Recent Results from BESIII

Liaoyuan Dong

(For BESIII Collaboration)

Institute of High Energy of Physics, Beijing, China

Outline

- > Status of BEPCII/BESIII
- > Results from Charmonium data samples
- > Summary

physics at BESIII

Charmonium physics:

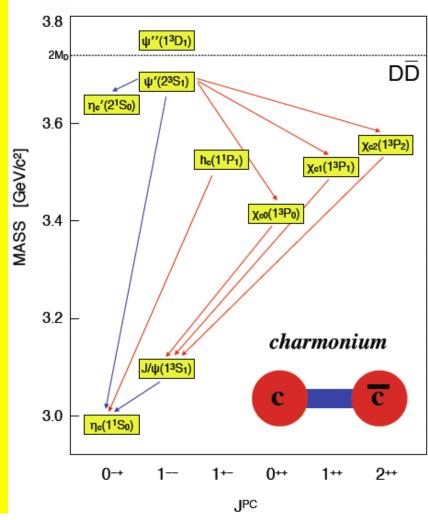
This Talk

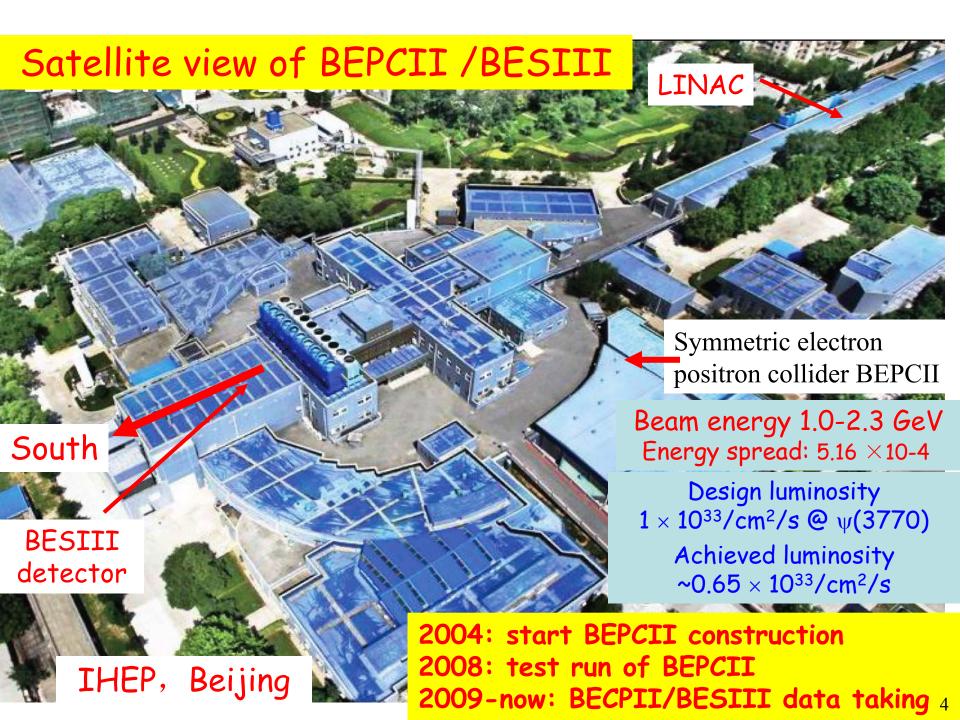
- Spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy
- glueball & hybrid
- two-photon physics
- e.m. form factors of nucleon

Charm physics:

