Recent highlights at BESIII

Zhiyong Wang
(for the BESIII Collaboration)

YongPyong-High1 2016

Joint Winter Conference on Particle Physics, String
Cosmology

Jan., 30-Feb.,4, 2016, High1 resort, Korea

The BES-III detector

NIM A614, 345(2010)

Super conducting magnet: 1 T

EMC: Csl cristal

- Energy resolution: 2.5% @1GeV
- Spatial resolution: 6mm

MDC:

- Spatial resolution: σ_{xy} = 120 μ m
- Momentum resolution: 0.5% @ 1GeV
- dE/dx resolution: 6%

TOF:

Time resolution: 100ps (barrel)

110ps (endcaps)

Muon ID:

9 layers RPC, 8 for endcaps

The BESIII Collaboration

~450 members

Outline

- Hadron spectroscopy
- Charmonium (charmonium-like) physics
- Charm physics
- R-QCD
- Summary

Hadron spectroscopy

- X(1835) observation
- $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$
- Dalitz decay of $\eta' \rightarrow \gamma e^+e^-$
- $\psi' \rightarrow K^- \Lambda \Xi^+ + c.c. \&\& \psi' \rightarrow \gamma K^- \Lambda \Xi^+ + c.c.$

Overview of X(1835) observation

- First observation in $J/\psi \rightarrow \gamma \pi \pi \eta'$ at BESII, later confirmed at BESIII
- Second observation in $J\!/\psi o \gamma K^0_{\scriptscriptstyle S} K^0_{\scriptscriptstyle S} \eta$

- Interpretations include glueball, pp bound state, excited η meson
- Two additional structures above 2 GeV/c² are observed

- Structure at ~1.85 GeV
- Strong correlation with enhancement at KsKs mass threshold (interpretated as $f_0(980)$)
- Two resonance pseudoscalar components (BW parameterization) required in best fit hypothesis

Phys. Rev. Lett. 106,072002 (2011)

Phys. Rev. Lett. 115,091803 (2015)

$J/\psi \rightarrow \eta \phi \pi^+ \pi^-$

- Confirm the observed Y(2175) and clarify its nature
- Investigate the properties of f(1285), η(1295), and η(1405)/η(1475)
 resonances
- Search for the observed X(1835) and X(1870) in different decay modes.

- > Y(2175) is clearly observed with a significance of >10σ
- f1(1285) is observed significantly
- No evidence of X(1835) and X(1870) is found.

Dalitz decay of $\eta' \rightarrow \gamma e^+e^-$

- Reveal the inner structure of the meson
- Study the transition form factor → providing information for the muon anomalous magnetic moment.

$$\frac{d\Gamma(\eta' \to \gamma l^+ l^-)}{dq^2 \Gamma(\eta' \to \gamma \gamma)} = \frac{2\alpha}{3\pi} \frac{1}{q^2} \sqrt{1 - \frac{4m_l^2}{q^2}} \left(1 + \frac{2m_l^2}{q^2}\right) \left(1 - \frac{q^2}{m_{\eta'}^2}\right)^3 |F(q^2)|^2 = [\text{QED}(q^2)] \times |F(q^2)|^2$$

|QED(q²)| represents the calculable QED part for a point-like meson

$$\begin{split} \frac{\Gamma(\eta' \to \gamma e^+ e^-)}{\Gamma(\eta' \to \gamma \gamma)} &= (2.13 \pm 0.09(\text{stat}) \pm 0.07(\text{sys})) \times 10^{-2} \\ \mathcal{B}(\eta' \to \gamma e^+ e^-) &= (4.69 \pm 0.20(\text{stat}) \pm 0.23(\text{sys})) \times 10^{-4} \end{split}$$

$\psi' \rightarrow K^- \Lambda \Xi^+ + c.c. \&\& \psi' \rightarrow \gamma K^- \Lambda \Xi^+ + c.c.$

- For $\psi' \rightarrow K^- \Lambda \Xi^+ + c.c.$, two structures around 1690 and 1820 MeV/c² are observed in M(K Λ) mass spectrum.
- For $\psi' \rightarrow \gamma K^- \Lambda \Xi^+ + c.c.$, $\psi' \rightarrow \Sigma^0 K^- \Xi^+ + c.c.$ and $\chi_{cJ} \rightarrow \overline{K}^- \Lambda \Xi^+ + c.c.$ are observed for the first time.

