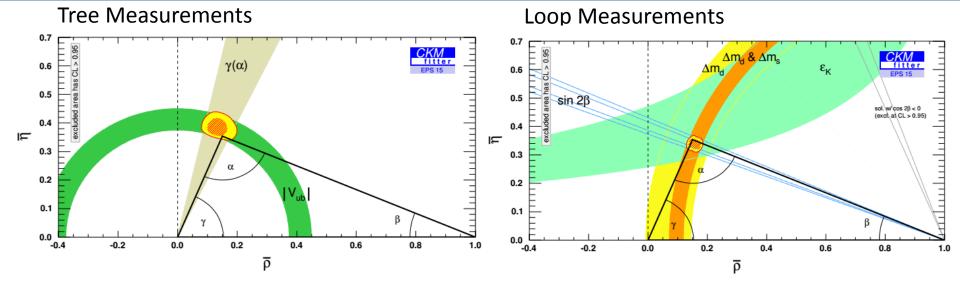


Relative Strong-Phase Difference Between D⁰ and \overline{D}^0 (\rightarrow K_s $\pi^+\pi^-$) at BESIII

Dan Ambrose


University of Minnesota B2TiP

Pittsburgh, Pennsylvania 05/23/16

Outline

- GGSZ Method
- Strong-Phase difference between D⁰ and $\overline{D}{}^0 \to K_s \pi^+ \pi^-$ measurement at BESIII
- Impact on the measurement of CKM UT angle ϕ_3/γ
- Future BESIII measurements

Current Status of the Measurement of the CKM UT

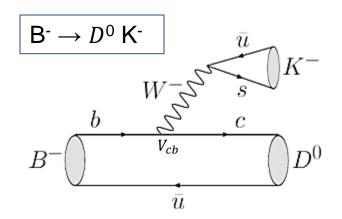
Differences would imply new physics

$$\phi_1/\beta = \left(21.85 + 0.68 \atop -0.67\right)^{\circ}$$

$$\phi_2/\alpha = \left(87.6 + 3.5 \atop -3.3\right)^{\circ}$$

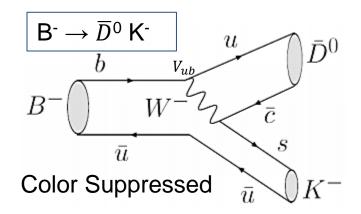
$$\phi_3/\gamma = \left(73.2 + 6.3 \atop -7.0\right)^{\circ}$$

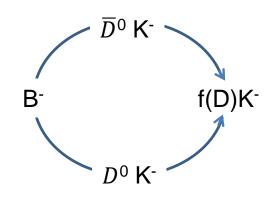
2015 CKMfitter (Direct Measurements)


$$\phi_1/\beta = \left(22.62^{+0.44}_{-0.42}\right)^{\circ}$$

$$\phi_2/\alpha = \left(90.4^{+2.0}_{-1.0}\right)^{\circ}$$

$$\phi_3/\gamma = \left(67.01^{+0.88}_{-1.99}\right)^{\circ}$$


2015 CKMfitter (Global Fits)


Directly Measuring ϕ_3/γ through ${\rm B}^{\scriptscriptstyle -} o \widetilde{D}^{\scriptscriptstyle 0}$ K⁻

$$\frac{\left\langle B^{-} \rightarrow \overline{D^{0}}K^{-}\right\rangle}{\left\langle B^{-} \rightarrow D^{0}K^{-}\right\rangle} = r_{B}e^{i(\delta_{B}-\phi_{3})}$$

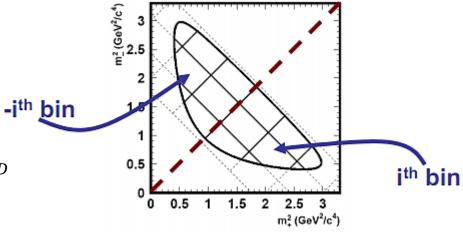
Determine ϕ_3 through the measurement of the interference between b \rightarrow c and b \rightarrow u transitions when D^0 and \overline{D}^0 both decay to the same final state f(D).