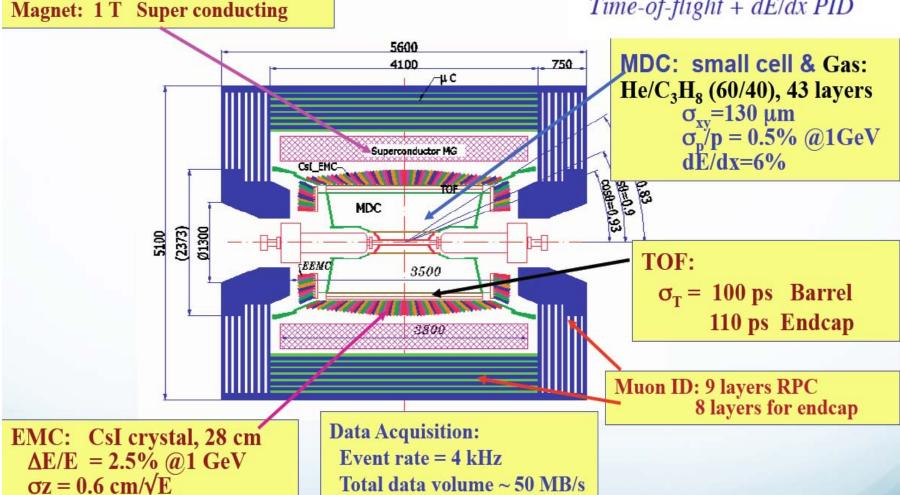

- (semi)leptonic + hadronic decays
- decay constant, form factors
- CKM matrix: Vcd, Vcs
- Do-Dobar mixing and CP violation
- rare/forbidden decays


Tau physics:

- Tau decays near threshold
- tau mass scan

...and many more.

arXiv:0809.1869 [hep-ex] IJMP A V24, No1(2009)supp



BESIII Detector

BESIIII detector: all new!

CsI calorimeter
Precision tracking
Time-of-flight + dE/dx PID

BESIII Data samples

- So far BESIII has collected:
 - 2009: 220 Million J/ψ
 - 2009: 106 Million ψ'
 - 2010-11: ~2.9 fb⁻¹ ψ(3770)
 - $(3.5 \times CLEO c\ 0.818fb^{-1})$
 - May 2011: ~0.5fb⁻¹ @4010 MeV (one month) for Ds and XYZ spectroscopy
- BESIII will also collect:
 - more J/ψ , ψ' , $\psi(3770)$
 - data at higher energies

 (for XYZ searches,
 R scan and Ds physics)

Year	Running Plan
2012	J/ψ: 1 billion / ψ(25): 0.5 billion (approved)
2013	4170 MeV: Ds decay R scan (E > 4 GeV)
2014	ψ(25)/τ / R scan (E > 4 GeV)
2015	ψ(3770): 5-10 fb ⁻¹ (our final goal)

Red: be approved by BESIII Collaboration

Released results of BESIII

- Charmonium Spectroscopy and Transitions
 - Properties of the h_c (PRL 104, 132002 (2010))
 - $\psi' \rightarrow \gamma \gamma J/\psi$ (submitted soon)

10 papers published

Charmonium Decays

- $\chi_{cJ} \rightarrow \pi^0 \pi^0$, $\eta \eta (PRD 81, 052005 (2010))$
- $\chi_{cJ} \rightarrow \gamma \rho$, $\gamma \omega$, $\gamma \Phi$ (PRD83,112005(2011))
- χ_{cJ} ω ω , φ φ , ω φ (submitted to PRL)
- $\psi' \rightarrow \gamma \pi^{0}$, $\gamma \eta$, $\gamma \eta'$ (PRL 105, 261801 (2010))
- $\chi_{cJ} \rightarrow 4\pi^{0}$ (PRD 83, 012006 (2011))
- η , η' and $\eta_c \rightarrow \pi \pi$ (submitted to PRD)
- Observation of $\chi_{c,T} \rightarrow ppK^+K^-(PRD83,112009(2011))$

Light Quark States

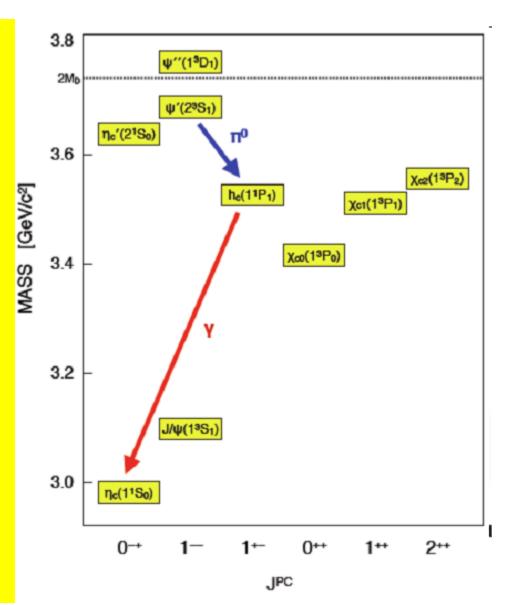
- $a_0(980)$ $f_0(980)$ mixing (PRD 83, 032003 (2011))
- $\eta' \to \eta \pi^+ \pi^-$ matrix element *(PRD 83, 012003 (2011))*
- X(1860) in $J/\psi \rightarrow \gamma$ (pp) (Chinese Physics C 34, 4 (2010))
- X(1835) in J/ $\psi \rightarrow \gamma (\eta' \pi^+ \pi^-)$ (PRL 106, 072002 (2011))
- X(1870) in J/ $\psi \rightarrow \omega$ ($\eta \pi^+\pi^-$) (submitted to PRL)

More than 20 analyses are under internal review!

