terra incognita: QCD exotics?

terra incognita: QCD exotics?

BES
ONGOING: $2 \times 500 \mathrm{pb}^{-1}$ data being taken at 4260 \& 4360 MeV

terra incognita: QCD exotics?

BEST

ONGOING: $2 \times 500 \mathrm{pb}^{-1}$ data being taken at 4260 \& 4360 MeV

PLAN: measure hadronic \& e.m. transition rates of Y states to study orbital-spin structure (e.g. S=0?)

A quark model state with $\mathbf{J}^{\mathbf{P C}}=\mathbf{1}^{--}$has: even L (since $P=(-1)^{\mathrm{L}+1}$) and odd S (since $\left.C=(-1)^{L+S}\right)$.

So $\mathbf{J}^{\mathbf{P C}}=\mathbf{1}^{--}$and $\mathbf{S}=\mathbf{0}$
\Rightarrow a non-quark model state

Charmonium physics potentials

A few BESIII highlights

The next generation charmonium spectroscopy

BESIII at IHEP, China

> electron+positron
$>$ couples to $\mathrm{J}^{\mathrm{PC}}=$ 1-- $^{\text {s }}$ states
> clean environment

PANDA: 2018-??

PANDA at FAIR, Germany

> anti-proton+proton or light nuclei
> couples to all JPC states
> hadronic environment, background

The next generation charmonium spectroscopy

Scanning with cooled anti-protons: mass and width determination
$X(3872)$ MC simulations

PANDA: 2018-??

PANDA at FAIR, Germany

> anti-proton+proton or light nuclei
> couples to all JPC states
> hadronic environment, background

Charmonium Physics - probing the strong force \& beyond

The strong force fascinates: confinement \& generation of hadron mass

Charmonium provides a unique window to study the dynamics of the strong force

Since its discovery in 1974, charmonium spectroscopy has become a precision field

New discoveries are emerging with todays BESIII, and near future experiments such as PANDA, Belle2, ...

"This could be the discovery of the century. Depending, of course, on how far down it goes."

BESIII collaboration: >300 physicists, 51 institutions from 10 countries

terra incognita: QCD exotics?

terra incognita: QCD exotics?

BESIII@BEPCII - the facility

Excellent tracking and calorimetry with a uniform acceptance:
tracks: $\sigma_{p} / p=0.5 \%$ at $1 \mathrm{GeV} / \mathrm{c}$ photons: $\sigma_{\mathrm{E}} / \mathrm{E}=2.5 \%$ at 1 GeV

PANDA, the challenges

PANDA, the challenges

The PANDA Detector

The PANDA Detector

PANDA is a modular multi-purpose device:

- nearly 4π solid angle (partial wave analysis)
- high reaction rate capability ($2 \cdot 10^{7}$ annihilations/s)
- high data rate capability
($200 \mathrm{~GB} / \mathrm{s}$)
- good PID
($\gamma, e, \mu, \pi, K, p)$
- momentum resolution
($\sim 1 \%$)
- vertex info for $D_{,} K^{0}{ }_{S}, \Lambda \quad\left(C_{\tau}=317 \mu \mathrm{~m}\right.$ for $\left.\mathrm{D}^{ \pm}\right)$
- efficient, software trigger (e, $\mu, K, D, \Lambda)$
- modular design
(Hypernuclei experiments)

BESIII@BEPCII - breaking all records

(+data taken at 3.65 GeV and resonance scans)

$\sim 2.9 \mathrm{fb}^{-1}$
~106 million (+more)
~225 million (+more)
~10-20x previous generation charmonium factories

BESIII@BEPCII - breaking all records

The proton revisited

"naive"
"reality"

$$
M_{\text {proton }} \approx 3 \times M_{\text {quark }} \approx 10 \mathrm{MeV} / c^{2}
$$

Strong interaction = mass !

