
Study of Light Hadron Spectroscopy at BESIII 19th Particles & Nuclei International Conference

Yadi Wang

Center of Particle Physics and Technology, University of Science and Technology of China (for BESIII collaboration) July 26, 2011

BESIII @ BEPCII

Double-ring collider

Designed Luminosity: 1×10^{33} cm⁻²s⁻¹

Record Luminosity: $6.5 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

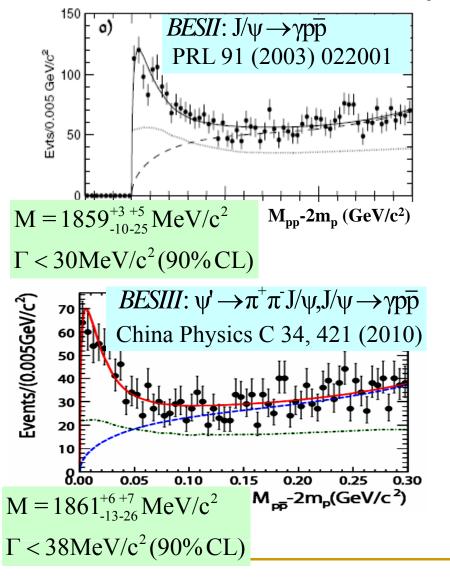
Now, BESIII has the most J/ψ and ψ' events:

April 14, 2009: $\sim 106 \text{ M} \text{ }\psi' \text{ events}$

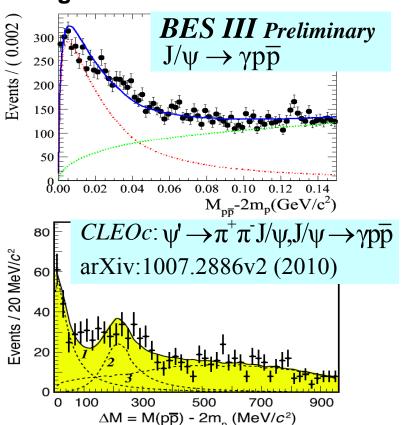
July 28, 2009: \sim 225 M J/ ψ events

We have the opportunity to investigate:

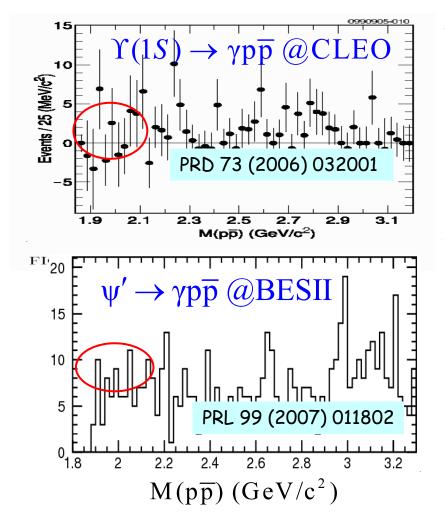
Light hadron, Charmonium physics, Charm physics, Tau and QCD.

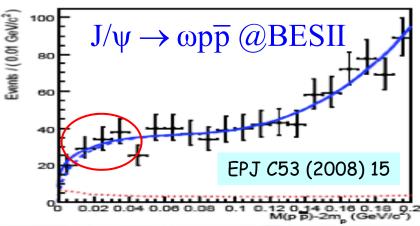

Remarks on light hadron spectroscopy

- QCD predicts the new forms of hadrons:
 - Multi-quarks: Number of quarks>=4
 - Hybrids: qqg, qqqg, ...
 - □ Glueballs: gg, ggg, ...
- None have been well established.
- Hadrons cannot (easily) be explained by conventional quark model:
 - $\neg p\overline{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\overline{p}$
 - □ X(1835) observed in $J/\psi \rightarrow \gamma X, X \rightarrow \eta' \pi^+ \pi^-$
 - $a_0(980), f_0(980)$

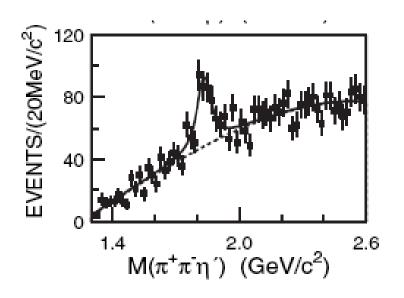

Outline

- Confirmation and new observations on light hadron spectroscopy
 - $\mathbf{p}\overline{\mathbf{p}}$ mass threshold study in the radiative decays of J/ψ
 - □ Confirmation of X(1835) and observation of two new resonances in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - □ Observation of X(1870) in $J/\psi \rightarrow \omega \eta \pi^+ \pi^-$
- Study of light scalar mesons
 - Direct measurements of $a_0(980)$ - $f_0(980)$ mixing via $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0$ and $\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0$
- Summary


