Recent Results of Light Hadron Spectra at BESIII
(\(X(1835), X(1870), \cdots\))

Yingchun Zhu (\textit{USTC, China})
for the BESIII Collaboration
Status of BEPCII / BESIII

Recent Results on Light Hadron Spectroscopy

- $p\bar{p}$ mass threshold structure in J/ψ and ψ' radiative decays
- $X(1835)$ and two new structures in $J/\psi \rightarrow \gamma\pi^+\pi^-\eta'$
- A new structure $X(1870)$ in $J/\psi \rightarrow \omega\eta\pi^+\pi^-$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma X$, $X\rightarrow f_0(980)\pi^0$, $f_0(980) \rightarrow \pi\pi$
- PWA of $J/\psi \rightarrow \gamma\eta\eta$
- PWA of $J/\psi \rightarrow \gamma\omega\phi$
- N^* states in $\psi' \rightarrow p\bar{p}\pi^0$ and $\psi' \rightarrow p\bar{p}\eta$

Summary
General layout of BEPCII/BESIII

2004: start BEPCII construction
2008: test run of BEPCII
2009-now: BEPCII/BESIII data taking

Beam energy: \(1.0 \text{ - } 2.3 \text{ GeV}\)
Designed lumi.: \(1 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}\)
\((\text{Peak Lumi.}: \ 0.65 \times 10^{33}\text{cm}^{-2}\text{s}^{-1})\)
Optimum energy: 1.89 GeV
Energy spread: \(5.16 \times 10^{-4}\)
No. of bunches: 93
Bunch length: 1.5 cm
Total current: 0.91 A
Circumference: 237 m
The BESIII Detector

Drift Chamber (MDC):
- small cell & gas: He/C3H8 (60/40), 43 layers
- $\sigma_{xy} = 130 \, \mu m$
- $\sigma_p/p = 0.5\% @ 1 \text{GeV}$
- $dE/dx = 6\%$

Time-of-Flight (TOF):
- $\sigma_T = 80 \text{ps barrel}$
- 110ps endcap

Electromagnetic Calorimeter (EMC):
- CsI crystal
- $\Delta E/E = 2.5\% @ 1 \text{GeV}$
- $\sigma_Z = 0.6 \text{cm}/\sqrt{E}$

Muon Counter:
- 9 layers for barrel
- 8 layers for endcap

Solenoid Magnet field: 1T

The detector is hermetic for neutral and charged particles with excellent resolution, PID, and large coverage.
J/ψ and ψ' data samples

So far BESIII has collected:

- **2009:**
 - 225 Million J/ψ (4 times of BESII)
 - 106 Million ψ’ (4 times of CLEOc)

- **2012:** 1 Billion J/ψ
 - 0.4 Billion ψ’

The following results are based on the data samples of 225M J/ψ and 106M ψ’ events.

World’s largest sample of J/ψ, ψ(2S)
Hadron Spectroscopy

- The ultimate goal of the study of hadron spectroscopy is to understand the dynamics of the constituent interactions.
- PQCD is not applicable in the light hadron sector. There exist phenomenological approaches and LQCD calculations.
- Experimental data will provide necessary constrains on the parameters introduced by the theory.

New forms of hadrons

- Conventionally we know: mesons (q̅q) and baryons (qqq)
- But many more forms which are QCD allowed, namely
 * Multi-quark states: number of quarks ≥ 4
 * Hybrid states: q̅q g, qqgg, ...
 * Glueballs: gg, ggg, ...
Observed an enhancement at $p\bar{p}$ mass threshold @ BESII

$J/\psi \rightarrow \gamma p\bar{p}$ (58M J/ψ events)

A fit using an acceptance-weighted S-wave BW Plus bkg.

$M=1859 \pm 3 \pm 5$ MeV/c^2
$\Gamma < 30$ MeV/c^2 (90% CL)

3-body phase space

M and Γ are not consistent with the properties of any known particle.
Consistent with spin zero expectation.
Theoretical interpretations:

- Conventional mesons / $p\bar{p}$ bound state / multiquarks / glueball
- Final state interaction (FSI) ……

PRL 91, 022001 (2003)
Confirmed @ BESIII and CLEOc

$\psi' \rightarrow \pi^+\pi^- J/\psi \ (J/\psi \rightarrow \gamma \ p\bar{p})$
(106M ψ' events)

$\psi' \rightarrow \pi^+\pi^- J/\psi \ (J/\psi \rightarrow \gamma \ p\bar{p})$
(24.5M ψ' events)

- Same fit method as that of BESII.
- Consistent with BESII results.