TABLE IV. Summary of the branching fractions measurements, where the first uncertainty is statistical and the second systematic.

	<u>-</u>
Decay	Branching fraction
$\psi(3686) \rightarrow K^-\Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \to \Xi(1690)^{-}\bar{\Xi}^{+},$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\Xi(1690)^- \to K^-\Lambda$	
$\psi(3686) \to \Xi(1820)^{-}\bar{\Xi}^{+},$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\Xi(1820)^- \rightarrow K^- \Lambda$	_
$\psi(3686) \rightarrow K^- \Sigma^0 \bar{\Xi}^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow K^- \Lambda \Xi^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \to \underline{\gamma}\chi_{c2}, \chi_{c2} \to K^-\Lambda \Xi^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\chi_{c0} \to K^-\Lambda \bar{\Xi}^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$
$\chi_{c1} \to K^-\Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \to K^-\Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$

Phys. Rev. D92,012001 (2015)

Charmonium (like) physics

- $\psi(3770) \rightarrow \gamma \chi_{cJ}$
- DOZI decay: $J/\psi \rightarrow \phi \pi^0$
- XYZ study

$\psi(3770) \rightarrow \gamma \chi_{cl} (\chi_{cl} \rightarrow \gamma J/\psi)$

- Search for the evidence of $\psi(3770)$ non-DD decay mode if it contains additional light quarks or gluons except $c\bar{c}$
- Test the S-D mixing model: ψ=1³D₁ (dominant) + 2³S₁ (small)

Phys. Rev. D91,092009 (2015)

TABLE II. Comparison of measured partial widths with theoretical predictions, where ϕ is the mixing angle of the S-D mixing model.

Experiment/theory	$\Gamma(\psi(3770) \to \gamma \chi_{cJ}) \text{ (keV)}$	
	J=1 $J=$	
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4
Ding-Qin-Chao [12]		
Nonrelativistic	95	3.6
Relativistic	72	3.0
Rosner S-D mixing [13]		
$\phi = 12^{\circ} [13]$	73 ± 9	24 ± 4
$\phi = (10.6 \pm 1.3)^{\circ} [32]$	79 ± 6	21 ± 3
$\phi = 0^{\circ}$ (pure $1^{3}D_{1}$ state) [32]	133	4.8
Eichten-Lane-Quigg [14]		
Nonrelativistic	183	3.2
With coupled-channel corr.	59	3.9
Bames-Godfrey-Swanson [15]		
Nonrelativistic	125	4.9
Relativistic	77	3.3

$$\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (2.8 \pm 0.5 \pm 0.4) \times 10^{-3}$$

 $\mathcal{B}(\psi(3770) \to \gamma \chi_{c2}) < 0.64 \times 10^{-3}$

$J/\psi \rightarrow \phi \pi^0$

- This decay mode is highly suppressed due to the DOZI rule.
- Such a search is helpful to understand the ω - ϕ mixing and SU(3) flavor symmetry breaking.