Total Decay Rate

$$\Gamma(B^- \to f(D^0)K^-) = A_B^2 A_f^2 (r_D^2 + r_B^2 + 2r_D r_B \cos(\delta_B + \delta_D - \phi_3))$$

ϕ_3 fit through GGSZ method

Due to both amplitude and having only charged tracks, $K_s \pi^+ \pi^-$ is the preferred final state for this method.


Distribution sensitive to variables:

 T_i : Bin yield measured in flavor decays

 r_R : color suppression factor ~ 0.1

 δ_R : strong phase of B decay

 (c_i, s_i) : weighted average of $\cos(\Delta \delta_D)$ and $\sin(\Delta \delta_D)$ respectively where $\Delta \delta_D$ is the difference between phase of D^0 and $\overline{D}{}^0$

Mirrored binning over x=y makes it so $c_i = c_{-i}$ and $s_i = -s_{-i}$

 T_i , r_B , δ_B are measured at B-Factories

 c_i and s_i can be found through $K_s \pi^+ \pi^-$ Analysis at BESIII

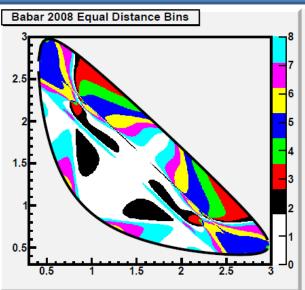
Binned decay rate:

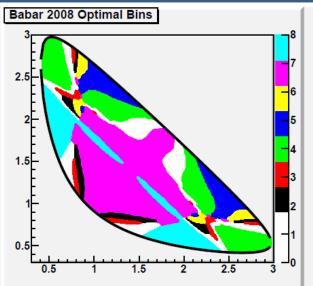
$$\Gamma(B^{\pm} \to D(K_S \pi^+ \pi^-) K^{\pm})_i = T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \cos(\delta_B \pm \phi_3 - \Delta \delta_D)$$

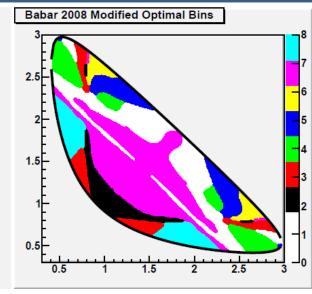
$$= T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \{ c_i \cos(\delta_B \pm \phi_3) + s_i \sin(\delta_B \pm \phi_3) \}$$

Status of Direct Measurement of ϕ_3

Example of ϕ_3 measurements from GGSZ method

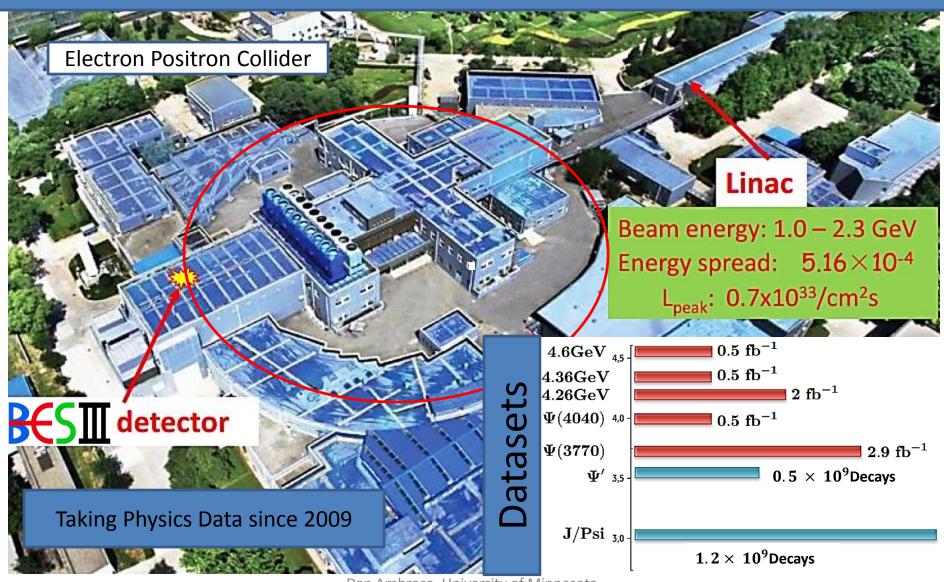

Belle Model-Dependent Dalitz [Phys. Rev. D 81, 112002 (2010)] $78.4^{+10.8}_{-11.6}(stat) \pm 3.6(syst) \pm 8.9 (Model)$ Belle Model-Independent Dalitz [Phys. Rev. D 85, 112014 (2012)] $77.3^{+15.1}_{-14.9}(stat) \pm 4.2(syst) \pm 4.3(c_i/s_i)$