Observation of h_c at BESIII

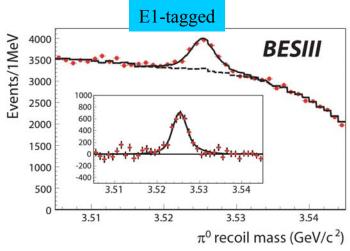
Property of h_c (1p1)

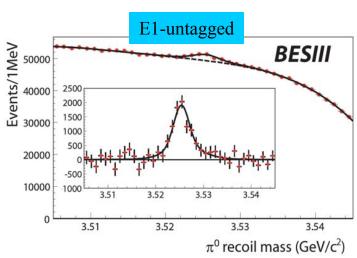
- First evidence: E835 in $pp \rightarrow h_c \rightarrow \gamma \eta_c$ (PRD72,092004(2005))
- CLEO-c observed h_c in ee $\rightarrow \psi$ ' $\rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ ΔM_{hf} (1P)=0.08 \pm 0.18 \pm 0.12 MeV/c² (PRL104,132002(2010))
- Study isospin forbidden transition:


$$B(\Psi' o \pi^0 h_c)$$

Measure as well the E1 transition:

$$B(h_c o \gamma \eta_c)$$


M(h_c) gives access to hyperfine splitting of 1P states:


$$\Delta M_{hf}(1P)=M(h_c)-1/9(M(\chi_{c0})+3M(\chi_{c1})+5M(\chi_{c2}))$$

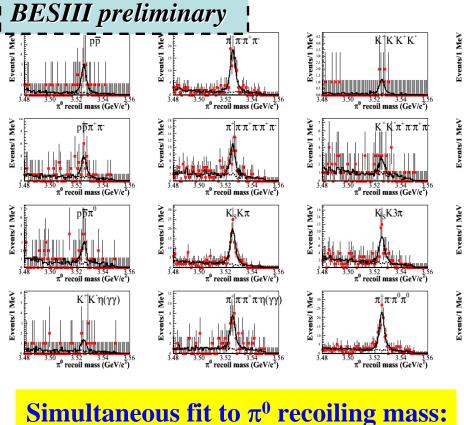
Observation of h_c at BESIII (inclusive)

BESIII Collaboration: PRL104, 132002, (2010)

- > Select inclusive $\pi^0 (\psi' \rightarrow \pi^0 h_c)$
- Select E1-photon in $h_c \rightarrow \gamma \eta_c$ (E1 tagged) or not (E1 untagged)
- ➤ E1-tagged selection gives

$$M(h_c)=3525.40\pm0.13\pm0.18 MeV$$

($\Delta M_{hf}(1P)=0.10\pm0.13\pm0.18 MeV/c^2$)

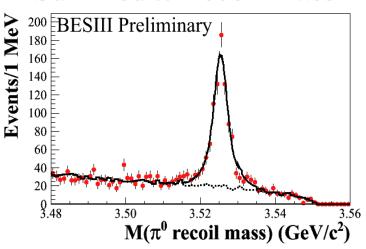

$$\Gamma(\mathbf{h}_c)=0.73\pm0.45\pm0.28 \text{MeV}$$
 (first measurement) (<1.44MeV at 90% CL)

Br(ψ'
$$\rightarrow$$
π⁰h_c)×Br(h_c \rightarrow γη_c)=
(4.58±0.40±0.50) ×10⁻⁴

- E1-untagged selection gives $\mathbf{Br}(\ \mathbf{\psi'} \rightarrow \pi^0 \mathbf{h}_c) = (8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$
- Combining branching fractions leads to

Br(
$$h_c \rightarrow \gamma \eta_c$$
) = $(54.3 \pm 6.7 \pm 5.2)\%$ (first measurement)

Measurements of the h_c properties at BESIII (exclusive)