So	lution	N^{sig}	δ	$2\Delta \log \mathcal{L}/N_f$	Z
I	(a)	838.5 ± 45.8	-95.9° ± 1.5°	45.8/2	6.4σ
П	(b)	35.3 ± 9.3	$-152.1^{\circ} \pm 7.7^{\circ}$	45.8/2	6.4σ

Branching fraction:

I: $[2.94 \pm 0.|16(\text{stat.}) \pm 0.16(\text{syst.})] \times 10^{-6}$

II: $[1.24 \pm 0.33(\text{stat.}) \pm 0.30(\text{syst.})] \times 10^{-7}$

Theory prediction (Phys. Rev. 32, 2961 (1985)

$$\frac{B(\phi\pi^{0})}{B(\omega\pi^{0})} = \left(\frac{p_{\phi}}{p_{\omega}}\right)^{3} \frac{(r_{E} \tan \theta_{V} - 1/\sqrt{2})^{2}}{(r_{E} + \tan \theta_{V}/\sqrt{2})^{2}} \longrightarrow \begin{cases} r_{E} = 1 \text{ (nonet symmetry)} \\ \theta_{V} = arc \tan(1/\sqrt{2}) \text{ (ideal } \omega - \phi \text{ mixing)} \end{cases}$$

Nonet symmetry breaking strength $\delta=r_E-1$ (a)

 $(21.0\pm1.6)\%$ or $(-16.4\pm1.0)\%$ (solution I)

 $(3.9 \pm 0.8)\%$ or $(-3.7 \pm 0.7)\%$ (solution II)

Nonet symmetry: $\phi_{\nu} = |\theta_{\nu} - \theta_{\nu}^{ideal}| = 4.97^{\circ} \pm 0.33^{\circ}$ (solution I) = $1.03^{\circ} \pm 0.19^{\circ}$ (solution II)

In fact, ϕ_V =3.84° (PDG), or 3.34°±0.09°, disagree with either

Nonet symmetry is first indication

Charmnonium spectrum

- Below the open charm threshold the spectrums well understood
 - very good agreement between predicted and discovered states
- Above the threshold the situation in more complex
 - only few of the predicted states have been found
 - in the last decades many new states have been observed with properties that are not consistent with expectations for charmonium: X, Y, Z

X states:

- charmonium-like states with J^{PC} ≠ 1⁻⁻
- Observed in B decays, pp and pp collisions

Y states:

- charmonium-like states with J^{PC} = 1⁻⁻
- Observed in direct e + e annihilation or in ISR

Z states:

Must contain at least a cc and a light qq pair

Z sates search at BESIII

$e^+e^- \rightarrow \pi^{\pm}Z_c(3900)^{\mp} \rightarrow \pi^+\pi^-J/\psi$

• Requiring J/ ψ mass window: [3.08,3.12] GeV, we have 1595 signal events, with purity ~90%.

- 1. New charged resonance, exotic 4 quark hadron?!
- 2. Fit $M_{max}(\pi^{\pm}J/\psi)$ mass distribution; avoid cross counting
- 3. S-Wave Breit Wigner; phase space factor; efficiency corrected.
- 4. $M=(3899.0\pm3.6\pm4.9)MeV$; $\Gamma=(46\pm10\pm20)MeV$.
- 5. Statistical significance: $>8\sigma$, discovery!

$e^+e^- \to \pi^0 Z_c(3900)^0 \to \pi^0 \pi^0 J/\psi$

CLEO-c data at 4.17GeV (PLB,727, 366)

- $M = 3894.7 \pm 2.3(sta.) \pm 3.2(sys.) MeV/c^2$
- $\Gamma = 29.6 \pm 8.2(stat.) \pm 8.0(syst.) MeV$
- statistical significance: 10.4 σ

The mass and width for $Z_c(3900)^0$ are consistent with its charged partner. Therefore, an isospin triplet for $Z_c(3900)$ has been established.