Currently statistically limited, but soon systematically limited


Combine methods measurement

$$\phi_{3} = \begin{cases} \left(69^{+17}_{-16}\right)^{\circ} BABAR(2013) \\ \left(68^{+15}_{-14}\right)^{\circ} Belle(2013) \\ \left(62^{+15}_{-14}\right)^{\circ} LHCb(2014) \end{cases}$$

Binning of $D^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz Plot

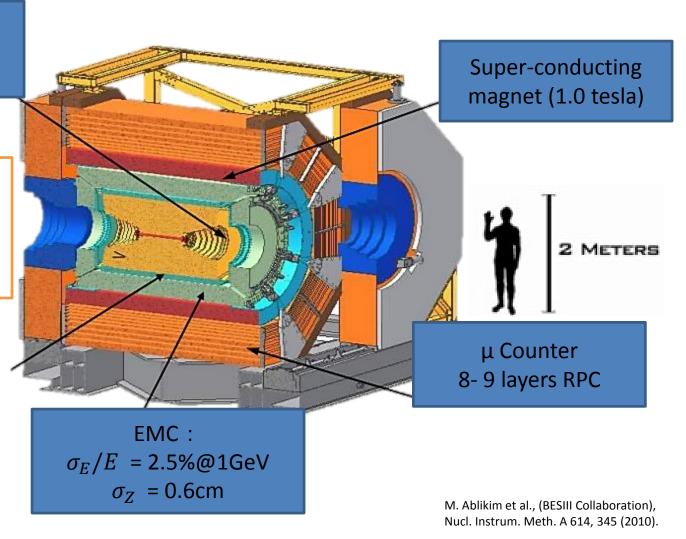

Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to ϕ_3 . A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the "optimal binning" except the expected background is taken into account before optimizing for ϕ_3 sensitivity.

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

BEPCII and **BESIII**



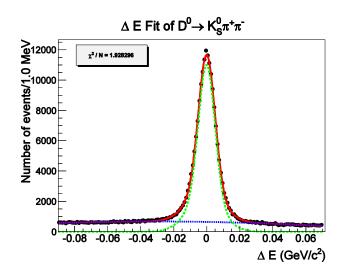
BESIII Detector

Drift Chamber (MDC) $\sigma_P/P=0.5\%$ @1 GeV $\sigma_{dE/dx}=6\%$

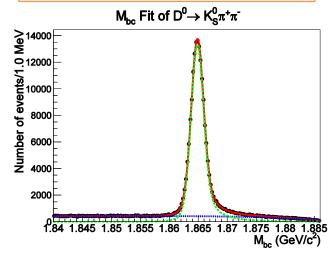
BESIII collaboration consists of 58 institutions from 13 different countries.

Time Of Flight (TOF) σ_T : 90 ps Barrel 110 ps endcap

ψ(3770) Dataset

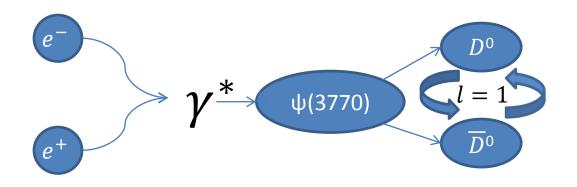

 $2.9 fb^{-1}$ is the largest set of at this type in the world by 3.5 times.

 $\psi(3770)$ excited $c\bar{c}$ state which decays primarily into a $D\bar{D}$ pair.