 $M(h_c) = 3525.31 \pm 0.11 \pm 0.15 \text{ MeV}$

 $\chi^2/\text{d.o.f.} = 32/46$ BESIII preliminary

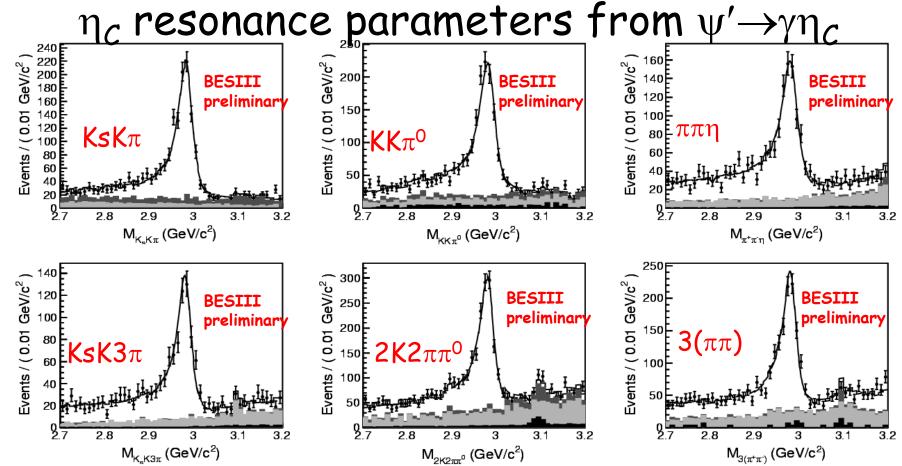
 $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25 \text{ MeV}$

 $\begin{array}{c} \psi' \rightarrow \pi^0 h_C, \quad h_C \rightarrow \gamma \eta_C, \\ \eta_C \quad \text{is reconstructed} \\ \text{exclusively with} \\ \text{16 decay modes} \end{array}$

Summed π^0 recoil mass

Consistent with BESIII inclusive results PRL104,132002(2010)

PRL101, 182003(2008)


CLEOc exlusive results $M(h_c)=3525.21\pm0.27\pm0.14 \text{ MeV/c}^2$ N = 136 ± 14

1

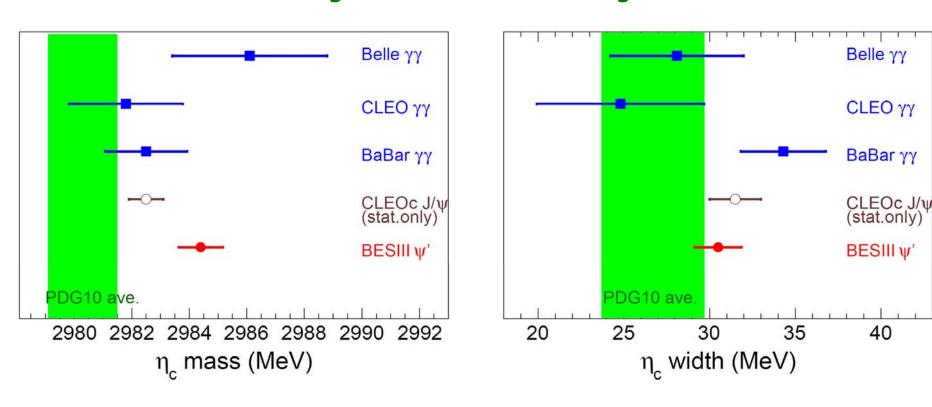
Measurement of the η_c resonance parameters from $\psi' {\to} \gamma \eta_{\mathcal{C}}$

Introduction

- The lowest lying S-wave spin singlet charmonium η_c was discovered in 1980 by MarkII.
- Earlier experiments using J/ψ radiative transition gives $M(\eta_c)\sim 2978.0 MeV/c^2$, $\Gamma(\eta_c)\sim 10 MeV$.
- Recent studies using the two-photon processes gives $M(\eta_c)=2983.1\pm1.0 \text{ MeV/c}^2$, $\Gamma(\eta_c)=31.3\pm1.9 \text{ MeV}$.
- The most recent study from CLEO-c pointed out the distortion of the η_c line shape in ψ' decays.
- \triangleright Measurement of the η_c properties at BESIII
 - ◆Data sample: 106M ψ'events, 45pb⁻¹ continuum data at 3.65 GeV
 - ◆Decay modes X_i : KsKπ, K+K-π⁰, ηπ+π-, KsK3π, K+K-π+π-π⁰, $3(\pi^+\pi^-)$, where Ks→π+π-, η→γγ, π^0 →γγ