PRL 115 112003 (2015)

$e^+e^- \rightarrow \pi^{\pm}Zc(3885)^{\mp} \rightarrow \pi^{\pm}(D\overline{D}^*)^{\mp}$

 $M = 3882.2 \pm 1.5 \text{ MeV}$

 $\Gamma = 24.6 \pm 3.3 \text{ MeV}$

 $N(Zc)=502 \pm 41$

 $M = 3885.5 \pm 1.5 \text{ MeV}$

 $\Gamma = 24.9 \pm 3.2 \text{ MeV}$

 $N(Zc)=710 \pm 54$

 $M = 3883.9 \pm 1.5 \pm 4.2 \text{ MeV}$

 $\Gamma = 24.8 \pm 3.3 \pm 11.0 \text{ MeV}$

$e^+e^- \rightarrow \pi^0Z_c(3885)^0 \rightarrow \pi^0DD^*$

- Two decay modes, $\pi^0 D^+ \overline{D}^{*-} + c.c.$, $\pi^0 D^0 \overline{D}^{*0} + c.c.$
- Tagged D*by $M_{recoil}(D\pi)$
- Two energies are included, 4.226 &4.257 GeV

- $M = 3885.7^{+4.3}_{-5.7}(sta.) \pm 8.4(sys.) MeV/c^2$
- $\Gamma = 35^{+11}_{-12} (stat.) \pm 15 (syst.) MeV$
- statistical significance >12 σ
- No isospin violation is found between charged and neutral mode

PRL 115 222002 (2015)

$e^+e^- \rightarrow \pi^{\pm}Z_c(4020)^{\mp} \rightarrow \pi^+\pi^-h_c$

- 1D projection of M($\pi^{\pm}h_c$) invariant mass distribution.
- No significant signal for $Z_c(3900)^{\pm} \rightarrow \pi^{\pm}h_c$ (<2.1 σ)

PRL111 242001 (2014)

$e^+e^- \to \pi^0 Z_c (4020)^0 \to \pi^0 \pi^0 h_c$

- Observe $Z_c(4020)^0$ structure in π^0 h_c mass distribution.
- M[Z_c(4020)⁰] =4023.6±4.5
 MeV with a fixed width
- It is the neutral isospin partner of the $Z_c(4020)^{\pm}$.

Cross sections for $e^+e^-\rightarrow\pi^+\pi^-h_c$ and $e^+e^-\rightarrow\pi^0\pi^0h_c$ are in agreement with isospin conservation within 2σ : $R_{\pi\pi hc}$ =0.63 \pm 0.09

An isospin triplet for Z_c(4020) has also been established.

$$e^+e^- \rightarrow \pi^- Zc(4025)^+ \rightarrow \pi^- (D^*\overline{D}^*)^+$$

M=4026.3 \pm 2.6 \pm 3.7 MeV Γ =24.8 \pm 5.6 \pm 7.7 MeV N=401 \pm 47 Significance>10 σ

PRL 112 132001 (2014)

• if $Z_c(4025)^{\pm}$ is the $Z_c(4020)^{\pm}$ observed in the $\pi^{\pm}h_c$ spectrum:

$$\frac{\Gamma(Z_c(4020) \to D^* \bar{D}^*)}{\Gamma(Z_c(4020) \to \pi h_c)} = 12 \pm 5$$

$e^+e^- \rightarrow \pi^0 Z_c(4020)^0 \rightarrow \pi^0 D^* \overline{D}^*$

- Two decay modes, $\pi^0 D^{*+} \overline{D}^{*-} + c.c.$, $\pi^0 D^{*0} \overline{D}^{*0} + c.c.$
- Two energies are included, 4.23 &4.26 GeV

- $M = 4025.5^{+2.0}_{-4.7}(sta.) \pm 3.1(sys.) MeV/c^2$
- $\Gamma = 23.0 \pm 6.0(stat.) \pm 1.0(syst.) MeV$
- statistical significance: ~6.0σ

PRL 115 222002 (2015)

Summary Z_c states at BESIII

X states search at BESIII

$e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$

- M = (3871.9 \pm 0.7 \pm 0.2) MeV, Γ <2.4 MeV, Significance:6.3 σ
- production in Y(4260) decay suggestive, but not conclusive

$$\frac{\mathcal{B}[Y(4260) \to \gamma X(3872)]}{\mathcal{B}(Y(4260) \to \pi^+\pi^-J/\psi)} = 0.1$$