$p\bar{p}$ threshold study in J/ψ radiative decays



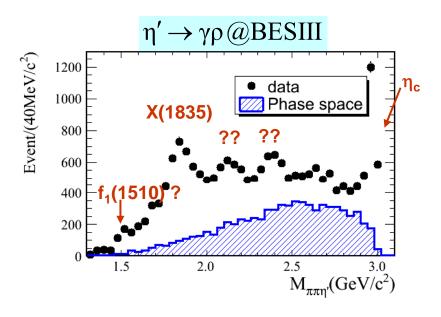
- Observed at BESII in 2003
- Confirmed by CLEOc and BESIII
- Agree with BESII results


Several non-observations

- •No significant narrow strong enhancement near threshold.
- Pure FSI interpretation of the narrow and strong ppbar threshold enhancement is disfavored.
- Other possibilities: ppbar bound state or glueball ...?

Observation of X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ at BESII


```
BESII result (Stat. sig. ~ 7.7 σ):

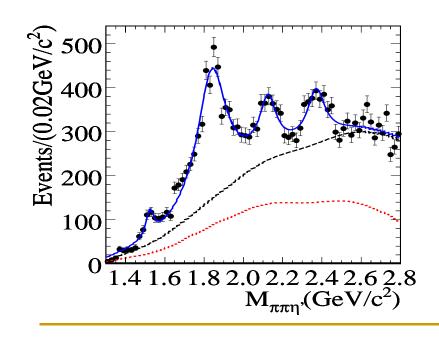

M = 1833.7 \pm 6.1(stat) \pm 2.7(syst) MeV

\Gamma = 67.7 \pm 20.3(stat) \pm 7.7(syst) MeV
```


PRL 95,262001(2005)

- > Theoretical interpretations: $p\bar{p}$ bound state / radial excitation of η' ?
- > Confirmation of X(1835) is necessary with higher statistics data sample and better detector at BESIII.
- > A 0⁻⁺ glueball may have similar property as η_c (the main η_c decay mode is $\pi\pi\eta'$).
- > LQCD predicts the 0^{-+} glueball mass is ~ 2.3 GeV.
- > Search for possible structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ with higher statistics data sample and better detector at BESIII.

Mass spectrum of $\pi^+\pi^-\eta'$ at BESIII



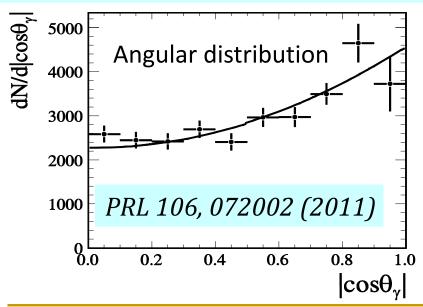
- \triangleright X(1835) and η_c is significant.
- Two additional structures at 2.1GeV (denoted as X(2120)) and 2.3GeV (denoted as X(2370)) are observed.
- \triangleright There maybe some $f_1(1510)$.

Fitting of the combined mass spectrum

- ➤ Fitting with four resonances (acceptance weighted BW⊗Gauss)
- Three background components:
 - 1. Contribution from non- η' events estimated by η' mass sideband
 - 2. Contribution from $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$ with re-weighting method
 - 3. Contribution from "PS background"

PRL 106, 072002 (2011)

Red line: estimated contribution of 1.+2.

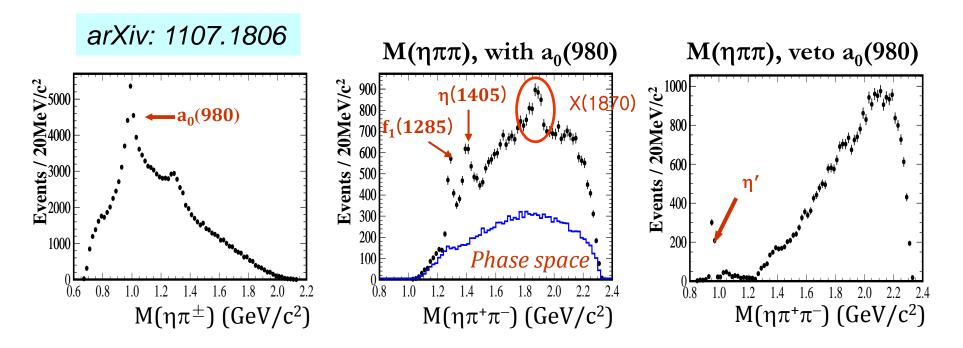

Black line: total background

Stat. sig. is conservatively estimated: fit range, background shape, contribution of extra resonances