Chinese Physics C34(4) 421, (2010)

- Not observed in B-meson decay, $\psi' \rightarrow \gamma \ p\bar{p}$, $\Upsilon \rightarrow \gamma \ p\bar{p}$, $J/\psi \rightarrow \omega \ p\bar{p}$ at BESII, $\psi' \rightarrow Xpp$ ($X=\gamma, \pi^0, \eta$) at CLEOc.
- The enhancement is not pure FSI effect.

Fit region $\Delta m = 0-970$ MeV
Consider $X(2100)$:

- $M = 1837^{+10}_{-12}^{+9}_{-7}$ MeV/c2
- $\Gamma = 0^{+44}_{-0}$ MeV/c2

PRD 82, 092002 (2010)
Four components:
X(pp), f_2(1910), f_0(2100) and 0^{++} PS

The FSI effect considered.

Fit features:
- The fit with a BW and S-wave FSI (I=0) factor can well describe pp mass threshold structure.
- Much better than that w/o FSI effect, ΔlnL = 51 (7.1σ).
- Different FSI model → Model dependent uncertainty

Results:
\[J^{pc} = 0^+ \]
\[M = 1832^{+19}_{-17} \text{ (stat)}^{+18}_{-17} \text{ (syst)} \pm 19 \text{(mod)} \text{MeV/c}^2 \]
\[\Gamma = 13 \pm 20 \text{(stat)}^{+11}_{-33} \text{(syst)} \pm 4 \text{(mod)} \text{MeV/c}^2 \text{ or } \Gamma < 76 \text{MeV/c}^2 \text{ @ 90\% C.L.} \]
\[B(J / \psi \to \gamma X(pp))B(X(pp) \to pp) = (9.0^{+0.4}_{-1.1} \text{(stat)}^{+1.5}_{-5.0} \text{(syst)} \pm 2.3 \text{(mod)}) \times 10^{-5} \]
• Observed a p\overline{p} mass threshold excess relative to PS.
• Line shape of p\overline{p} mass spectrum near threshold looks obviously differ. from that of J/\psi decays.
• No evident enhancement exist in p\overline{p} threshold in Dalitz plot.

PWA Results:

➢ Significance of X(p\overline{p}) is > 6.9\sigma.
➢ The production ratio R:

\[
R = \frac{B(\psi' \rightarrow \gamma X(p\overline{p}))}{B(J / \psi \rightarrow \gamma X(p\overline{p}))} = (5.08^{+0.71}_{-0.45} (\text{stat})^{+0.67}_{-3.58} (\text{syst}) \pm 0.12(\text{mod}))% \]

It is suppressed compared with “12% rule”.

PRL 108, 112003 (2012)
X(1835) and two new structures in J/ψ→γπ⁺π⁻η'/

J/ψ → γπ⁺π⁻η' (η' → π⁺π⁻η, η → γγ and η' → γρ, ρ → π⁺π⁻)

BESII Results:

* M = 1833.7±6.1(stat)±2.7(syst) MeV/c²
* Γ = 67.7 ± 20.3(stat) ± 7.7(syst) MeV/c²
* B(J/ψ→γX(1835))·B(X(1835)→π⁺π⁻η') = (2.2±0.4(stat)±0.4(syst))×10⁻⁴
* Statistical Significance 7.7σ

BESIII Results:

* B(J/ψ→γX(1835))·B(X(1835)→π⁺π⁻η') = (2.87±0.09(stat)±0.09(syst))×10⁻⁴
* For X(1835), the angular distribution of the radiative photon is consistent with 0⁺⁺ assignment. (> 20σ)

PWA is needed to understand their properties!
What’s the nature of X(1835), X(2120) and X(2370)?

- **X(1835) observed in J/ψ→γ π⁺π⁻η'**
 - The measured width at BESIII is larger than that from BESII.
 - Observed p¯p sub-threshold enhancement X(1860) in J/ψ→γ p¯p at BESII and confirmed at BESIII and CLEOc.
 - Are the X(1835) and X(p¯p) the same resonant state?
 - p¯p bound state? glueball? η'/ excited state? …

Still remain unclear at present!

