New results on XYZ states from e⁺e⁻ experiments

Changzheng Yuan (苑 长 征)
IHEP, Beijing

The 6th International Workshop on Charm Physics 31 Aug - 4 Sept 2013; Manchester, England

Outline

- Introduction
- New information on the X(3872)
- Update the ISR Y-family analyses

and more ... • •

• $Z_c(3900)$, $Z_c(4020)$ & $Z_c(4025)$ • • •

Summary & Outlook

Results are from these experiments

The Beijing Electron Positron Collider

BESIII: production of charmonium(like) states

Vector ψ/Y states can be produced directly C-even states can be produced from radiative transitions

BESIII collected 3.3/fb for XYZ study

Charmonium spectroscopy

States below charm threshold are all observed now, still many missing states above charm threshold.

There are lots of XYZ states

Not all of them are charmonia!

What is the X(3872)?

- Mass: Very close to D⁰D^{*0} threshold
- Width: Very narrow, < 1.2 MeV
- J^{PC}=1⁺⁺ [LHCb]
- Production
 - in pp/pp collison rate similar to charmonia
 - In B decays KX similar to cc, K*X smaller than cc
 - Y(4260)→ γ +X(3872) [BESIII, see next slides]
- Decay BR: open charm ~ 50%, charmonium~O(%)
- Nature (very likely exotic)
 - Loosely D⁰D*0 bound state (like deuteron?)?
 - Mixture of excited χ_{c1} and $\overline{D}{}^0D^{*0}$ bound state?
 - Many other possibilities (if it is not χ'_{c1} , where is χ'_{c1} ?)

Observation of e⁺e⁻ $\rightarrow \gamma X(3872) \rightarrow \gamma \pi^{+}\pi^{-}J/\psi$

X(3872) signal at around 4.23-4.26 GeV

10

Observation of $e^+e^- \rightarrow \gamma X(3872)$

ISR ψ ' signal is used for rate, mass, and mass resolution calibration.

 $N(\psi')=1242$; Mass=3685.96±0.05 MeV; $\sigma_M=1.84\pm0.06$ MeV

BESIII preliminary

 $N(X(3872))=15.0\pm3.9$

5.3σ

 $M(X(3872)) = 3872.1 \pm 0.8 \pm 0.3 \text{ MeV}$

[PDG: 3871.68 ±0.17 MeV]

Observation of $e^+e^- \rightarrow \gamma X(3872)$

It seems X(3872) is from Y(4260) decays. At 4.26 GeV,
$$\sigma^B(e^+e^-\to\pi^+\pi^-J/\psi)=(62.9\pm1.9\pm3.7)~\text{pb,}$$

$$\frac{\sigma[e^+e^-\to\gamma X(3872)]\cdot\mathcal{B}(X(3872)\to\pi^+\pi^-J/\psi)}{\sigma(e^+e^-\to\pi^+\pi^-J/\psi)}=(5.6\pm2.0)\times10^{-3}$$

If we take
$$\mathcal{B}(X(3872) \to \pi^+\pi^-J/\psi) \sim 5\%$$
, (>2.6% in PDG) $\frac{\sigma(e^+e^-\to\gamma X(3872))}{\sigma(e^+e^-\to\pi^+\pi^-J/\psi)} \sim 11.2\%$ Large transition ratio !

Y-family states

(vectors observed in Initial State Radiation)

 $+ e^+e^- \rightarrow \pi^+\pi^-h_c$ from BESIII

The Y states

Belle: PRL99, 142002, 673/fb

BaBar: 1211.6271, 520/fb

Events /50 MeV/c

Y(4008): confirmed by Belle with more data; events observed at BaBar, fit with exponential

Wait for BESIII

Y(4660): confirmed by BaBar

Y(4630): no data, a bit beyond₁₅

BEPCII/BESIII limit

Update ISR $\pi^+\pi^-J/\psi$ analysis

Event selections are almost the same as in previous Belle published paper PRL99, 182004 (2007)