Simultaneous fit with r-BW by considering the interference between η_c and non- η_c decays, as well as the energy dependence of phase space:

mass: 2984.4 \pm 0.5_{stat} \pm 0.6_{svs} MeV/ c^2


width: 30.5±1.0_{stat}±0.9_{sys} MeV

 ϕ : 2.35±0.05_{stat}±0.04_{sys} rad

 ϕ : relative phase between η_c decay and non-resonant component under the signal region by assuming all non- η_c is 0⁻⁺, and an universal phase for different modes is used.

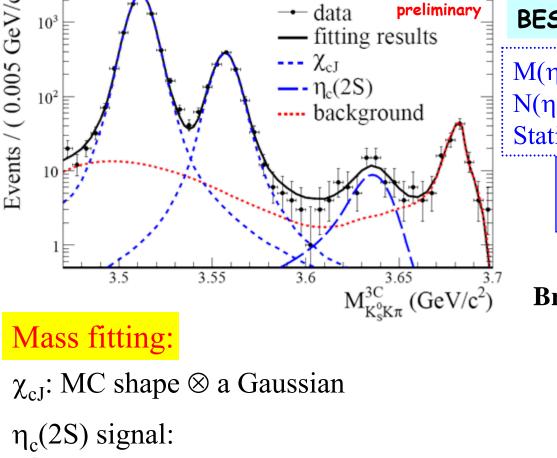
Comparison of the mass and width for η_c

The world average in PDG2010 was using earlier results

BESIII results include both stat. and syst. errors, which is the most precision measurement.

First observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$

Introduction


- First "observation" by Crystal Ball in 1982 (M=3.592, B=0.2%-1.3% from $\psi' \rightarrow \gamma X$, never confirmed by other experiments.)
- \triangleright Published results about $\eta_c(2S)$ observation:

Experiment	$M [\mathrm{MeV}]$	$\Gamma [{ m MeV}]$	Process
Belle [1]	$3654 \pm 6 \pm 8$	_	$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm}\pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$	_	$e^+e^- \to J/\psi c\bar{c}$
PDG [5]	3638 ± 4	14 ± 7	_

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm3$ MeV

- The M1 transition $\psi' \rightarrow \gamma \eta_c(25)$ has not been observed. (experimental challenge : search for real photons ~50MeV,)
- \triangleright Better chance to observe $\eta_c(2S)$ in ψ' radiative transition with ~106M ψ' data at BESIII.
- ► Decay mode studied: $ψ' → γη_c(2S) → γKsKπ$ (K+K- $π^0$ etc. in progress)

Observation of $\eta_c(2S)$ in $\psi' \rightarrow \gamma \eta_c(2S)$, $\eta_c(2S) \rightarrow K_s K \pi$

With 106M ψ' events:

BESIII fit results:

$$M(\eta_c(2S)) = (3638.5 \pm 2.3 \pm 1.0) \text{ MeV/c}^2$$

 $N(\eta_c(2S)) = 50.6 \pm 9.7$

Statistical significance larger than 6.0 σ !

Br(
$$\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$$
)
=(2.98 \pm 0.57_{stat} \pm 0.48_{sys}) \times 10⁻⁶

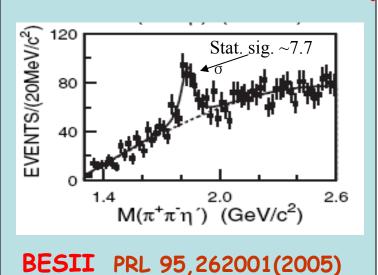
Br($\eta_c(2S)$ → KKπ)=(1.9 ± 0.4 ± 1.1)% From BABAR(PRD78,012006)

Br(ψ'
$$\rightarrow$$
 γη_c(2S))
=(4.7 \pm 0.9_{stat} \pm 3.0_{svs}) × 10⁻⁴

CLEO-c: <7.6×10⁻⁴ PRD81,052002(2010)

Potential model: $(0.1-6.2)\times10^{-4}$ PRL89,162002(2002)

 $\Gamma(\eta_c(25))$ fixed to 12MeV (world average)