- **X(2120) / X(2370) observed in J/ψ→γπ⁺π⁻η'**
 - The first time resonant structures are observed at ~2.1 and 2.4GeV.
 - Interesting since:
 - LQCD predicts the lowest 0⁺ glueballs at ~2.4GeV.
 - A good channel for finding 0⁺ glueballs.
 - **Their nature:** pseudoscalar glueball? η/η' excited states? …

- **A PWA is needed to measure their J^PC, M and Γ more precisely, and planned with much higher statistics J/ψ data sample.**
X(1870) in $J/\psi \rightarrow \omega X$, $X \rightarrow a_0^{\pm}(980)\pi^\mp$, $a_0^{\pm}(980) \rightarrow \eta\pi^\pm$

A study of $J/\psi \rightarrow \omega \eta\pi^+\pi^-$ at BESIII

PRL 107, 182001 (2011)

Is $X(1870)$ due to $X(1835)$, $\eta_2(1870)$, an interference of both, or a new resonance? J^{PC}?

Need PWA!
Evidence for an enhancement at ~ 1.3GeV (potentially from \(f_1(1285)/\eta(1295) \))

Analysis of angular distribution indicates the peak at 1.4GeV is from \(\eta(1405) \) \((J^P = 0^-)\), not from \(f_1(1420) \) \((J^P = 1^+)\). Stat. sig. > 10 \(\sigma \).

Large Isospin-violating decay rate:

\[
\frac{Br(\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0)}{Br(\eta(1405) \rightarrow a_0(980)\pi^0 \rightarrow \pi^0\pi^0\eta)} \approx (17.9 \pm 4.2)\%
\]

In general, magnitude of isospin violation in strong decay should be < 1%.

\(a_0 - f_0 \) mixing alone can not explain the branching ratio of \(\eta(1405) \rightarrow f_0(980)\pi^0 \).
Anomalous line shape of $f_0(980)$ in $J/\psi \rightarrow \gamma 3\pi$

- $f_0(980) \rightarrow \pi^+\pi^-$
 - $M = 989.9 \pm 0.4\text{ MeV/c}^2$
 - $\Gamma = 9.5 \pm 1.1 \text{ MeV/c}^2$

- $f_0(980) \rightarrow \pi^0\pi^0$
 - $M = 987.0 \pm 1.4\text{ MeV/c}^2$
 - $\Gamma = 4.6 \pm 5.1 \text{ MeV/c}^2$

Surprising Result: The measured width of $f_0(980)$ is much narrower than the world average (PDG 2012: 40-100 MeV/c^2)

Triangle Singularity (TS) mechanism

- K^*K in TS mechanism is on-shell.
- TS is much more dominant than $a_0 - f_0$ mixing term.
 - Explains the large isospin violations in $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$.
 - Predicts a narrow peak at $M(\pi^+\pi^-) \sim 980$ MeV.

(J.J. Wu et al, PRL 108, 081803 (2012))
Study of $\eta\eta$ system

- LQCD predicts the lowest glueball state is 0^{++} with $M \sim 1.5 - 1.7$ GeV, the next lightest glueball is 2^{++} with $M \sim 2.3$ GeV.

- The mixing of glueball with nearby qq meson makes the situation more difficult.

Glueball spectrum from unquenched LQCD calculations. $r_0^{-1} = 410$ MeV

- Early study of $J/\psi \rightarrow \gamma \eta \eta$ was made by Crystal Ball in 1982. Found J^{PC} of the resonance ~ 1.7 GeV is 2^{++}.

- Other experiments:
 - Crystal ball Collaboration (2002) analyzed the final states of $\pi^0\pi^0\pi^0$, $\eta\pi^0\pi^0$ and $\pi^0\eta\eta$, found a 2^{++} (~ 1870 MeV), but no $f_0(1710)$.
 - E835(2006): $p\bar{p} \rightarrow \pi^0\eta\eta$, found $f_0(1500)$ and $f_0(1710)$.
 - WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$.

PRD 73 (2006) 014516
For $J/\psi \rightarrow \gamma \eta \eta$ (Pseudoscalars), only intermediate states with $J^{PC} = \text{even}^{++}$ are possible.

- 0^{++}: $f_0(1500)$ (8.2σ), $f_0(1710)$ (25σ), $f_0(2100)$ (13.9σ), 0^{++} PS
- 2^{++}: $f_2'(1525)$ (11σ), $f_2(1810)/f_2(1950)$ (6.4σ)
- 4^{++}: $f_4(2340)$ (7.6σ)