Fit results for the combined two η' decays

Resonance	$M(MeV/c^2)$	$\Gamma(\mathrm{MeV/c^2})$	Stat.sig.
X(1835)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$	$190 \pm 9_{-36}^{+38}$	>20 σ
X(2120)	$2122.4 \pm 6.7_{-2.7}^{+4.7}$	$83\pm16_{-11}^{+31}$	7.2σ
X(2370)	$2376.3 \pm 8.7^{+3.2}_{-4.3}$	$83\pm17^{+44}_{-6}$	6.4σ

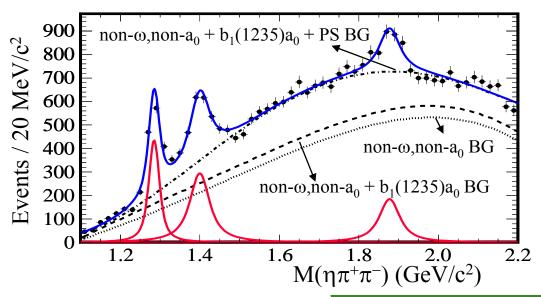
 $Br(J/\psi \to \gamma X(1835)) \bullet Br(X(1835) \to \pi^+\pi^-\eta') = (2.87 \pm 0.09(stat.)^{+0.49}_{-0.52}(syst.)) \times 10^{-4}$



X(1835) consistent with 0^{-+} , but the others are not excluded.

Recap of $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- X(1835) resonance is confirmed at BESIII, but the width is significantly larger than that measured at BESII with one resonance in the fit.
- Two new resonances, X(2120) and X(2370), are observed with significances larger than 5σ .
- PWA is needed not only to determine the spin-parities of above three resonances, but also to make more precise measurements on masses, widths and BRs by considering possible interferences among them.
- The study of the decay pattern is of crucial importance, i.e. in relative channels $(\eta \pi \pi)$ and with other side particles $(\omega,\phi,...)$.


Analysis of $J/\psi \rightarrow \omega \eta \pi \pi$ on BESIII

- In addition to the well-known η' , $f_1(1285)$ and $\eta(1405)$, an unknown structure (denoted as X(1870)) around $1.87 GeV/c^2$ is observed.
- > The $f_1(1285)$, η(1405) and X(1870) decay primarily via $a_0(980)\pi$ mode.

Mass spectrum fitting results

- ➤ Fitting with three resonances (acceptance weighted BW⊗Gauss)
- Background components described by Polynomial functions

The fit is performed under the assumption that the interference between the resonances and background can be ignored.

arXiv: 1107.1806

significance: 7.2 σ

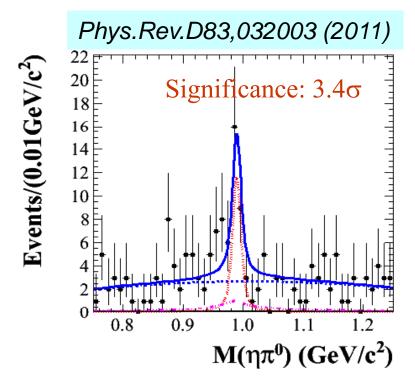
Res.	$M(MeV/c^2)$	$\Gamma(\text{MeV/c}^2)$	Br(10 ⁻⁴)
f ₁ (1285)	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1_{-1.5}^{+2.0}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
• • •	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26^{+0.72}_{-0.36}$

Recap of $J/\psi \rightarrow \omega \eta \pi^+ \pi^-$

- A structure denoted as X(1870) is seen via the process: $J/\psi \rightarrow \omega X$, $X \rightarrow a_0(980)\pi$.
- Whether X(1860) ($J/\psi \rightarrow \gamma p \bar{p}$), X(1835) ($J/\psi \rightarrow \gamma \eta' \pi \pi$) and X(1870) ($J/\psi \rightarrow \omega \eta \pi \pi$) are the same resonance still need both experimental and theoretical study.
- BR(J/ ψ →ωη(1405)) is firstly measured. The product BR is smaller than its production in the radiative J/ ψ decays, which indicates η(1405) may couple strongly to gluons.

$a_0(980)-f_0(980)$ mixing

- = a0(980)/f0(980): $q\overline{q}$, four quarks, $K\overline{K}$ molecule, hybrids,...
- Study of the mixing of $a_0(980)$ and $f_0(980)$ will shed new light on the enigmatic light scalars. No firm experimental determination.
- A narrow peak (8MeV) between the charged and neutral kaon thresholds (987~995 MeV).