M1 transition

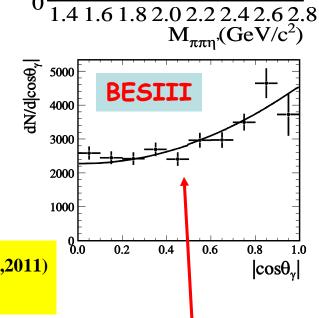
 $(E_{\gamma}^{3} \times BW(m) \times damping(E_{\gamma})) \otimes Gauss(0, \sigma)$

 $E_{\gamma}E_0 + (E_{\gamma} - E_0)^2$

Confirmation of X(1835) and observation of two new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Confirmation of X(1835) and two new structures

Decay modes: $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^ \eta' \rightarrow \gamma \rho$ Estil: 225M


BESIII: 225M J/ψ events, new structures!

BESIII results:

Resonance	$M(MeV/c^2)$	Γ (MeV/c ²)	Stat.Sig.
X(1835)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$	190.1±9.0+38 ₋₃₆	>20 σ
X(2120)	$2122.4 \pm 6.7^{+4.7}_{-2.7}$	$83\pm16^{+31}_{-11}$	7.2 σ
X(2370)	2376.3±8.7 ^{+3.2} _{-4.3}	83±17 ⁺⁴⁴ -6	6.4 σ

Nature of X(2120)/X(2370): (PRD82,074026,2010, PRD83:114007,2011) pseudoscalar glueball ? η/η' excited states?

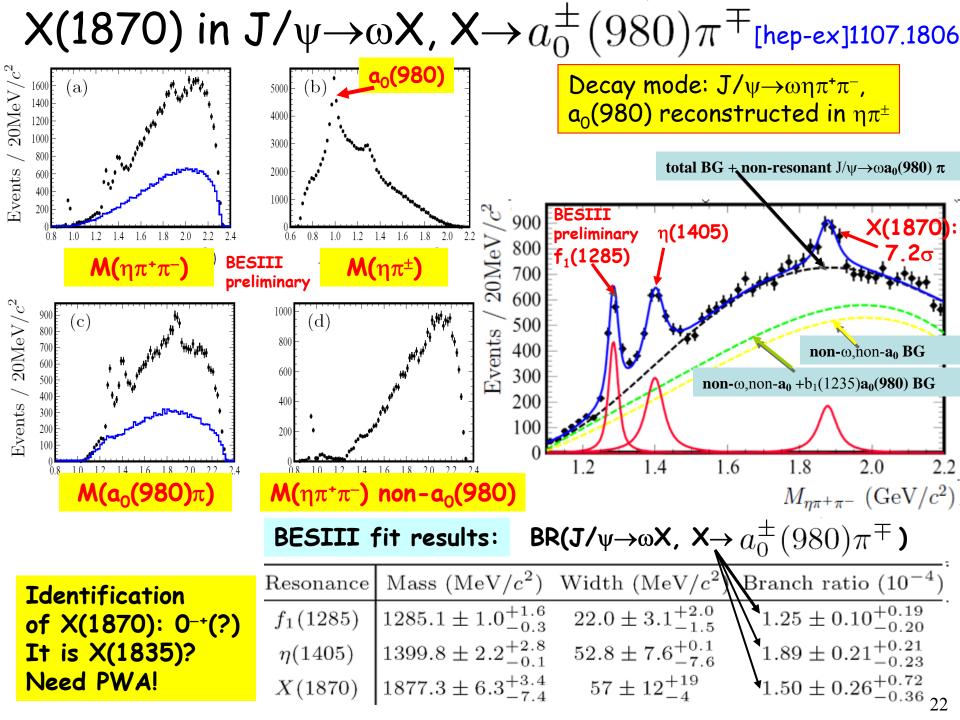
An amplitude analysis could help with interpretation for the additional new structures!