- Clean ψ(2S) signal events are obtained, purity>99%.
- Fit with double Gaussian yields $M(\psi(2S)) = (3686.1 \pm 0.2)$ MeV, σ =4.8MeV
- ▼ ISR Ψ(2S) production cross sections agree with calculations

	e^+e^-	$\mu^+\mu^-$	QED
$\sigma(\Upsilon(4S))$	$(14.12 \pm 0.18 \pm 0.85)$ pb	$(15.09 \pm 0.11 \pm 0.79)$ pb	$(14.25 \pm 0.26) \text{ pb}$
$\sigma(\Upsilon(5S))$	$(13.79 \pm 0.44 \pm 0.83)$ pb	$(13.33 \pm 0.25 \pm 0.70)$ pb	(13.42 ± 0.25) pb
$\sigma(\Upsilon(2S))$	$(16.75 \pm 0.85 \pm 1.01) \text{ pb}$	$(16.63 \pm 0.54 \pm 0.87) \text{ pb}$	$(16.03 \pm 0.29) \text{ pb}$

Belle also observed a few $\psi(3770) \rightarrow \pi^{+}\pi^{-}J/\psi$ events (N=54±20, 2.8 σ) $B(\psi(3770) \rightarrow \pi^{+}\pi^{-}J/\psi) = (5.5\pm2.1) \times 10^{-3}, PDG (1.28 \times 10^{-3})$

Two-resonance fit

Y(4008) and Y(4260), agrees with Belle's previous results.

 $R_1 = Y(4008)$ $R_2 = Y(4260)$

¹V \ ♥			
Sol	Parameters	Solution I	Solution II
Sol	$M(R_1)$	$3890.8 \pm 40.5 \pm 11.5$	
4 ¹ 1, 16 +16 +16 +1. +16 +16 +16 +16 +16 +16 +16 +16 +16 +16	$\Gamma_{\text{tot}}(R_1)$	$254.5 \pm 39.5 \pm 13.6$	
	$\Gamma_{ee}\mathcal{B}(R_1 \to \pi^+\pi^- J/\psi)$	$(3.8 \pm 0.6 \pm 0.4)$	$(8.4 \pm 1.2 \pm 1.1)$
.2 4.4 4.6 4.8 5	$M(R_2)$	4258.6 ± 1	8.3 ± 12.1
$M(\pi^{\dagger}\pi^{-}J/\psi)$ (GeV/c ²)	$\Gamma_{\rm tot}(R_2)$	$134.1 \pm 16.4 \pm 5.5$	
ινι(π. π. υ/ψ) (Δε ν/σ	$\Gamma_{ee}\mathcal{B}(R_2\to\pi^+\pi^-J/\psi)$	$(6.4 \pm 0.8 \pm 0.6)$	$(20.5 \pm 1.4 \pm 2.0)$
	ϕ	$59 \pm 17 \pm 11$	$-116 \pm 6 \pm 11$

- 1. Fit with two coherent resonances $|BW_1+BW_2*exp(i\phi)|^2+bkg$.
- 2. Mass of Y(4008) is lower than before
- 3. Fit quality: $\chi^2/\text{ndf}=101/84$, confidence level is 9.3%

Select $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at 4.26 GeV

- Select 4 charged tracks and reconstruct J/ψ with lepton pair.
- Very clean sample, very high efficiency (~45%).
- $\sigma(e^+e^- \to \pi^+\pi^- J/\psi) = (62.9 \pm 1.9 \pm 3.7) \text{ pb}$

18

BESIII: PRL110, 252001

3.8

Cross section of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

 $E_{cm}(GeV)$

BESIII is measuring cross sections at more energy points, and will take more data!

BESIII: $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$ = (62.9±1.9±3.7) pb Agree with BaBar & Belle! Best precision!