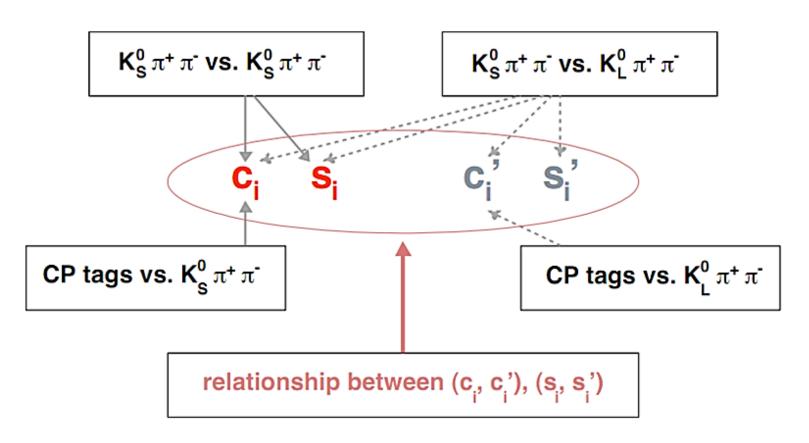

Single Tagging

Reconstruct particles from a single D decay.

$$\Delta E = E_{D\,Rec} - E_{Beam}$$



$$M_{bc} = \sqrt{E_{beam}^2 - |\vec{P}_{DRec}|^2}$$


Quantum Correlation in $\psi(3770)$

Virtual photon \Rightarrow total CP-even state Spin 1 between D^0 and $\overline{D}{}^0 \Rightarrow CP(D^0) = -CP(\overline{D}{}^0)$ Pair correlation leads to different decay amplitudes than an independent D.

Quantum Correlated D^0/\overline{D}^0 pair allows us to know the Flavor or CP of $K_s\pi^+\pi^-$ by tagging the other D.

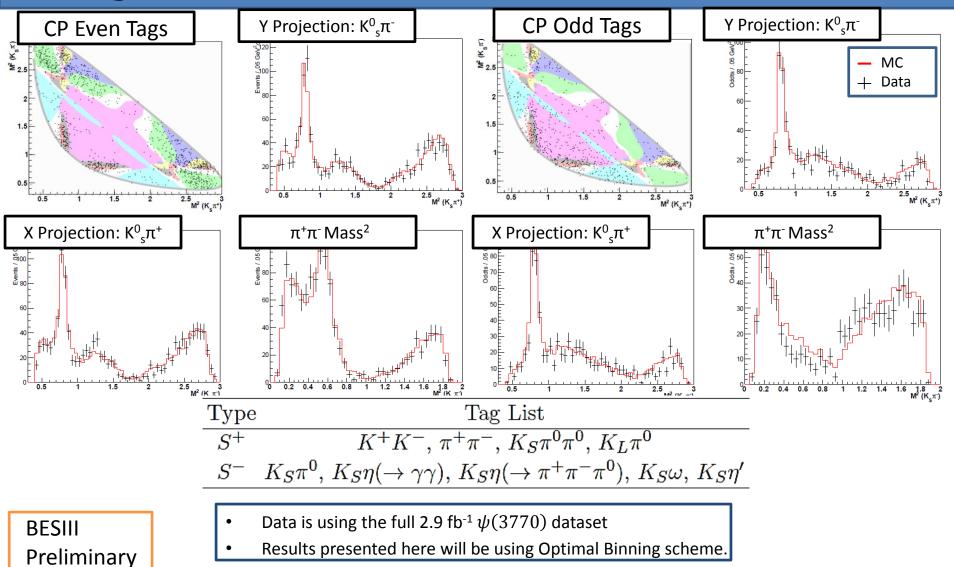
Constraining c_i and s_i

Only c_i , s_i from $K_s \pi^+ \pi^-$ is used to calculate ϕ_3 .

However adding in $D^0 \to K_L \pi^+ \pi^-$ we can calculate c'_i, s'_i and use how they relate to c_i, s_i to further constrain our results in a Global fit.

Equation on calculating c_i

For the CP tag modes, one can show that the total bin yields are related to c_i by


$$M_i^{\pm} = \frac{S_{\pm}}{2S_f} (K_i \pm 2c_i \sqrt{K_i K_{-i}} + K_{-i})$$

 $M_i^+(M_i^-)$ yields in each bin of Dalitz plot for CP even(odd) modes. $S_+(S_-)$ number of single tags for CP even(odd) modes. S_f number of single tags for flavor modes. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.

