Baryon Spectroscopy at BESIII

Marco Destefanis

Università degli Studi di Torino e INFN

on behalf of the BESIII Collaboration

BARYONS 2016

International Conference on the Structure of Baryons
Tallahassee, Florida, USA
May 16-20, 2016

Baryonic States

- All ground baryonic states are well estabilished
 - Good agreement between experimental data and quark model
- · The excited spectrum is much less clear
 - Many more states predicted than observed
- Insight to hadron structure

3* states 2.5 2.5 4* states 2.3 2.3 Up to 2.5 GEV: 2.1 2.1 Mass (MeV) 45 N states predicted 1.9 1.9 1.7 1.7 15 estabilished 1.5 1.5 1.3 1.3 10 tentative 1.1 1.1 N Δ 0.9 $1/2^{\pm} \ 3/2^{\pm} \ 5/2^{\pm} \ 7/2^{\pm} \ 9/2^{\pm} \ 11/2^{\pm}$ $1/2^{\pm} \ 3/2^{\pm} \ 5/2^{\pm} \ 7/2^{\pm} \ 9/2^{\pm}$

Chin. Phys. C 38 090001 (2014)

Missing Resonances

- · Many of the predicted resonances were not observed experimentally
- · Experimental and theoretical efforts
- · Experimentally:

baryon resonances may couple very weakly to single pions

· Theoretically:

the baryon spectrum can be modeled with *fewer effective* degrees of freedom (quark-diquark or Y/Δ -type models)

Relativistic quark model

 Δ -resonance spectrum Potential model: A

EPJ A10, 395-446 (2001)

Missing Resonances

- · Many of the predicted resonances were not observed experimentally
- Experimental and theoretical efforts
- · Experimentally:

baryon resonances may couple very weakly to single pions

· Theoretically:

the baryon spectrum can be modeled with *fewer effective* degrees of freedom (quark-diquark or Y/Δ -type models)

Lattice QCD

 Δ and N spectrum m_{π} = 396 MeV

Phys Rev D84, 074508 (2011)

BESIII: Baryon Production

BEPCII Storage Rings

Beam energy:

1.0-2.3 GeV

> Design Luminosity:

 $1 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

> Achieved Luminosity:

 $\sim 1 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

> Optimum energy:

1.89 GeV

> Energy spread:

 5.16×10^{-4}

> No. of bunches:

93

> Bunch length:

1.5 cm

> Total current:

0.91 A

> Circumference:

237m

Beijing Electron-Positron Collider II

The BESIII Spectrometer @ IHEP

BEijing Spectrometer III

ete collisions

√S tuned depending on energy

Physics program

- > Charmonium Physics
- > D-Physics
- > Light Hadron Spectroscopy
- > τ-Physics
- **>** ...

CsI(Tl) calorimeter

$\psi(3686)$ -> $\bar{p}K^{+}\Sigma^{0}$ and χ_{cJ} -> $\bar{p}K^{+}\Lambda$

- $\psi(3686) \rightarrow \overline{p}K^{+}\Sigma^{0}$: first measurement
- $\chi_{cJ} \rightarrow \overline{p}K^{+}\Lambda$: BR improvement
- χ_{c0} -> $\overline{p}K^+\Lambda$: anomalous enhancement close to threshold
- Possible reasons:
 - quasi bound dibaryon state
 - final state interactions
 - interference of high mass N* and Λ* states

8

Channel	$\psi' \rightarrow \bar{p}K^+\Sigma^0 + \text{c.c.}$	$\chi_{c0} \rightarrow \bar{p}K^+\Lambda + \text{c.c.}$	$\chi_{c1} \rightarrow \bar{p}K^+\Lambda + \text{c.c.}$	$\chi_{c2} \rightarrow \bar{p}K^+\Lambda + \text{c.c.}$
$\mathcal{B}(\text{BESIII})$ PDG	$(1.67 \pm 0.13 \pm 0.12) \times 10^{-5}$	$(13.2 \pm 0.3 \pm 1.0) \times 10^{-4}$ $(10.2 \pm 1.9) \times 10^{-4}$	$(4.5 \pm 0.2 \pm 0.4) \times 10^{-4}$ $(3.2 \pm 1.0) \times 10^{-4}$	$(8.4 \pm 0.3 \pm 0.6) \times 10^{-4}$ $(9.1 \pm 1.8) \times 10^{-4}$