$e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$ at BESIII

- $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow hadrons$ [16 exclusive decay modes]
 - $ightharpoonup p, \pi^+\pi^-K^+K^-, \pi^+\pi^-p p, 2(K^+K^-), 2(\pi^+\pi^-), 3(\pi^+\pi^-)$
 - $\geq 2(\pi^+\pi^-)K^+K^-, K_S^0K^+\pi^-+c.c., K_S^0K^+\pi^-\pi^+\pi^-+c.c., K^+K^-\pi^0$
 - $ightharpoonup p \pi^0$, $K^+K^-\eta$, $\pi^+\pi^-\eta$, $\pi^+\pi^-\pi^0\pi^0$, $2(\pi^+\pi^-)\eta$, $2(\pi^+\pi^-\pi^0)$

Observation of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

$$N(h_c)=416\pm28$$

 $Lum=827/pb$
 $\sigma^B=41.0\pm2.8\pm7.4 pb$

$$N(h_c)=357\pm25$$

 $Lum=544/pb$
 $\sigma^B=52.3\pm3.7\pm9.2 pb$

Observation of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

- $\sigma(e^+e^- \to \pi^+\pi^-h_c) \sim \sigma(e^+e^- \to \pi^+\pi^-J/\psi)$ but line shape different
- Local maximum ~ 4.23 GeV
- Hint for a vector ccg hybrid? [PRD78, 056003 (Guo); 094504 (Dudek): cc in spin-singlet in hybrids!]

Comparison of $e^+e^- \rightarrow \pi^+\pi^-h_c$ and $\pi^+\pi^-J/\psi$

Broad structure at ~4.4 GeV? Need more data at high energies to complete the line shape measurement.

What are the Y states?

- Between 4 and 4.7 GeV, at most 5 states expected (3S, 2D, 4S, 3D, 5S), 7 observed
- Hybrids are expected in this mass region
- Molecular states?
- Cannot rule out threshold effect/FSI/...
- Y(4260), Y(4360),
 Y(4660) are all narrow
 and similar

Z_c: charged charmoniumlike states

Find a clear signature for exotic state!

- · Decays to charmonium thus has a cc pair!
- · With electric charge thus has two more light quarks!

$$\rightarrow$$
 N_{quark} ≥ 4 !

- Do searches in π[±]J/ψ, π[±]h_c(1P), π[±]ψ(2S), π[±]χ_{cJ}, ...
- BESIII: $e^+e^- \rightarrow \pi^{\pm}+exotics$, $\rho^{\pm}+exotics$, ...

BESIN

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at Ecm=4.26 GeV

BELLE

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ from ISR

Belle: PRL110, 252002

- 1. $M^2(\pi\pi)$ vs. $M^2(\pi J/\psi)$ for 4.15<M(ππJ/ψ) <4.45 GeV
-) $(\text{GeV/c}^2)^2$ 2. (inset) Background events in J/ψ-mass sidebands
- 3. Structures both in $\pi\pi$ and πJ/ψ systems
- 4. 689 evts in J/ψ signal region, purity~80%

12

20

22

Z_c(3900) observed in two experiments!

BES3 at 4.26 GeV: 1303.5949

Belle with ISR: 1304.0121

- $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$
- $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$
- 307 ± 48 events
- >8σ

- $M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV}$
- $\Gamma = 63\pm24\pm26 \text{ MeV}$
- 159 ± 49 events
- >5.2σ

28

Confirmed with CLEOc data!

CLEOc data at 4.17 GeV: 1304.3036

- $M = 3885 \pm 5 \pm 1 \text{ MeV}$
- $\Gamma = 34 \pm 12 \pm 4 \text{ MeV}$
- 81 ± 20 events
- 6.1σ

What is $Z_c(3900)$?

- Couples to cc
- Has electric charge
- At least 4-quarks
- What is its nature?

- DD* molecule?
- Tetraquark state?
- Cusp?
- Threshold effect?

Predictions and more experimental information will be essential to understand its nature.

→ A partner <u>below/above</u> Z_c?