Single Tag modes

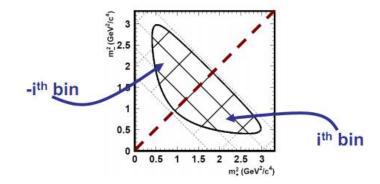
Type	Tag List
Pseudo-Flavored	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{+}\pi^{-}$
S^+	$K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0, K_L\pi^0$
S^-	$K_S\pi^0$, $K_S\eta(\to\gamma\gamma)$, $K_S\eta(\to\pi^+\pi^-\pi^0)$, $K_S\omega$, $K_S\eta'$

$K_S^0 \pi^+ \pi^-$ Dalitz Plots vs CP Modes

Calculating both c_i and s_i

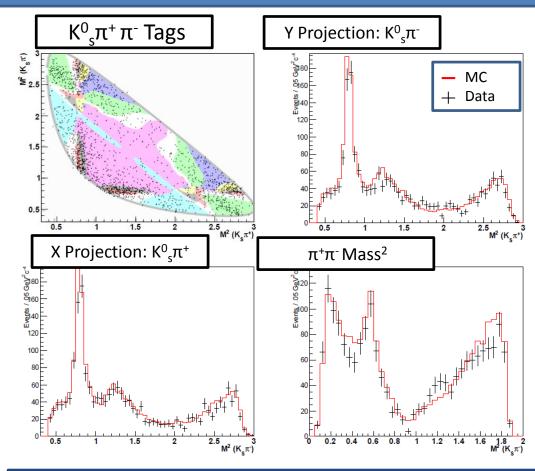
Using $D^0 \rightarrow K_s \pi^+ \pi^- \text{ vs } \overline{D}{}^0 \rightarrow K_s \pi^+ \pi^- \text{ we can calculate both } c_i \text{ and } s_i$:

$$M_{i,j} = \frac{N_{D,\overline{D}}}{2S_f^2} \left(K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j) \right)$$


 $M_{i,j}$ yields in bin i of first Dalitz plot and bin j of second Dalitz plot. S_f number of single tags for flavor modes. $N_{D,\overline{D}}$ total number of $D^0\overline{D}^0$ events. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.

Mirroring the bins over the x=y line in the Dalitz plot, we note the following points:

- $\bullet \quad M_{i,j} = M_{-i,-j}$
- $\bullet \quad M_{i,-j} = M_{-i,j}$
- $M_{i,j} \neq M_{-i,j}$


Symmetric Matrix because the order which tag is i or j

• $M_{i,j} = M_{j,i}$

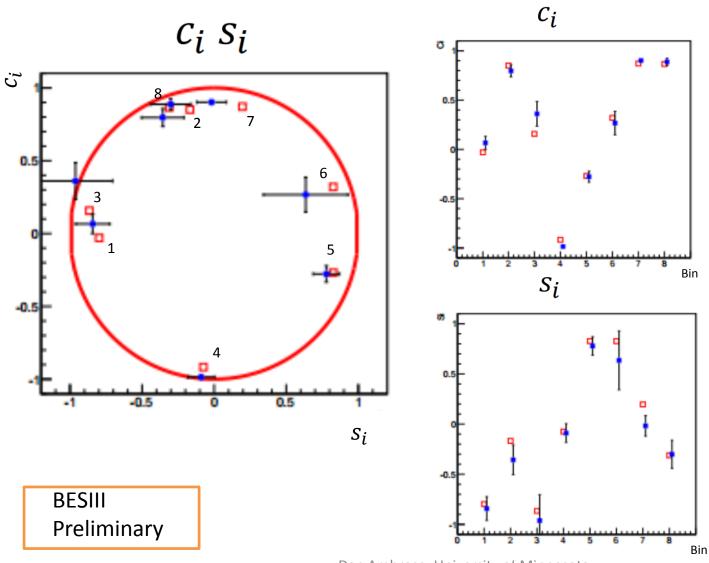
Dalitz Plots: $K_S^0 \pi^+ \pi^-$ vs $K_S^0 \pi^+ \pi^-$

- This is the most statistically limited part of the analysis.
- Further increase statistics by reconstructing a missing π .