$e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^- \gamma \chi_{c1}$

Fit: M=3821.7 \pm 1.3 \pm 0.7 MeV;

Significance: 6.7σ, observation

Phys. Rev. Lett. 91, 112015 (2015)

X(3823) as the $\psi(1^3D_2)$

- Mass argees with $\psi(1^3D_2)$
- Narrow width (<16 MeV @90% C.L.)
- $R=B[X(3823)\rightarrow gc_{c2}]/B[X(3823)\rightarrow gc_{c1}]<0.43 @ 90% C.L.$ Agree with predicted ~0.2
- $1^{1}D_{2}$ →gc_{c1} forbidden; $1^{3}D_{3}$ →gc_{c1} amplitude=0.

Y states search at BESIII

$e^+e^- \to \omega \chi_{c0} (\sqrt{s}=4.23, 4.26 \text{ GeV})$

$$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$
,
 $\chi_{c0} \rightarrow \pi^{+}\pi^{-}$, $K^{+}K^{-}$

√s (GeV)	σ ^{Born} (pb ⁻¹)
4.23	55.4±6.0±5.9
4.26	23.7±5.3±3.5

This is not consistent with the Y(4260) (!?)

Assuming the $\omega\chi_{c0}$ signals come from a resonance, we extract the $\Gamma_{ee} \cdot B(\omega\chi_{c0})$, mass, and width of the resonance to be (2.9 \pm 0.7 \pm 0.4) eV, M=(4230 \pm 8 \pm 6) MeV/c², and (38 \pm 12 \pm 2) MeV.

Phys. Rev. Lett 115, 012005 (2015)

$e^+e^- \rightarrow \omega \chi_{c1,2} (\sqrt{s}=4.42, 4.6 \text{ GeV})$

- Clear χ_{c2} , χ_{c1} are observed at \sqrt{s} =4.42, 4.6 GeV, respectively
- The Born cross section have been measured for $e^+e^- \rightarrow \omega \chi_{c1,2}$
- $\sigma(e^+e^- \to \omega \chi_{c2})$ is fitted with the coherent sum of the $\psi(4415)$ BW function and a phase-space term. Two solutions are obtained: constructive,

--- destructive

Observation of $e^+e^- \rightarrow \eta J/\psi$

- Agree with previous results with improved precision
- ➤ The cross section peaks around 4.2 GeV
- Analysis of high energy points underway

Phys. Rev. D 91, 112005 (2015)

Observation of e⁺e⁻→ η'J/ψ

First observation, cannot tell the line shape due to statistics₃₂

No significant $e^+e^- \rightarrow \gamma Y(4140)$

Upper limit at the 90% C.L. for $\sigma^B \cdot \mathcal{B} = \sigma^B (e^+e^- \to \gamma Y(4140)) \cdot \mathcal{B}(Y(4140) \to \phi J/\psi)$

(GeV/)	Luminosity (pb ⁻¹)	0	prod	(pb)
4.23	1094	0.840	<339	<0.35
4.26	827	0.847	<207	<0.28
4.36	545	0.944	<179	<0.33

Systematic uncertainty is considered.

Compared with X(3872) production. PRL 112, 092001

$$\sigma^B \left(e^+ e^- \to \gamma X(3872) \right) \cdot \mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)$$

- Compared with X(3872) production. PRL 112, 092001 $\sigma^B \left(e^+ e^- \to \gamma X(3872) \right) \cdot \mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)$ = 0.27±0.09(stat) ±0.02(syst) pb at \sqrt{s} = 4.23 GeV,
- = 0.33 ± 0.12 (stat) ±0.02 (syst) pb at \sqrt{s} = 4.26 GeV.