J.J.Wu, Q.Zhao, B.Zou PRD75 114012,

J.J.Wu, B.Zou PRD78 074017

C. Hanhart etc. PRD76 074028, etc.

$f_0(980) \rightarrow a_0(980)$ transition: $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi^0$

.... Mixing signal

--- $a_0(980)$ contribution from $J/\psi \rightarrow \gamma^*/K^*K \rightarrow \phi a_0(980)$

--- Background polynomial

 $N(mixing)=25.8\pm8.6(stat.)$

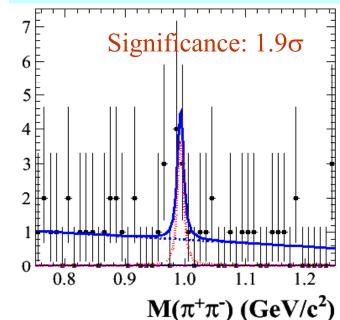
<39.7 (90% C.L)

$$Br(J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi^0)$$

$$=(3.3\pm1.1(\text{stat.})\pm0.4(\text{sys.})\pm1.4(\text{para.}))\times10^{-6}$$

$$<5.4\times10^{-6}$$
 (90% C.L.)

Mixing intensity:


$$\xi_{\text{fa}} = \frac{\text{Br}(J/\psi \to \phi f_0 \to \phi a_0 \to \phi \eta \pi^0)}{\text{Br}(J/\psi \to \phi f_0 \to \phi \pi \pi)^{\text{[BESII]}}}$$

$$=(0.60\pm0.20(\text{stat.})\pm0.12(\text{sys.})\pm0.26(\text{para.}))\%$$

<1.1% (90% C.L.)

$a_0(980) \rightarrow f_0(980)$ transition: $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$

Phys.Rev.D83,032003 (2011)

.... Mixing signal

Events/(0.01GeV/c²

--- $f_0(980)$ contribution from other processes

--- Background polynomial

 $N(mixing) = 6.4 \pm 3.2(stat.)$

<13.0 (90% C.L)

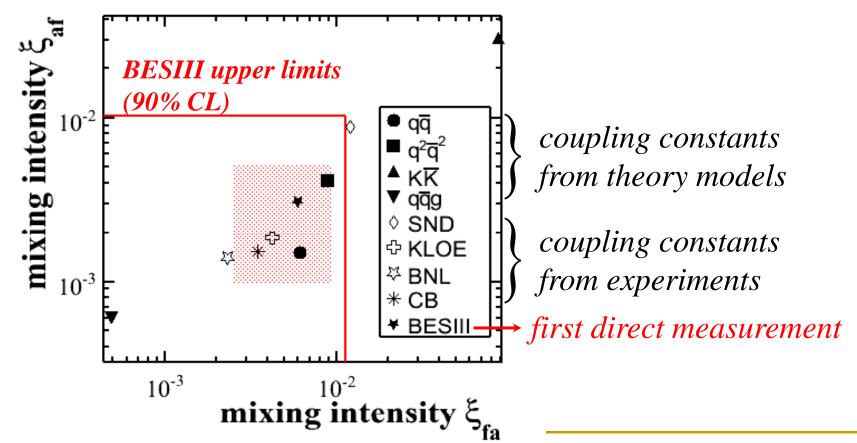
$$\operatorname{Br}(\psi' \to \gamma \chi_{c1}, \chi_{c1} \to a_0 \pi^0 \to f_0 \pi^0 \to \pi^+ \pi^- \pi^0)$$

$$=(2.7\pm1.4(stat.)\pm0.7(sys.)\pm0.3(para.))\times10^{-7}$$

$$<6.0\times10^{-7}$$
 (90% C.L.)

Mixing intensity:

$$\xi_{\text{af}} = \frac{\text{Br}(\chi_{c1} \to a_0 \pi^0 \to f_0 \pi^0 \to \pi^+ \pi^- \pi^0)}{\text{Br}(\chi_{c1} \to \pi^0 a_0 \to \eta \pi^0 \pi^0)^{\text{[PDG]}}}$$


$$=(0.31\pm0.16(stat.)\pm0.14(sys.)\pm0.03(para.))\%$$

<1.0% (90% C.L.)

Comparison with different predictions

Mixing intensities can be derived from measured / predicted $f_0 \rightarrow K^+K^-$, $\pi\pi$, $a_0 \rightarrow K^+K^-$, $\eta\pi$ coupling constants

(Wu et al. PRD75, 114012(2007) and references within)

Summary

- The discoveries of $p\bar{p}$ mass threshold enhancement and X(1835) at BESII are confirmed with much higher statistics and significance at BESIII.
- In addition to X(1835), two new resonances, X(2120) and X(2360) are observed in the channels of $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$.
- A new process $J/\psi \rightarrow \omega X(1870) \rightarrow \omega a_0(980)\pi$ is observed.
- Whether or not the X(1860), X(1835) and X(1870) are from the same source, still needs further study.
- Study the $f_0(980) \rightarrow a_0(980)$ transition in $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0$ and the $a_0(980) \rightarrow f_0(980)$ transition in $\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0$. The mixing intensities are extracted from experiment, which will help to understand the structure of $a_0(980)$ and $f_0(980)$.

Thanks for your attention!