Total Fit

The total fit maximizes the likelihood of

$$-2 \log \mathcal{L} = -2 \sum_{i} \log P(M_{i}^{\pm}, \langle M_{i}^{\pm} \rangle)_{(CP, K_{S}^{0}\pi^{+}\pi^{-})}$$

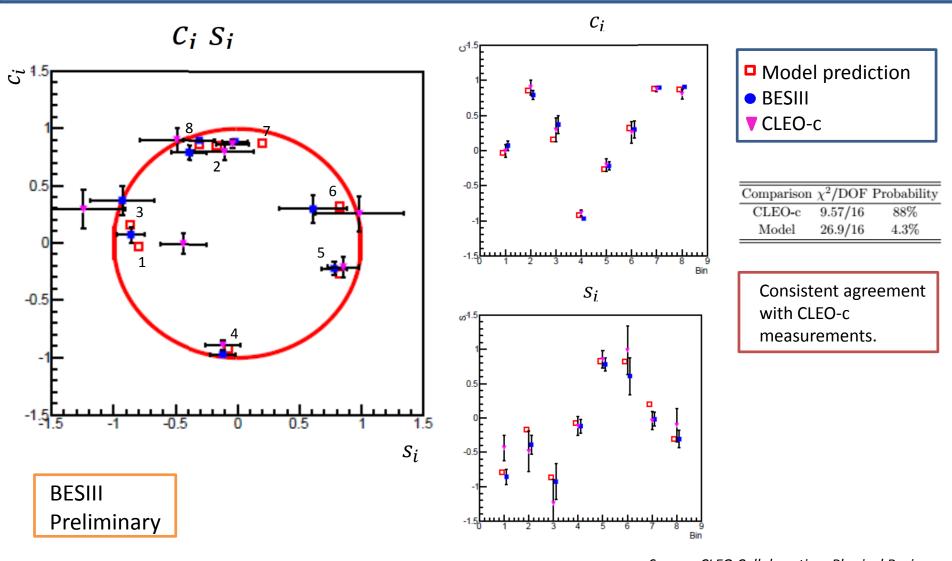

$$-2 \sum_{i} \log P(M_{i}^{\prime\pm}, \langle M_{i}^{\prime\pm} \rangle)_{(CP, K_{L}^{0}\pi^{+}\pi^{-})}$$

$$-2 \sum_{i,j} \log P(M_{i,j}^{\pm}, \langle M_{i,j}^{\pm} \rangle)_{(K_{S}^{0}\pi^{+}\pi^{-}, K_{L}^{0}\pi^{+}\pi^{-})}$$

$$-2 \sum_{i,j} \log P(M_{i,j}^{\prime\pm}, \langle M_{i,j}^{\prime\pm} \rangle)_{(K_{S}^{0}\pi^{+}\pi^{-}, K_{L}^{0}\pi^{+}\pi^{-})}$$

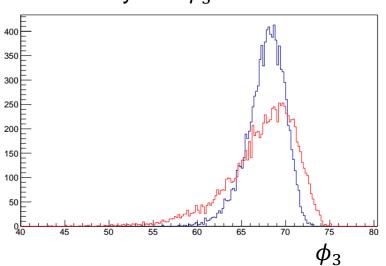
P is Poisson probability of finding M events with the expected number <M>

Preliminary Data Results


- Model prediction
- Data

Results of Global fit of c_i , s_i .

Error bar is the statistical uncertainty.


Fit of the data is in good agreement with the model prediction.

Comparison to Model/Previous Measurement

Impact on ϕ_3

Toy MC ϕ_3 estimate

BESIII: RMS 2.165CLEO-c: RMS 3.927

Toy MC estimates the effects on ϕ_3 by letting c_i , s_i vary by a Gaussian of their given uncertainty.

Width of variation due to BESIII uncertainty is 55% the previous measurement.

We are still statistically limited with 3 fb⁻¹. Future measurements with 10 fb⁻¹ and 20 fb⁻¹ reduce the uncertainty to 33% and 27% the CLEO-c measurement, respectively.

Future Analysis from BESIII

Results to be available mid-summer.

Future strong-phase measurements of $K_S\pi^+\pi^-$ will benefit from more statistics.

- reduces dominant statistical uncertainty
- allows us to use cleaner modes, reducing systematic uncertainty
- allows for more bins, increasing sensitivity to ϕ_3 .

BESIII is working on many other analysis, including strong-phase measurements of $K_S K^+ K^-$ and $\pi^+ \pi^- \pi^0$.

Please come talk to me after if you have thoughts on topics or measurements which you would like to see from our unique datasets.