$ψ(3686) -> Λ\overline{\Sigma}^{\pm}\pi^{\mp}$

BR first measurements:

B(ψ(3686)->Λ
$$\bar{\Sigma}$$
+π-+cc) = (1.40±0.03±0.13)×10⁻⁴
B(ψ(3686)->Λ $\bar{\Sigma}$ -π++cc) = (1.54±0.04±0.13)×10⁻⁴
 $Q_{\Lambda\bar{\Sigma}^-\pi^+} = \frac{\mathcal{B}(\psi(3686) \to \Lambda\bar{\Sigma}^-\pi^+)}{\mathcal{B}(J/\psi \to \Lambda\bar{\Sigma}^-\pi^+)} = (9.3 \pm 1.2)\%$

- PWA used to determine detection efficiency
 - Includes 16 possible intermediate excited states with at least two stars according to the PDG, with parameters fixed to world averages

ψ(3686) -> (γ)Κ⁺ΛΞ±

Decay	Branching fraction
$\psi(3686) \to K^-\Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \to \Xi(1690)^{-}\bar{\Xi}^{+},$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\Xi(1690)^- \to K^- \Lambda$	
$\psi(3686) \to \Xi(1820)^{-\bar{\Xi}^{+}},$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\Xi(1820)^- \rightarrow K^- \Lambda$	_
$\psi(3686) \to K^- \Sigma^0 \bar{\Xi}^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \rightarrow \underline{\gamma}\chi_{c2}, \chi_{c2} \rightarrow K^-\Lambda \bar{\Xi}^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\chi_{c0} \to K^-\Lambda \bar{\Xi}^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$
$\chi_{c1} \to K^-\Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \to K^- \Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$

PRD 91, 092006 (2015)

- $\Xi(1690)$ and $\Xi(1820)$ observed in M(KA)
- Both are well established states
- Resonance parameters consistent with PDG

	Ξ(1690)-	Ξ(1820)-
$M(\text{MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(MeV)$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
$\mathcal{B}(10^{-6})$	$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$ 1 (
$M_{\rm PDG}({\rm MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{\text{PDG}}(\text{MeV})$	< 30	24^{+15}_{-10}

$\psi(3686) \rightarrow p\overline{p}\eta$

- Intermediate state
 N(1535) -> pn is dominant
- No evidence for a pp resonance, Indicating that the threshold Enhancement in previous results May be explained by interference Between the N(1535) and phase space

Mass and width of N(1535)

$$M = 1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$$

$$\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}/c^2$$

PDG value:

- $M = 1525 \text{ to } 1545 \text{ MeV}/c^2$
- Γ = 125 to 175 MeV/ c^2

$$B(\psi(2S) \to N(1535)\bar{p}) \times B(N(1535) \to p\eta)$$

$$= \frac{N_{\text{obs}}}{\varepsilon \cdot N_{\psi(2S)} \cdot B(\eta \to \gamma\gamma)} = (5.2 \pm 0.3^{+3.2}_{-1.2}) \times 10^{-5}$$

PRD 88, 032010 (2013)

$$Q_{p\bar{p}\eta} = \frac{B(\psi(2S) \to p\bar{p}\eta)}{B(J/\psi \to p\bar{p}\eta)} = (3.2 \pm 0.4)\%$$

$ψ(3686) - ppπ^0$

- In photon or meson beam studies, isospin 1/2 and
 3/2 resonances are excited, complicating the analysis
- Δ resonances suppressed in charmonium decays to $p\overline{p}\pi^0$, giving a cleaner spectrum
 - Thought to be dominated by two body decays involving N* intermediate states
 - Also consider $p\overline{p}$ resonances ($\psi(3686) \rightarrow R\pi^0$)
- Seven N* states observed in partial wave analysis
 - Two new resonances, N(2300) with JP = $1/2^+$ and N(2570) with JP = $5/2^-$
 - Other five consistent with previous results

Resonance	$M(\text{MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	ΔS	$\Delta N_{ m dof}$	Sig.
N(1440)	1390^{+11+21}_{-21-30}	$340^{+46+70}_{-40-156}$	72.5	4	11.5σ
N(1520)	$1510^{+3}_{-7}{}^{+11}_{-9}$	115^{+20+0}_{-15-40}	19.8	6	5.0σ
<i>N</i> (1535)	1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	49.4	4	9.3σ
<i>N</i> (1650)	$1650^{+5}_{-5}{}^{+11}_{-30}$	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	1700^{+30+32}_{-28-35}	$450^{+109+149}_{-94-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40+109}_{-30-0}$	$340^{+30+110}_{-30-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19+34}_{-10-10} \\$	250^{+14+69}_{-24-21}	78.9	6	11.7σ