Take $\mathcal{B}(X(3872) \to \pi^+\pi^-I/\psi) = 5\%$. arXiv: 0910.3138

And $\mathcal{B}(Y(4140) \to \phi J/\psi) = 30\%$, molecular calculation, PRD 80, 054019.

$$\frac{\sigma^B(e^+e^-\to \gamma Y(4140))}{\sigma(e^+e^-\to \gamma X(3872))} \le 0.1$$
 at $\sqrt{s} = 4.23$ and 4.26 GeV.

Phys. Rev. D91, 032002 (2015)

Charm physics

- Measurement of B[D⁰ \rightarrow K(π)⁻e⁺v] &&f₊K(π)(0)
- $D^+ \rightarrow K_L e^+ v$, $\omega e^+ v$, $\phi e^+ v$
- DD mixing parameter y_{CP}
- Search for $D^0 \rightarrow \gamma \gamma$ and Measurement of $B[D^0 \rightarrow \pi^0 \pi^0]$
- Absolute BF for $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$
- Absolute BFs for Λ_c^+ hadron decays

Measurement of B[D $^0\rightarrow$ K(π) $^-e^+v$]

Measurement of $f_{+}^{K(\pi)}(0)$

$D^+ \rightarrow K_L e^+ \nu$, $\omega e^+ \nu$, $\phi e^+ \nu$

PRD92(2015) 112008

PRD92(2015) 071101R

Amplitude analysis of $D^+ \rightarrow \omega e^+ v$ is performed for the first time

Comparisons with previous results

Mode	This work	Previous
$K_L e^+ v$	(4.482±0.027±0.103)%	
$\omega e^+ v$	$(1.63\pm0.11\pm0.08)\times10^{-3}$	$(1.82\pm0.18\pm0.07)\times10^{-3}$
φe ⁺ ν	<1.3×10 ⁻⁵	<9.0×10 ⁻⁵

 $A_{CP}^{D+\to KLe+\nu} = (-0.59\pm0.60\pm1.50)\%$

$$f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$$

Results of form factor ratios:

$$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

DD mixing parameter y_{CP}

PLB 744, 339 (2015)

We measure the y_{CP} using CP-tagged semileptonic D decays, which allows to access CP asymmetry in mixing and decays.

Reconstructed Modes:

Type	Mode
CP+	$K^{+}K^{-}, \pi^{+}\pi^{-}, K^{0}_{S}\pi^{0}\pi^{0}$
CP—	$K_S^0\pi^0$, $K_S^0\omega$, $K_S^0\eta^0$ $K^{\mp}e^{\pm}v$, $K^{\mp}\mu^{\pm}v$
Semileptonic	$K^{\mp}e^{\pm}\nu$, $K^{\mp}\mu^{\pm}\nu$

 $y_{CP} = (-2.1 \pm 1.3 \pm 0.7)\%$

agree with the previous measurements

Search for $D^0 \rightarrow \gamma \gamma$ and Measurement of $B[D^0 \rightarrow \pi^0 \pi^0]$

In SM, D⁰D⁰ mixing, CP violation and rare decay of charm are small. Searching for rare decays probes for New Physics beyond SM.

Search for flavor-changing neutral current (FCNC) decay $D^0 \rightarrow \gamma \gamma$ using DT method.

PRD91 112015(2015)

Improved measurement of $B[D^0 \rightarrow \pi^0 \pi^0]$ by using ST.

$$\mathcal{B}(D^0 \to \pi^0 \pi^0) = \frac{N_{\pi^0 \pi^0}}{\epsilon_{\pi^0 \pi^0} \cdot 2N_{D^0 \bar{D}^0}}$$

 $B[D^0 \rightarrow \pi^0 \pi^0] = (8.24 \pm 0.21 \pm 0.30) \times 10^{-4}$

Consistent with Babar measurements and SM predication.