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV$/c^2$)</th>
<th>Width (MeV$/c^2$)</th>
<th>$\mathcal{B}(J/\psi \rightarrow \gamma X \rightarrow \gamma \eta \eta)$</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(1500)$</td>
<td>1468$^{+14+23}_{-15-74}$</td>
<td>136$^{+41+28}_{-26-100}$</td>
<td>$(1.61^{+0.29+0.49}_{-0.32-1.37}) \times 10^{-5}$</td>
<td>8.2σ</td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td>1759$^{+6+15}_{-6-25}$</td>
<td>172$^{+10+32}_{-10-16}$</td>
<td>$(2.35^{+0.07+1.24}_{-0.07-0.74}) \times 10^{-4}$</td>
<td>25.0σ</td>
</tr>
<tr>
<td>$f_0(2100)$</td>
<td>2081$^{+13+24}_{-13-36}$</td>
<td>273$^{+27+70}_{-24-23}$</td>
<td>$(9.99^{+0.57+5.64}_{-0.52-2.46}) \times 10^{-5}$</td>
<td>13.9σ</td>
</tr>
<tr>
<td>$f_2'(1525)$</td>
<td>1513$^{+5+4}_{-5-10}$</td>
<td>75$^{+12+14}_{-10-8}$</td>
<td>$(3.41^{+0.43+1.37}_{-0.50-1.29}) \times 10^{-5}$</td>
<td>11.0σ</td>
</tr>
<tr>
<td>$f_2(1810)/f_2(1950)$</td>
<td>1822$^{+20+66}_{-24-57}$</td>
<td>229$^{+52+88}_{-42-155}$</td>
<td>$(5.38^{+0.60+3.41}_{-0.67-2.34}) \times 10^{-5}$</td>
<td>6.4σ</td>
</tr>
<tr>
<td>$f_2(2340)$</td>
<td>2362$^{+31+140}_{-30-63}$</td>
<td>334$^{+62+165}_{-54-100}$</td>
<td>$(5.58^{+0.61+2.36}_{-0.65-2.06}) \times 10^{-5}$</td>
<td>7.6σ</td>
</tr>
</tbody>
</table>
$M_{\omega \phi}$ threshold enhancement in $J/\psi \to \gamma \omega \phi$ @ BESII

$J/\psi \to \gamma \omega \phi$ is DOZI suppressed process

PWA Results @ BESII:

- $M = 1812^{+19}_{-26} \pm 18$ MeV/c2; \quad $\Gamma = 105 \pm 20 \pm 28$ MeV/c2

 $B(J/\psi \to \gamma X) \cdot B(X \to \omega \phi) = (2.61 \pm 0.27 \pm 0.65) \times 10^{-4}$

- The enhancement favors $J^{PC} = 0^{++}$ over 0^{-+} and 2^{++}, stat. sig. $>10\sigma$.

- Not compatible with any known conventional state.

 Is it the same 0^{++} observed in $\gamma K\bar{K}$ or $\phi \pi\pi$ ($f_0(1710)$ or $f_0(1790)$), or is it a glueball, or a hybrid ……
Further looking in diff. decay modes ($\omega\omega$, K^*K^*...) and diff. production processes ($J/\psi \rightarrow \phi \omega \phi$, $\omega \omega \phi$...) is desirable!

- For $X(1810)$: M, Γ and Br are consistent with that of BESII results. Confirms that the J^{PC} is 0^{++} with stat. sig. of $>30\sigma$. Not compatible to $X(1835)$ and $X(pp)$ due to diff. M and J^{PC}.

- Is $X(1810)$ the $f_0(1710)/f_0(1790)$ or a new state?
Observation of two new N^* in $\psi' \rightarrow p\bar{p} \pi^0$ @ BESIII

- Non-relativistic quark model is successful in interpreting the excited baryons.
- Predicted more excited states ("missing resonance problem").

- J/ψ and ψ' decays offer an opportunity to search for the missing resonances.

- Events with $p\bar{p}$ arising from J/ψ are excluded.
- The threshold enhancement in $p\bar{p}$ mass spectrum is visible.
- N^* with spin 7/2 or larger is not considered.

arXiv:1207.0233
PWA Results:

- Soft-pion theory indicates that the off-shell decay is needed. N(940) with \(M = 940 \text{MeV} \) and \(\Gamma = 0 \text{MeV} \) is included in PWA.

- A \(1^- \) \(p\bar{p} \) resonance candidate described by BW function is tested. The largest sig. is \(4\sigma \) at \(M = 2000 \text{MeV} \) and \(\Gamma = 50 \text{MeV} \). The threshold enhancement most likely due to interference of N* resonances.

- No clear evidence for N(1885)/N(2065).

- Two new N* resonances N(2300) and N(2570) are observed with \(1/2^+ \) and \(5/2^- \).