Dalitz plot of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

$e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^+\pi^-h_c(1P)$

Ecm=4.26 GeV

Ecm=4.36 GeV

Simultaneous fit to 4.26/4.36 GeV data and 16 η_c decay modes. 6.4 σ M($Z_c(4020)$) = 4021.8 \pm 1.0 \pm 2.5 MeV; $\Gamma(Z_c(4020))$ = 5.7 \pm 3.4 \pm 1.1 MeV

$$R = \frac{\sigma(e^{+}e^{-} \to \pi^{\pm}Z_{c}^{\mp}(4020 \to \pi^{+}\pi^{-}h_{c}(1P))}{\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}h_{c}(1P))} = (16.2 \pm 4.1 \pm 0.7)\% \quad (16.6 \pm 5.2 \pm 0.8)\%$$

$e^+e^- \rightarrow \pi^- (D^*\underline{D}^*)^+ + c.c.$ at BESIII

- 827 pb⁻¹ data at Ecm=4.26 GeV
- Tag a D⁺ and a bachelor π^- , reconstruct one π^0 to suppress the background.

Topology of the decays of the signal process. Thick line circled D^+ and π^- are detected in the final states and at least one of the dashed line circled π_1^0 or π_2^0 is tagged.

$e^+e^- \rightarrow \pi^- (D^*\underline{D}^*)^+ + c.c.$ at BESIII

$e^+e^- \rightarrow \pi Z_c(4025) \rightarrow \pi^- (D^*\underline{D}^*)^+ + c.c.$

Fit to π^{\pm} recoil mass yields 401±47 $Z_c(4025)$ events.

 $M(Z_c(4025)) = 4026.3\pm2.6\pm3.7 \text{ MeV}; \ \Gamma(Z_c(4025)) = 24.8\pm5.6\pm7.7 \text{ MeV}$

$$R = \frac{\sigma \ (\text{de}^{-} \to \pi^{\pm} Z_{c}^{\mp} (4025) \to \pi^{\pm} (D^{*} D^{*})^{\mp})}{\sigma \ (\text{de}^{-} \to \pi^{\pm} (D^{*} D^{*})^{\mp})} = \frac{\sigma(\text{e}^{+} \text{e}^{-} \to \pi^{\pm} (D^{*} D^{*})^{\mp}) = (137 \pm 9 \pm 15) \text{ pb}}{(65 \pm 9 \pm 6) \%}$$

$$BESIII: 1308.35760$$

BESIII: 1308.³⁵760

$Z_c(4020)=Z_c(4025)$?

- $M(4020) = 4021.8 \pm 1.0 \pm 2.5 \text{ MeV}$
- $M(4025) = 4026.3 \pm 2.6 \pm 3.7 \text{ MeV}$
- $\Gamma(4020) = 5.7 \pm 3.4 \pm 1.1 \text{ MeV}$
- $\Gamma(4025) = 24.8 \pm 5.6 \pm 7.7 \text{ MeV}$

Close to D*D* threshold=4017 MeV Mass consistent with each other but width ~2σ difference

Interference with other amplitudes may change the results

Coupling to D^*D^* is much larger than to πh_c if they are the same state

Will fit with Flatte formula

What next at BESIII?

- Precise resonant parameters
- Spin-parity of Z_c and Z_c'
- More decay modes $[\pi \psi', \rho \eta_c, \text{ open charm},...]$
- Production mechanisms, production rates
- Test various theoretical models
- Neutral partners of Z_c and Z_c'
- Excited Z_c, Z_c' states? Z_{cs}→KJ/ψ states?
- Other XYZ states?

•

Summary

- Lots of progress in XYZ studies in e⁺e⁻ experiments
- BESIII started study of the XYZ particles
- Observation of Y(4260)→γX(3872)
- New information on the Y's from BaBar and Belle. Y(4660) confirmed, Y(4008) not confirmed; large $\pi^+\pi^-h_c$ production rate above 4.2 GeV
- First confirmed exotic state with at least four quarks,
 Z_c(3900)+, at BESIII & Belle
- Observation of the Z_c' at BESIII
- More results will come soon, stay tuned!

Thanks a lot!

