

The next generation charmonium spectroscopy

BESIII at IHEP, China

- > electron+positron
- > couples to J^{PC}=1⁻⁻ states
- > clean environment

PANDA at FAIR, Germany

- > anti-proton+proton or light nuclei
- > couples to all J^{PC} states
- > hadronic environment, background

The next generation charmonium spectroscopy

PANDA at FAIR, Germany

- > anti-proton+proton or light nuclei
- > couples to all J^{PC} states
- > hadronic environment, background

Charmonium Physics - probing the strong force & beyond

The strong force fascinates: confinement & generation of hadron mass

Charmonium provides a unique window to study the dynamics of the strong force

Since its discovery in 1974, charmonium spectroscopy has become a precision field

New discoveries are emerging with todays BESIII, and near future experiments such as PANDA, Belle2, ...

"This could be the discovery of the century. Depending, of course, on how far down it goes."

BESIII collaboration: >300 physicists, 51 institutions from 10 countries

terra incognita: QCD exotics?

exploit radiative decay of "charmonium" to study light hadronic matter: search for gluon-rich matter!

 $J/\Psi \to \gamma + X(1835)$

terra incognita: QCD exotics?

PANDA, the challenges

PANDA, the challenges

The PANDA Detector

The PANDA Detector

PANDA is a modular multi-purpose device:

- nearly 4π solid angle (partial wave analysis)
- high reaction rate capability (2.10⁷ annihilations/s)
- high data rate capability
 good PID
- momentum resolution
- vertex info for D, K^0_s , Λ
- efficient, software trigger
- modular design

(2.10⁷ annihilations/s) (200 GB/s) (γ , e, μ , π , K, p) (~1%) (\sim 1%) (c_{τ} = 317 μ m for D[±]) (e, μ , K, D, Λ) (Hypernuclei experiments)

BESIII@BEPCII - breaking all records

~10-20x previous generation charmonium factories

BESIII@BEPCII - breaking all records

~10-20x previous generation charmonium factories

The proton revisited