Summary

- We have measured and presented our preliminary results on strong phase difference between D⁰ and \overline{D}^0 (\rightarrow K_s $\pi^+\pi^-$) decays based on the world largest sample of $\psi(3770)$, taken at E_{CM} = 3.773 GeV.
- Our preliminary results are consistent with the latest results from CLEO-c collaboration, but superior in terms of total uncertainties.
- Reduction in the c_i s_i contribution to the uncertainty in ϕ_3 of 45%. Improved statistics from B factories could place uncertainty from the c_i s_i contribution at <1%.
- The GGSZ method using other modes is being pursued at BESIII

Future ϕ_3 measurements will be exciting!

Backup Slides

Methods of Direct Measurement for γ

Total Decay Rate

$$\Gamma(B^{\pm} \to f(D^{0})K^{\pm}) = A_{B}^{2}A_{f}^{2}(r_{D}^{2} + r_{B}^{2} + 2r_{D} r_{B} \cos(\delta_{B} + \delta_{D} \pm \gamma))$$

Methods of Direct measurement

GLW method - $f(D^0) \rightarrow CP$ eigenstates

Pro's

Con's

1.
$$r_D = 1$$

1. Small interference term when $r_D/r_R \approx 10$

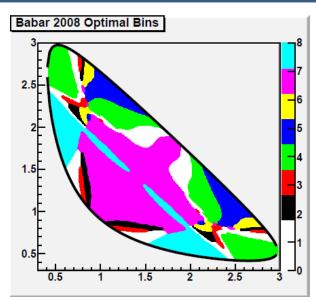
- 2. $\delta_D = 0, \pi$
 - 2. γ found only in $\cos(\gamma)\cos(\delta_R)$ or $\sin(\gamma)\sin(\delta_R)$
- ADS method $-f(D^0) \rightarrow Doubly Cabbibo-suppressed flavor states$

Pro's

Con's

1. $r_D \approx r_B$

- 1. Small statistics
- 2. Must measure r_D , δ_D for each mode
- γ found only in $\cos(\gamma)\cos(\delta_R)$ or $\sin(\gamma)\sin(\delta_R)$
- GGSZ method $f(D^0) \rightarrow Dalitz$ analysis of 3 body final states


Pro's

Con's

- 1. Substructure allows regions of $r_D \approx r_B$ 1. Must measure r_D , δ_D for across all phases space

- Sizeable statistics
- Only two-fold ambiguity in γ

$K_L^0 \pi^+ \pi^-$ Model Dependence

	Optimal		
i	Δc_i	Δs_i	
1	0.39 ± 0.17	0.07 ± 0.06	
2	0.18 ± 0.05	0.01 ± 0.10	
3	0.61 ± 0.15	0.30 ± 0.12	
4	0.09 ± 0.08	0.00 ± 0.08	
5	0.16 ± 0.17	0.06 ± 0.06	
6	0.57 ± 0.21	-0.15 ± 0.24	
7	0.03 ± 0.01	-0.04 ± 0.06	
8	-0.10 ± 0.15	-0.15 ± 0.21	

Same bins but different amplitudes

Leads to c'_i and s'_i with difference defined as

$$\Delta c_i \equiv c_i' - c_i$$

$$\Delta s_i \equiv s_i' - s_i.$$

The amplitude difference is due to a change of sign on DCSD.

$$\frac{A(K_L^0 \pi^+ \pi^- (DCSD))}{A(K_S^0 \pi^+ \pi^- (DCSD))} \approx 0.89$$

 $K^{*+}\pi^-$ is easy to model with its DCSD as it has been measured.

 $K^{0} \rho^{0}$ is much harder to model its DCSD.