Absolute BF for $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$

Theoretical calculations on the BF ranges from 1.4% to 9.2%

PDG2014: (2.1±0.6)%

PDG2015: (2.9±0.5)%

Input B[$\Lambda_{C}^{+} \rightarrow pK^{-}\pi^{+}$]=(6.84^{+0.32}_{-0.40})% by BELLE [PRL113,042002(2014)]

14415±159 events with 11 ST modes

PRL115(2015)221805

 $B[\Lambda_c^+ \rightarrow \Lambda e^+ v] = (3.63 \pm 0.38 \pm 0.20)\%$ First absolute measurement Important for test and calibrate the LQCD calculations.

Absolute BFs for Λ_c^+ hadron decays

Measurement using the threshold pair-productions via e⁺e⁻ annihilation is unique: the most simple and straightforward

Mode	This work (%)	PDG (%)	Belle \mathcal{B}
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$		$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$		
	$1.53 \pm 0.11 \pm 0.09$		
$pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^{0}\pi^{+}$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^{+}\pi^{0}$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

Phys. Rev. Lett (in press)

A global least-square global fitter is utilized to improve the measured precision for $12 \Lambda_c^+$ hadronic decay channels.

$$N_{-j}^{DT} = \sum_{i^+ \neq j} N_{i^+j^-}^{DT} + \sum_{i^- \neq j} N_{i^-j^+}^{DT} + N_{jj}^{DT}$$

- ✓ Absolute BFs are improved significantly.
- ✓ BESIII BF for Λ_c^+ → pK⁻ π^+ is smaller.
- ✓ Improved absolute BF of pK⁻π⁺ together with BELLE's result are key to calibrate other decays.

R-QCD

- Proton form factor measurement
- $\sigma(e^+e^-\to \pi^+\pi^-)$ and form factor
- Collins Asymmetry

Proton form factor measurement

- Radiative corrections from Phokhara8.0 (scan)
- Normalization to $e^+e^- \rightarrow e^+e^-, e^+e^- \rightarrow \gamma\gamma$ (BABAYAGA 3.5)
- Efficiencies from 60% (2.23 GeV) to 3.0% (~4 GeV)
- $|G_E/G_M|$ ratio obtained from 3 c.m. energies

E _{cm} /GeV	L _{int} / pb ⁻¹
2.23	2.6
2.40	3.4
2.80	3.8
3.05, 3.06, 3.08	60.7
3.40 , 3.50, 3.54, 3.56	23.3
3.60, 3.65, 3.67	63.0

Phys. Rev. D91, 112004 (2015)

$\sigma(e^+e^-\to\pi^+\pi^-)$ and form factor

ISR analysis using 2.9 fb⁻¹ data at ψ (3770): e⁺e⁻ $\rightarrow \pi$ + π - γ_{ISR}

Ехр.	$a_{\mu}^{2\pi,LO}$ (600 – 900 MeV) [10 ⁻¹⁰]
BaBar	376.7 ± 2.0 _{stat} ± 1.9 _{sys}
KLOE08	368.9 ± 0.4 _{stat} ± 2.3 _{sys,exp} ± 2.2 _{sys,theo}
KLOE10	366.1 ± 0.9 _{stat} ± 2.3 _{sys,exp} ± 2.2 _{sys,theo}
KLOE12	366.7 ± 1.2 _{stat} ± 2.4 _{sys,exp} ± 0.8 _{sys,theo}
BESIII	371.9 ± 2.6 _{stat} ± 5.2 _{sys}

Phys. Lett. B, 753, 629-638 (2016)

Summary

- X(1835), Y(2175) and other new N* are either observed or confirmed.
- Some semi-leptonic decay for charm mesons are observed for the first time. DD mixing is searched
- X,Y,Z states are searched. A lot of new neutral Z states are observed recently.
- The absolute BF for $\Lambda_{\rm c}$ semi-leptonic and hadronic decay are measured. Some of them are the first time.
- The form factor for $e^+e^- \rightarrow pp, \pi^+\pi^-$ are measured.

Backup