<table>
<thead>
<tr>
<th>Resonance</th>
<th>(M(\text{MeV}/c^2))</th>
<th>(\Gamma(\text{MeV}/c^2))</th>
<th>(\Delta S)</th>
<th>(\Delta N_{\text{dof}})</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1440)</td>
<td>1390^{+11+21}_{-21-30}</td>
<td>340^{+46+70}_{-40-156}</td>
<td>72.5</td>
<td>4</td>
<td>11.5\sigma</td>
</tr>
<tr>
<td>N(1520)</td>
<td>1510^{+3+11}_{-7-9}</td>
<td>115^{+20+0}_{-15-40}</td>
<td>19.8</td>
<td>6</td>
<td>5.0\sigma</td>
</tr>
<tr>
<td>N(1535)</td>
<td>1535^{+9+15}_{-8-22}</td>
<td>120^{+20+0}_{-20-42}</td>
<td>49.4</td>
<td>4</td>
<td>9.3\sigma</td>
</tr>
<tr>
<td>N(1650)</td>
<td>1650^{+5+11}_{-5-30}</td>
<td>150^{+21+14}_{-22-50}</td>
<td>82.1</td>
<td>4</td>
<td>12.2\sigma</td>
</tr>
<tr>
<td>N(1720)</td>
<td>1700^{+30+32}_{-28-35}</td>
<td>450^{+109+149}_{-94-44}</td>
<td>55.6</td>
<td>6</td>
<td>9.6\sigma</td>
</tr>
<tr>
<td>N(2300)</td>
<td>2300^{+40+109}_{-30-0}</td>
<td>340^{+30+110}_{-30-58}</td>
<td>120.7</td>
<td>4</td>
<td>15.0\sigma</td>
</tr>
<tr>
<td>N(2570)</td>
<td>2570^{+19+34}_{-10-10}</td>
<td>250^{+14+69}_{-24-21}</td>
<td>78.9</td>
<td>6</td>
<td>11.7\sigma</td>
</tr>
</tbody>
</table>

Preliminary results on N^* baryons in $\psi' \to p\bar{p}\eta$ @ BESIII

- No significant contribution from other resonance $\sim p\bar{p}$ mass enhancement. significance $< 3.5\sigma$
- $N(1535)$ was firstly studied by PWA in $J/\psi \to p\bar{p}\eta$ at BESII, and confirmed here.

$$M = 1524^{+5+10}_{-5-4}\text{ MeV},$$
$$\Gamma = 130^{+27+57}_{-24-10}\text{ MeV}$$

Consistent with PDG. sig.$>5\sigma$; $J^P 1/2^-$

* $B(\Psi' \to N(1535)\bar{p}) \times B(N(1535) \to p\eta) + \text{c.c.} = (5.2^{+0.3+3.2}_{-0.3-1.2}) \times 10^{-5}$
* $B(\Psi' \to p\bar{p}\eta) = (6.4 \pm 0.2 \pm 0.6) \times 10^{-5}$ PDG2010: $(6.0 \pm 1.2) \times 10^{-5}$
* $B(\Psi' \to p\bar{p}\eta)/B(J/\Psi \to p\bar{p}\eta) = (3.2 \pm 0.4)\%$ Suppressed compared with "12\% rule"
Summary

♦ BESIII is successfully operating since 2008:
 * World largest data samples at J/ψ, ψ′, ψ(3770), ψ(4040) already collected, more data in future!

♦ Recent results on light hadron spectroscopy
 * Confirmation of p̅p threshold enhancement
 * Confirms X(1835) and observes two new structures in J/ψ → γ ππη′
 * Observation of a new structure X(1870) in J/ψ → ω ηπ⁺π⁻
 * First observation of η(1405) → f₀(980)π⁰ (isospin breaking)
 * ηη system in J/ψ → γγη
 * Confirms X(1810) in J/ψ → γ ω φ
 * Observation of two new excited baryonic states N(2300) and N(2570) in ψ′ → p̅pπ⁰. N(1535) is confirmed in ψ′ → p̅pη.

♦ Expect many more results from BESIII in future!
Backup Slides
From BESII to BESIII

<table>
<thead>
<tr>
<th>BESII</th>
<th>BESIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDC
(\sigma(p)/p = 1.78 % \cdot \sqrt{1 + p^2})
(dE/dx_{\text{reso}} = 8 %)
TOF
180 ps (for bhabha)
EMC
(\sigma(E)/E = 22% \cdot \sqrt{E})
MUC
3 layers for barrel</td>
<td>MDC
(\sigma(p_t)/p_t = 0.32 % \cdot p_t)
(dE/dx_{\text{reso}} < 6 %)
TOF
90 ps (for bhabha)
EMC
(\sigma(E)/E = 2.3 % \cdot \sqrt{E})
MUC
9 layers for barrel, 8 for endcap</td>
</tr>
</tbody>
</table>
BESI started data-taking in 1989 and was upgraded in 1998 to BESII. **BESI** collected 7.8 M J/ψ events and 3.7 M ψ' events. **BESII** collected 58 M J/ψ events and 14 M ψ' events.