BG + non-resonant $\eta' \pi^+ \pi^-$

Non- η' and $\eta'\pi^+\pi^-\pi^0$ BG

PRL 106, 072002(2011)

BESIII


f1(1510)

200

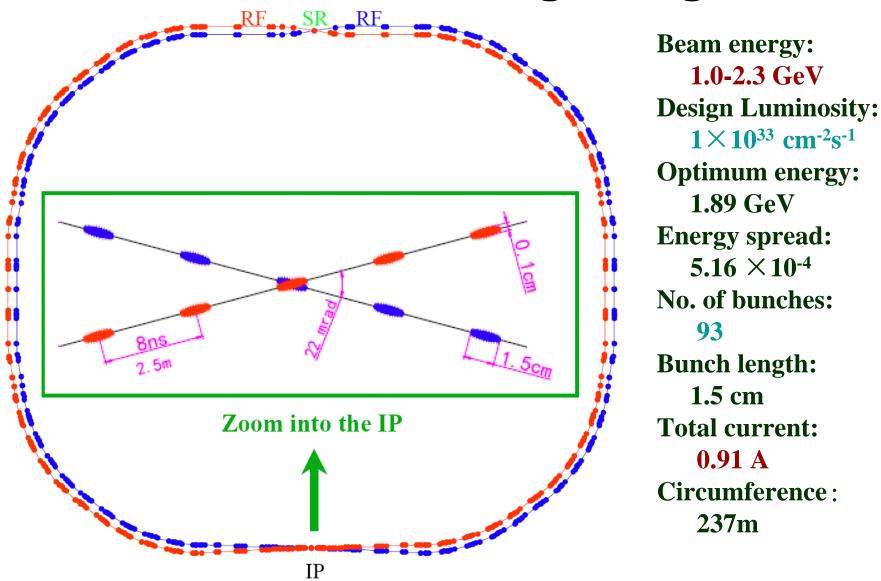
100

X(1835) consistent with 0⁻⁺, but the others are not excluded

Observation of X(1870) in $J/\psi \rightarrow \omega X, X \rightarrow a_0(980)\pi$

Summary

- > BESIII is successfully operating since 2008:
 - 1. recorded huge data samples at J/ψ , ψ' and $\psi(3770)$.
 - 2. more data (also at higher energies) in future.
- > Charmonium spectroscopy and transitions:
 - 1. measured the h_c resonance parameters (inclusive & exclusive).
 - 2. measured the $\eta_c(15)$ parameters precisely in $\psi' \rightarrow \gamma \eta_c(15)$.
 - 3. first observed of $\eta_c(25)$ in $\psi' \rightarrow \gamma \eta_c(25)$ decay.
- > Light quark states
 - 1. confirmed X(1835) with two new structures in $J/\psi \rightarrow \gamma \pi \pi \eta'$.
 - 2. observed a new structure X(1870) in $J/\psi \rightarrow \omega \pi \pi \eta$.
- > We expect rich physics results in the coming years from BESIII.


Thank you!

Backups

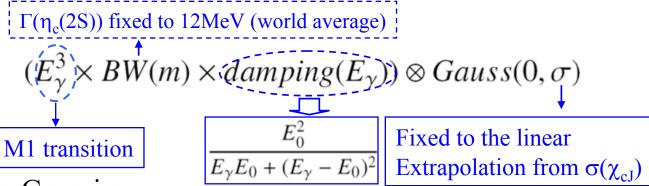
BESIII Collaboration

BEPCII storage rings

Fitting function $\psi' \rightarrow \gamma \eta_C$

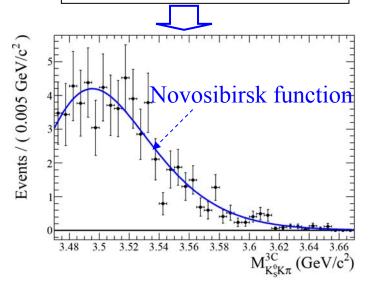
$$\sigma \bigotimes (\epsilon |e^{i\phi}f_1\mathcal{S} + \alpha Non|^2 f_2) + BKG$$

- > S: signal function (BW with mass width floated)
- Non: non-resonant γX_i PDF (a 2nd-order Chebychev function with free parameters)
- **BKG**: the sum of other backgrounds $\pi^0 X_i$ + other rare ψ' decays + continuum, fixed in the fitting
- φ: interference phase
- \triangleright α : the strength of the non-resonant
- > ε: mass-dependent efficiency
- \triangleright σ : experimental resolution
- $ightharpoonup \mathbf{f_1^2f_2}$: M1 form factor $(E_{\gamma}^4 E_{\gamma}^3 = E_{\gamma}^7)$