PRL 110, 022001 (2013)

$\psi(3686) - ppa_0(980)$

- First observation of $J/\psi \to p\overline{p}a_0(980)$, $a_0(980) \to \pi^0\eta$
- Applies a chiral unitary coupled channel approach
 - Four-body decays $J/\psi \rightarrow N\overline{N}MM$
 - $a_0(980)$ generated through Final State Interactions
 - Provides useful information on dynamics of
 - Four-body FSI processes

$$Br(J/\psi \to p\bar{p}a_0(980) \to p\bar{p}\pi^0\eta)$$

= $(6.8 \pm 1.2 \pm 1.3) \times 10^{-5}$

$J/\psi(\psi(3686)) \rightarrow \Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$

- First observation of $\psi(3686)$ into $\Sigma(1835)$ states
- PRD 93, 072003 (2016)

- · Single tag method
- BR and angular distribution investigations
- Most precise measurements available

$J/\psi(\psi(3686)) -> \Xi^{-}\Xi^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{+}$

12% rule

PRD 93, 072003 (2016)

Ξ-Ξ+

 $\Sigma(1385)^{-}\Sigma(1385)^{+}$

 $\Sigma(1385)^{+}\Sigma(1385)^{-}$

26.73%

7.76%

6.68%

Branching Ratios

Mode	$J/\psi ightarrow$			$\psi(3686) \rightarrow$		
	至-Ē+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	三-壹+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$
This work	$10.40 \pm 0.06 \pm 0.74$	$10.96 \pm 0.12 \pm 0.71$	$12.58 \pm 0.14 \pm 0.78$	$2.78 \pm 0.05 \pm 0.14$	$0.85 \pm 0.06 \pm 0.06$	$0.84 \pm 0.05 \pm 0.05$
MarkI [5]	14.00 ± 5.00	•••	•••	< 2.0	•••	
MarkII [6]	$11.40 \pm 0.80 \pm 2.00$	$8.60 \pm 1.80 \pm 2.20$	$10.3 \pm 2.4 \pm 2.5$		•••	
DM2 [7]	$7.00 \pm 0.60 \pm 1.20$	$10.00 \pm 0.40 \pm 2.10$	$11.9 \pm 0.4 \pm 2.5$		•••	•••
BESII [8,12]	$9.00 \pm 0.30 \pm 1.80$	$12.30 \pm 0.70 \pm 3.00$	$15.0 \pm 0.8 \pm 3.8$	$3.03 \pm 0.40 \pm 0.32$		
CLEO [9]				$2.40 \pm 0.30 \pm 0.20$		
BESI [26]				$0.94 \pm 0.27 \pm 0.15$		
PDG [3]	8.50 ± 1.60	10.30 ± 1.30	10.30 ± 1.30	1.80 ± 0.60	•••	•••

Angular distributions

Mode	$J/\psi ightarrow$			$\psi(3686) \rightarrow$			
	臣-宣+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	E-Ē+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	
This work	$0.58 \pm 0.04 \pm 0.08$	$-0.58 \pm 0.05 \pm 0.09$	$-0.49 \pm 0.06 \pm 0.08$	$0.91 \pm 0.13 \pm 0.14$	$0.64 \pm 0.40 \pm 0.27$	$0.35 \pm 0.37 \pm 0.10$	
BESII [8] MarkIII [6]	$0.35 \pm 0.29 \pm 0.06$ 0.13 ± 0.55	$-0.54 \pm 0.22 \pm 0.10$	$-0.35 \pm 0.25 \pm 0.06$	•••	•••	•••	
Claudson et al. [10]	0.15 ± 0.55	0.11	0.11	0.32	0.29	0.29	
Carimalo [11]	0.27	0.20	0.20	0.52	0.50	0.50	

Summary

- BESIII collected $0.5 \times 10^9 \, \psi(3686)$ and $1.3 \times 10^9 \, J/\psi$ events
- · Overview of our recent measurements
- Charmonium decays as powerful tool to investigate excited nucleons and hyperons
 - Discover new states
 - Provide complementary information to other experiments

Stay tuned for new results!!