BESIII - physics using “charm”

- **Charmonium physics:**
 - Spectroscopy
 - transitions and decays

- **Light hadron physics:**
 - meson & baryon spectroscopy
 - glueball & hybrid
 - two-photon physics
 - e.m. form factors of nucleon

- **Charm physics:**
 - (semi)leptonic + hadronic decays
 - decay constant, form factors
 - CKM matrix: V_{cd}, V_{cs}
 - D^0-\bar{D}^0bar mixing and CP violation
 - rare/forbidden decays

- **Tau physics:**
 - Tau decays near threshold
 - tau mass scan

...and many more.
BESIII data sets and future plans

- **2008**: July 19 first e^+e^- collider event at BESIII
 Nov.: ~ 14M $\psi(2S)$ events for detector calibration

- **2009**: 106M $\psi(2S)$ events (4 times of CLEOc)
 225M J/ψ events (4 times of BESII)
 ~ 42 pb$^{-1}$ at continuum (3.65 GeV)

- **2010**: 900 pb$^{-1}$ @ 3770 MeV
 470 pb$^{-1}$ @ 4010 MeV

- **2011**: 2000 pb$^{-1}$ @ 3770 MeV
 470 pb$^{-1}$ @ 4010 MeV

- **2012**: τ mass scan, R scan [2.0, 3.65] GeV
 0.4 billion $\psi(2S)$ and 1 billion J/ψ events

Tentative future running plans:
- **2013**: $E_{CM} = 4260$ and 4360 MeV for ‘XYZ’ studies (0.5 fb$^{-1}$ each); τ mass scan/R scan
- **2014 and 2015**: $E_{CM} = 4170$ MeV for D_s (\2.4 fb$^{-1}$); additional $\psi(3770)$ data

The following results are based on 225M J/ψ and 106M $\psi(2S)$ events.
Main contents in the study of the hadron spectroscopy

- Meson spectrum ($q \bar{q}$)
- New forms of hadrons (glueballs, hybrid states, multi-quark states)
- Baryon spectrum (qqq)

J/ψ decays provide ideal lab for hadron spectroscopy

The lowest order diagrams for $J/ψ \rightarrow \text{hadrons}$:

- 3-gluon
- Electromagnetic
- Radiative
- Via η_c

- A good lab to hunt for new forms of hadrons
- A good lab to study meson spectroscopy
- A good lab for excited baryon states
Observation of $X(p\,\bar{p})$ in $J/\psi\rightarrow\gamma\,p\,\bar{p}$ @ BESII

- **X(1860) has large BR to $p\bar{p}$**

- **BES measured:**

 \[
 BR(J/\psi\rightarrow\gamma X(1860)) \cdot BR(X(1860)\rightarrow p\bar{p}) \sim 7 \times 10^{-5}
 \]

- **For a 0^{-+} meson:**

 \[
 BR(J/\psi\rightarrow\gamma X(1860)) \sim 0.5 - 2 \times 10^{-3}
 \]

- **So we would have:**

 \[
 BR(X(1860)\rightarrow p\bar{p}) \sim 4 - 14\%
 \]

 (This BR to $p\bar{p}$ might be the largest among all PDG particles)

Considering that decaying into $p\bar{p}$ is only from the tail of $X(1860)$ and the phase space is very small, **such a BR indicates $X(1860)$ has large coupling to $p\bar{p}$!**
The pp̅ threshold enhancement observed in J/ψ decay is **different** from the enhancements observed by Babar and Belle in B decay.

The one in B decay can be explained by **fragmentation**.
This narrow threshold enhancement is NOT observed in $J/\psi \rightarrow \omega p\bar{p}$ at BESII

$\frac{Br(J/\psi \rightarrow \omega X)}{Br(J/\psi \rightarrow \gamma X)} < 0.5\% \text{ @ } 95\% \text{ C.L.}$
This narrow threshold enhancement is NOT observed in $\Upsilon(1S) \rightarrow \gamma p\bar{p}$ at CLEO.

\[Br(\Upsilon(1S) \rightarrow \gamma X) / Br(J/\psi \rightarrow \gamma X) < 0.7\% \quad @ 90\% \text{ CL} \]

- This result cannot be explained by pure FSI effect, since FSI is a universal effect.

Pure FSI interpretation of the narrow and strong $p\bar{p}$ threshold enhancement is disfavored.

No enhancement near threshold.

