviation of CKM untarity/LQCD calculation
- Important inputs for beauty physics: Significantly improved decay rates or dynamics

D leptonic and semi-leptonic decays


Bridge to extract $D_{(s)}^+$ decay constant(s) $f_{D(s)+}$, form factors $f_+^{D \to K(\pi)}(q^2)$ and quark mixing matrix elements $|V_{cs(d)}|$

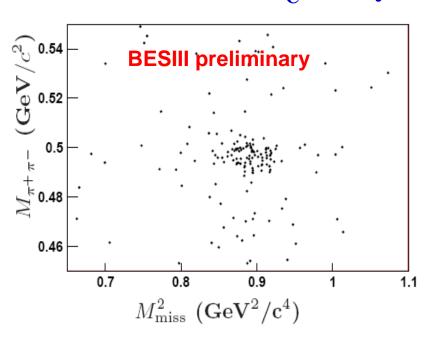
- Improved $f_{D(s)+}$, $f_+^{D\to K(\pi)}(q^2)$ of D semi-leptonic decays calibrate LQCD calculations at higher accuracy. Once they pass experimental test, the precise LQCD calculations of f_D/f_B , f_{Ds}/f_{Bs} and form factor ratios are helpful for measurements in B decays
- Recent LQCD calculations on $f_{D(s)+}[0.5(0.5)\%]$, $f_{+}^{D\to K(\pi)}(0)$ [1.7(4.4)%] provide good chance to precisely measure $|V_{cs(d)}|$

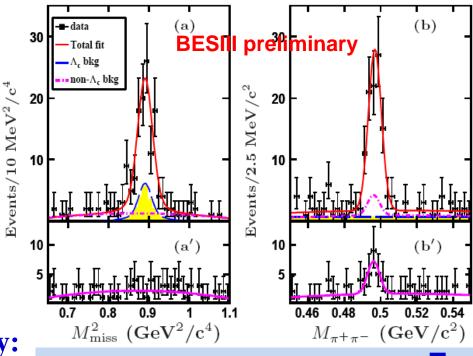
$D_s^+ \rightarrow \eta' X$ and $\eta' \rho^+$

About 15.6 K ST D_s⁻ events by using 9 ST modes

PLB750 466(2015) $\rightarrow \eta'X = 68 \pm 14$ Events / 2 MeV/c² Events / 2 MeV/c² $^{\circ}$ 1.94 0.92 0.94 M_{BC} (GeV/c²) $M(\eta'_{\pi\pi})$ (GeV/c²) $\eta' \rho^{+} = 210 \pm 50$ backgrounds Events / 2 MeV/c² 3 00 01 1.98 -0.5 1.94 M_{BC} (GeV/c²) cosθ_.

 $B[D_s^+ \rightarrow \eta' X] = (8.8 \pm 1.8 \pm 0.5)\%$


Consistent with CLEO measurements $B[D_s^+ \rightarrow \eta'X] = (11.7 \pm 1.8)\%$ [PRD79 112008(2009)]


$$B[D_s^+ \rightarrow \eta' \rho^+] = (5.8 \pm 1.4 \pm 0.4)\% \quad B^{exp}[D_s^+ \rightarrow \eta' \rho^+] = (3.0 \pm 0.5)\% \text{ [PRD84 074019(2011)]}$$

Resolve the disagreement between theoretical predication and CLEO-c's previous measurement. $B[D_s^+ \to \eta^* \rho^+] = (12.5 \pm 2.2) \% [PRD58 052002(1998)]$

Observation of $\Lambda_c^+ \rightarrow nK_S^0 \pi^+$

First observation of Λ_{C}^{+} decays to final states involving the neutron.

The missing neutron is detected by:

$$M_{\text{miss}}^2 = (p_{\Lambda_c^+} - p_{K_S^0} - p_{\pi^+})^2 = E_{\text{miss}}^2 - c^2 |\overrightarrow{p}_{\text{miss}}|^2$$

83 ± 11 net signal events

BESIII Preliminary results:

$$B[\Lambda_c^+ \rightarrow nK_S^0 \pi^+] = (1.82 \pm 0.23 \pm 0.11)\%$$

Fit to M^2_{miss} and $M_{\pi^+\pi}$ spectra in (a,b) Λ_c^- signal region and (a',b') Λ_c^- sideband region simultaneously.

The relative BF of neutron-involved mode to proton-involved mode is essential to test the isospin symmetry for Λ_c^+ decays. [arXiv:1601.04241]