Belle observed Z(4430)[±]→ψ(2S)π[±]

PRL100, 142001 (2008)

- Found in ψ(2S)π⁺ from B→ψ(2S)π⁺K. Z parameters from fit to M(ψ(2S)π⁺)
- Confirmed through Dalitz-plot analysis of B→ψ(2S)π+K
- B→ψ(2S)π⁺K amplitude: coherent sum of Breit-Wigner contributions
- Models: all known K*→Kπ⁺ resonances only all known K*→Kπ⁺ and Z⁺→ψ(2S)π⁺ ⇒ favored by data

 $M^2(\psi(2S)\pi^+)$ after K* veto

Significance: 6.4o

fit for model with K*'s only fit for model with K*'s and Z

$$M = 4433^{+15}_{-12-13}^{+15} \text{ MeV}$$

$$\Gamma = 107^{+86+74}_{-43-53} \text{ MeV}$$

PRD80, 031104 (2009)

- [cu][cd] tetraquark? neutral partner in ψ'π⁰ expected
- D*<u>D</u>₁(2420) molecule? should decay to D*<u>D</u>*π

Spin-parity of the Z(4430)[±]

B→ψ(2S)π+K amplitude: coherent sum of Breit-Wigner contributions

BaBar doesn't see a significant Z(4430)+

PRD79, 112001 (2009)

"For the fit ... equivalent to the Belle analysis...we obtain mass & width values that are consistent with theirs,... but only $\sim 1.9\sigma$ from zero; fixing mass and width increases this to only $\sim 3.1\sigma$."

 $BF(B^0 \rightarrow Z^+K) \times BF(Z^+ \rightarrow \psi(2S)\pi^+) < 3.1 \times 10^{-5}$

Belle PRL: $(4.1\pm1.0\pm1.4)x10^{-5}$

Belle observed Two $Z^{\pm} \rightarrow \chi_{c1} \pi^{\pm}$

- Dalitz-plot analysis of $\underline{B}^0 \rightarrow \chi_{c1} \pi^+ K^- \chi_{c1} \rightarrow J/\psi \gamma$ with 657M BB
- Dalitz plot models: known K*→Kπ only

K*'s + one Z $\rightarrow \chi_{c1} \pi^{\pm}$

PRD 78, 072004 (2008)

K*'s + two Z[±] states ⇒ favored by data

- fit for model with K*'s
- fit for double Z model
- **Z**₁ contribution
- **Z**₂ contribution

$$M_{Z_1} = 4051 \pm 14^{+20}_{-41} \text{ MeV}$$
 $\Gamma_{Z_1} = 82^{+21+47}_{-17-22} \text{ MeV}$
 $M_{Z_2} = 4248^{+44+180}_{-29-35} \text{ MeV}$
 $\Gamma_{Z_1} = 177^{+54+316} \text{ MeV}$

BaBar doesn't see significant $Z^{\pm} \rightarrow \chi_{c1} \pi^{\pm}$

$$\mathcal{B}(\bar{B}^0 \to Z_1(4050)^+ K^-) \times \mathcal{B}(Z_1(4050)^+ \to \chi_{c1}\pi^+) < 1.8 \times 10^{-5},$$

Belle: (3.0^{+1.5}_{-0.8}^{+3.7}_{-1.6})x10⁻⁵

$$\mathcal{B}(\bar{B}^0 \to Z_2(4250)^+ K^-) \times \mathcal{B}(Z_2(4250)^+ \to \chi_{c1}\pi^+) < 4.0 \times 10^{-5},$$

Belle: $(4.0^{+2.3}_{-0.9}^{+19.7}_{-0.5})x10^{-5}$

"We find that it is possible to obtain a good description of our data without the need for additional resonances in the $\chi_{c1}\pi$ system."

$M(\pi\pi J/\psi) \in [4.2, 4.4]$ GeV via ISR

Observation of the X(3823)

arXiv:1304.3975 (submitted to PRL)

FIG. 4: 2D UML fit projection of $M_{\chi_{c1}\gamma}$ distribution for the simultaneous fit of $B^{\pm} \to (\chi_{c1}\gamma)K^{\pm}$ and $B^{0} \to (\chi_{c1}\gamma)K^{0}_{S}$ decays for $M_{\rm bc} > 5.27 \text{ GeV}/c^2$. The curves used in the fits are described in [33].

The measured mass and width are consistent with the missing $\Psi_2(1D)$ state

BESIII may search for it!

BEPC II: Large crossing angle, double-ring

BESIII Detector

CsI(TI) calorimeter, 2.5% @ 1 GeV