FIG. 7: Invariant mass of $p\bar{p}$ from $\Upsilon(1S) \rightarrow \gamma p\bar{p}$. PRD73, 032001(2006)
Several non-observations

$Y(1S) \rightarrow \gamma p\bar{p} \ @ \text{CLEO}$

$J/\psi \rightarrow \omega p\bar{p} \ @ \text{BESII}$

$\psi' \rightarrow \gamma p\bar{p} \ @ \text{BESII}$

$\psi(2S) \rightarrow \gamma p\bar{p} \ @ \text{CLEO}_c$

Pure FSI interpretation is disfavored
Is the $X(1835)$ from the same source of $X(p\bar{p})$?

- The mass of $X(p\bar{p})$ is consistent with $X(1835)$
- The width of $X(p\bar{p})$ is much narrower.

Possible reasons:

- $X(p\bar{p})$ and $X(1835)$ come from different sources
- Interference effect in $J/\psi \to \gamma\pi\pi\eta'$ process should not be ignored in the determination of the $X(1835)$ mass and width
- There may be more than one resonance in the mass peak around 1.83GeV in $J/\psi \to \gamma\pi\pi\eta'$ decays.
$X(1835)$ and two new structures in $J/\psi \to \gamma \pi^+\pi^- \eta'$

$J/\psi \to \gamma \pi^+\pi^- \eta'$ ($\eta' \to \pi^+\pi^- \eta$, $\eta \to \gamma\gamma$ and $\eta' \to \gamma \rho$, $\rho \to \pi^+\pi^-$)

The background subtracted, acceptance-corrected $|\cos\theta_\gamma|$ distribution for $X(1835)$.

- Errors are statistical only.
- The solid line is a fit to $1 + \cos^2\theta_\gamma$, which is expected for a pseudoscalar.

BESIII

PRL 106, 072002 (2011)
Study of $a_0(980) - f_0(980)$ mixing from

\[J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0 \]
\[\psi' \rightarrow \gamma \chi_{c1} \rightarrow \gamma \pi^0 \quad a_0^0(980) \rightarrow \gamma \pi^0 f_0(980) \rightarrow \gamma \pi^0 \pi^+ \pi^- \]

Mixing intensity provides important information in understanding the nature of $a_0(980)$ and $f_0(980)$.

Narrow peak (8 MeV) at around 980 MeV can be expected in $\eta \pi$ ($J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi$ case) or $\pi^+ \pi^-$ ($\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ case) invariant mass spectra.

J.Wu, Q.Zhao, B.Zou PRD75 114012,
C. Hanhart etc. PRD76 074028,
J.Wu, B.Zou PRD78 074017

\[J/\psi \rightarrow \phi \]
\[f_0 \rightarrow a_0 \]
\[\eta \]
\[\pi^0 \]

\[\chi_{c1} \rightarrow \pi^0 \]
\[a_0 \rightarrow f_0 \]
\[\pi^+ \]
\[\pi^- \]
\(a_0(980) \rightarrow f_0(980)\) mixing:
\(f_0 \rightarrow a_0\) transition from \(J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi^0\)

Significance 3.4\(\sigma\)

\[
\text{Br}(J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980) \rightarrow \phi \eta \pi^0) \\
= (3.3 \pm 1.1\text{(stat)} \pm 0.4\text{(syst)} \pm 1.4\text{(para)}) \times 10^{-6} \\
(< 5.4 \times 10^{-6} \text{ at } 90\% \text{ C.L.})
\]

Mixing Intensity:
\[
\xi_{fa} = \frac{\text{Br}(J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980) \rightarrow \phi \eta \pi^0)}{\text{Br}(J/\psi \rightarrow \phi f_0(980) \rightarrow \phi \pi \pi)} \\
= (0.60 \pm 0.20\text{(stat)} \pm 0.13\text{(syst)} \pm 0.26\text{(para)})\% \\
(< 1.1\% \text{ at } 90\% \text{ C.L.})
\]

Mixing signal
--- \(a_0(980)\) contribution from
\(J/\psi \rightarrow \gamma^*/K^*K \rightarrow \phi a_0(980)\)
--- Background polynomial
$a_0(980) \rightarrow f_0(980)$ mixing:

$a_0 \rightarrow f_0$ transition from $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$

Br$(\psi' \rightarrow \gamma \chi_{c1} \rightarrow \gamma \pi^0 a_0(980) \rightarrow \gamma \pi^0 f_0(980) \rightarrow \gamma \pi^0 \pi^+ \pi^-) = (2.7 \pm 1.4 \text{(stat)} \pm 0.7 \text{(syst)} \pm 0.3 \text{(para)}) \times 10^{-7}$

(<6.0 \times 10^{-7} \text{ @ 90\% C.L.})

Mixing Intensity:

$\xi_{af} = \frac{\text{Br}(\psi' \rightarrow \gamma \chi_{c1} \rightarrow \gamma \pi^0 a_0(980) \rightarrow \gamma \pi^0 f_0(980) \rightarrow \gamma \pi^0 \pi^+ \pi^-)}{\text{Br}(\psi' \rightarrow \lambda \phi_{c1} \rightarrow \gamma \pi^0 a_0(980) \gamma \pi^0 \pi^0 \eta)}$

=(0.31 \pm 0.16 \text{(stat)} \pm 0.14 \text{(syst)} \pm 0.03 \text{(para)}) \%

(<1.0 \% \text{ @ 90\% C.L.})

Mixing intensity ξ_{af} vs. ξ_{fa}

Shade region: BESIII measurements
Red line: BESIII upper limit
Dots: various predictions

Very Useful in pinning down the resonance parameters of $a_0^0(980)$ and $f_0(980)$
Glueball signatures

- Enhanced production in gluon rich processes such as pp central production, J/ψ radiative decays and $\bar{p}p$ annihilation.

J/ψ decays:

\[\Gamma(J/\psi \to \gamma G) \sim O(\alpha\alpha_s^2), \Gamma(J/\psi \to \gamma H) \sim O(\alpha\alpha_s^3), \]
\[\Gamma(J/\psi \to \gamma M) \sim O(\alpha\alpha_s^4), \Gamma(J/\psi \to \gamma F) \sim O(\alpha\alpha_s^4) \]
Baryon Summary Table

(J^P and status are listed)

Status:

**** Existence is certain, and properties are at least fairly well explored.

*** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.

** Evidence of existence is only fair.

* Evidence of existence is poor.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass(MeV)</th>
<th>Width(MeV)</th>
<th>J^P</th>
<th>C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1440)</td>
<td>1440</td>
<td>350</td>
<td>1/2^+</td>
<td>****</td>
</tr>
<tr>
<td>N(1520)</td>
<td>1520</td>
<td>125</td>
<td>3/2^-</td>
<td>****</td>
</tr>
<tr>
<td>N(1535)</td>
<td>1535</td>
<td>150</td>
<td>1/2^-</td>
<td>****</td>
</tr>
<tr>
<td>N(1650)</td>
<td>1650</td>
<td>150</td>
<td>1/2^-</td>
<td>****</td>
</tr>
<tr>
<td>N(1675)</td>
<td>1675</td>
<td>145</td>
<td>5/2^-</td>
<td>****</td>
</tr>
<tr>
<td>N(1680)</td>
<td>1680</td>
<td>130</td>
<td>5/2^+</td>
<td>****</td>
</tr>
<tr>
<td>N(1700)</td>
<td>1700</td>
<td>100</td>
<td>3/2^-</td>
<td>***</td>
</tr>
<tr>
<td>N(1710)</td>
<td>1710</td>
<td>100</td>
<td>1/2^+</td>
<td>***</td>
</tr>
<tr>
<td>N(1720)</td>
<td>1720</td>
<td>150</td>
<td>3/2^+</td>
<td>****</td>
</tr>
<tr>
<td>N(1885)</td>
<td>1885</td>
<td>160</td>
<td>3/2^-</td>
<td>'Missing' N*</td>
</tr>
<tr>
<td>N(1900)</td>
<td>1900</td>
<td>498</td>
<td>3/2^+</td>
<td>**</td>
</tr>
<tr>
<td>N(2000)</td>
<td>2000</td>
<td>300</td>
<td>5/2^+</td>
<td>**</td>
</tr>
<tr>
<td>N(2065)</td>
<td>2065</td>
<td>150</td>
<td>3/2^+</td>
<td>'Missing' N*</td>
</tr>
<tr>
<td>N(2080)</td>
<td>2080</td>
<td>270</td>
<td>3/2^-</td>
<td>**</td>
</tr>
<tr>
<td>N(2090)</td>
<td>2090</td>
<td>300</td>
<td>1/2^-</td>
<td>*</td>
</tr>
<tr>
<td>N(2100)</td>
<td>2100</td>
<td>260</td>
<td>1/2^+</td>
<td>*</td>
</tr>
<tr>
<td>N(2200)</td>
<td>2200</td>
<td>300</td>
<td>5/2^-</td>
<td>**</td>
</tr>
</tbody>
</table>

N* with spin 7/2 or larger is not shown here.