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

'indicates

Calculation of c_i , c'_i , s_i , s'_i

For CP tag vs $K_L^0 \pi^+ \pi^-$, we are able to find c'_i

' indicates numbers from K_Lπ⁺π⁻ decays

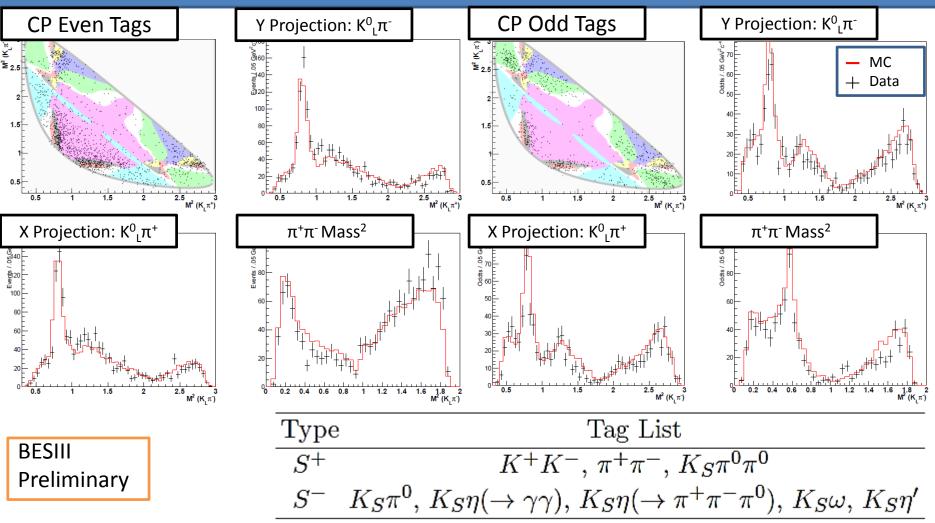
$$M'_{i}^{\pm} = \frac{S_{\pm}}{2S_{f}} \left(K'_{i} \mp 2c'_{i} \sqrt{K'_{i}K'_{-i}} + K'_{-i} \right)$$

 $M'_i^+(M'_i^-)$ yields in each bin of Dalitz plot for CP even(odd) modes. $S_+(S_-)$ number of single tags for CP even(odd) modes. S_f number of single tags for flavor modes. $K'_i(K'_{\bar{\iota}})$, yields in each bin of Dalitz plot in flavor modes.

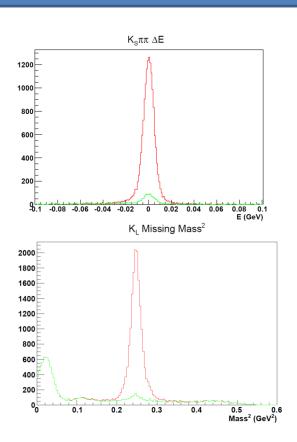
From the Double Dalitz modes, we are able to find c_i , c_i' , s_i , s_i'

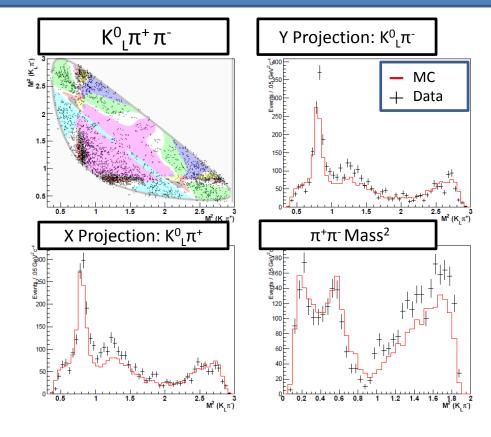
$$M'_{i,j} = \frac{N_{D,\overline{D}}}{2S_f^2} \left(K_i K'_{-j} + K_{-i} K'_j - 2 \sqrt{K_i K'_{-j} K_{-i} K'_j} (c_i c'_j + s_i s'_j) \right)$$

ith bin for $K_S^0\pi^+\pi^-$ jth bin for $K_L^0\pi^+\pi^-$


 $M_{i,j}$ yields in bin i of $K_S^0\pi^+\pi^-$ Dalitz plot and bin j of $K_L^0\pi^+\pi^-$ Dalitz plot. S_f number of single tags for flavor modes.

 $N_{D,\overline{D}}$ total number of $D^0\overline{D}{}^0$ events.


 $K_i(K_{-i})$, yields in each bin of $K_S^0 \pi^+ \pi^-$ Dalitz plot in flavor modes.


 $K'_{j}(K'_{-j})$, yields in each bin of $K_{L}^{0}\pi^{+}\pi^{-}$ Dalitz plot in flavor modes.

$K_L^0 \pi^+ \pi^-$ Dalitz Plots vs CP Modes

Dalitz Plots: $K_S^0 \pi^+ \pi^-$ vs $K_L^0 \pi^+ \pi^-$

BESIII Preliminary