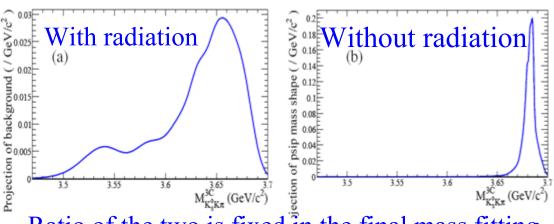

Preliminary: relative phase between η_c decays and non- η_c background

mode	yield	φ _i (stat.)	$\chi^{2/}$ dof
$K_SK\pi$	880.4	2.9±0.3	1.1
$KK\pi^0$	948.4	2.4±0.4	0.9
ππη	573.4	2.2±0.2	1.2
$K_SK3\pi$	432.3	2.3±0.2	0.7
$2K2\pi\pi^0$	1033.6	2.6±0.2	1.2
6π	664.4	2.5±0.1	1.1
combined	4532.5	2.35±0.05	-

 ϕ_i values from each mode are consistent within 3σ : \Rightarrow use a common phase in the simultaneous fit.

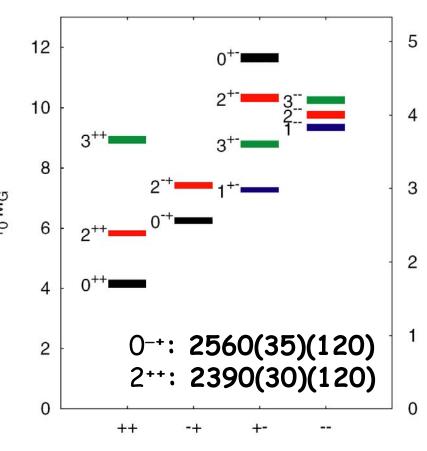

Fitting function $\psi' \rightarrow \gamma \eta_c(2S)$

 $\triangleright \eta_c(2S)$ signal:



- $\triangleright \chi_{cJ}$: MC shape \otimes a Gaussian
- \triangleright BG from π^0 KsK π :

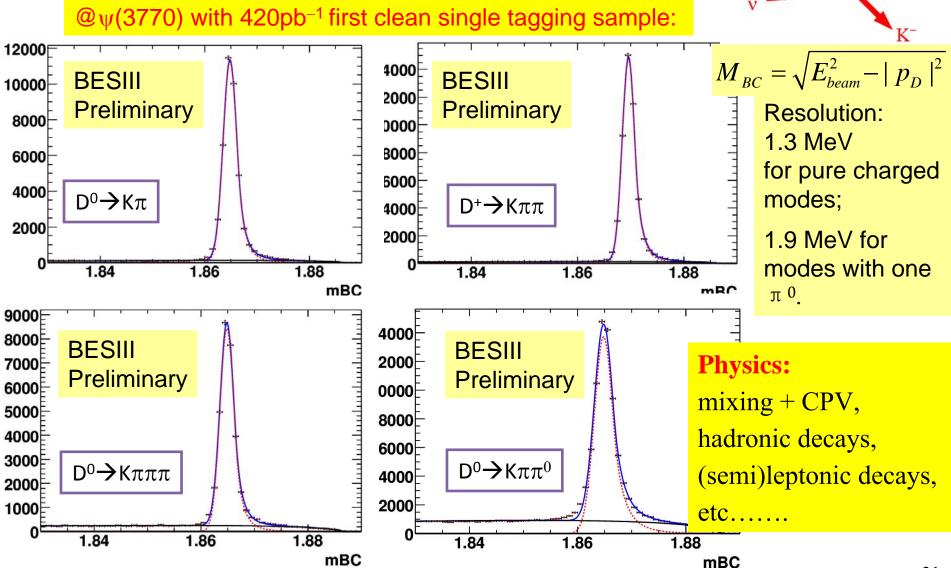
Measurement + scaling with MC simulation


► BG from ψ '→KsKπ(γ_{FSR}) & continuum (KsKπ(γ ISR)):

Ratio of the two is fixed in the final mass fitting

Nature of new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$?

✓It is the first time resonant structures are observed in the 2.3 GeV/c2 region, it is interesting since:


LQCD predicts that the lowest lying pseudoscalar glueball: around 2.3 GeV/c².

Nature of X(2120)/X(2370) pseudoscalar glueball? η/η' excited states?

PRD82,074026,2010
J.F. Liu, G.J. Ding and M.L.Yan
PRD83:114007,2011
(J.S. Yu, Z.-F. Sun, X. Liu, Q. zhao),
and more...

Open charm with BESIII - Stay tuned!

Use $\psi(3770) \rightarrow DD_{bar}$ to produce two quantum correlated D mesons:

