

Studies of charmonium at BESIII

Xiaocong Ai (For the BESIII Collaboration)

Institute of High Energy Physics, Beijing

Hadron 2015, Sep. 14-18, 2015, Newport News, VA

Outline

- Introduction
- Seleted latest results at BESIII:
 - $\psi(3770)$ radiative transitions
 - Search for $\psi(3770) \rightarrow \gamma \eta_c$, $\gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$
 - Study of $\psi(3770) \rightarrow \gamma \chi_{cJ}$ with $\chi_{cJ} \rightarrow \gamma J/\psi \rightarrow \gamma I^+I^-$
 - ρπ puzzle and "12% rule"
 - Branching fraction for $\psi(3686) \rightarrow \omega K^+K^-$
 - Search for rare phenomena
 - Search for isospin-violating transition $\chi_{c0,2} \rightarrow \pi^0 \eta_c$
 - Search for C-parity violation in $J/\psi \rightarrow \gamma\gamma$, $\gamma\phi$
 - Observation of OZI-suppressed decay $J/\psi \rightarrow \pi^0 \phi$
 - Light hadron structure and properties
 - Study of $J/\psi \rightarrow \phi \pi^0 f_0(980)$
 - Measurement of $\chi_{cJ} \rightarrow \eta' K^+ K^-$
 - Study of $\chi_{cJ} \rightarrow \phi K^*(892) \overline{K}$
- Summary

See

Introduction

Dan Bennett: Hadronic Transitions above 4 GeV at BESIII Qing Gao: Radiative Transitions above 4 GeV at BESIII

Wei Shan: Exotic Zc states at BESIII

 Potential models, and L-QCD, very successful in describing the charmonium states below open charm threshold. Above threshold, XYZ cannot be unambiguously fit into QQbar-scheme.

 η_c , η_c (2S), χ_{cJ} are available via γ transition, and h_c available via pion transiton.

Introduction

Vector charmonium data sets at BESIII

Vector charmonium	Previous data	BESIII now
J/ψ	BESII: 58 M	1.3 B (20×BESII)
ψ(3686)	CLEO: 28 M	0.5 B (20×CLEO)
ψ(3770)	CLEO: 0.8 fb ⁻¹	2.9 fb ⁻¹ (3.5×CLEO)

Results in this presentation are based on data samples:

- 2.92 fb⁻¹ ψ (3770) data
- 106 million ψ(3686) data
- 1.31 billion J/ψ data

$\psi(3770)$ radiative transitions

- The $\psi(3770)$, lowest-mass $c\bar{c}$ state laying above the open-charm threshold, is expected to decay predominantly into $D\bar{D}$ pairs [PRD 17, 3090].
- Non-DD branching fraction measurements:
 - BES:(14.7±3.2)% [PLB 641,145]
 - CLEO: $(-3.3\pm1.4^{+6.6}_{-4.8})\%$ [PRL 104, 159901]

suggest substantial non-DD decays!

- Observed non-DD decay modes of $\psi(3770)$: $\pi\pi J/\psi$, $\eta J/\psi$, $\gamma\chi_{c0,1}$, and $\eta\phi$. Total sum of them is less than 2% of all decays.
- Light hadron transition or radiative transitions can shed light on $\psi(3770)$.

Search for $\psi(3770) \rightarrow \gamma \eta_c$, $\gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$ PRD 89, 112005 (2014)

- If $\psi(3770)$ is a pure D-wave state, the radiative transitions $\psi(3770) \rightarrow \gamma \eta_c(\eta_c(2S))$ are supposed to be highly suppressed. However, due to the nonvanishing photon energy, higher multipoles beyond the leading one could contribute.
- IML transition model predictions [PRD 84, 074005]:

$$\mathcal{B}(\psi(3770) \to \gamma \eta_c) = 6.3^{+8.4}_{-4.4} \times 10^{-4}$$

 $\mathcal{B}(\psi(3770) \to \gamma \eta_c(2S)) = 6.7^{+7.2}_{-4.4} \times 10^{-5}$

Search for $\psi(3770) \rightarrow \gamma \eta_c$, $\gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$

PRD 89, 112005 (2014)

Quantity	η_c	$\eta_c(2S)$	Xc1
$N_{ m obs}$	29.3 ± 18.2	0.4 ± 8.5	34.9 ± 9.8
$N_{ m up}$	56.8	16.1	
ϵ (%)	27.87	25.24	28.46
$\mathcal{B}(\psi(3770) \to \gamma X \to \gamma K_S^0 K^{\pm} \pi^{\mp}) \ (\times 10^{-6})$	< 16	< 5.6	$8.51 \pm 2.39 \pm 1.42$
$\mathcal{B}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$	< 0.68	< 2.0	$2.33 \pm 0.65 \pm 0.43$
$\mathcal{B}_{\text{CLEO}}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$	***		$2.9 \pm 0.5 \pm 0.4$
$\Gamma(\psi(3770) \to \gamma X) \text{ (keV)}$	< 19	< 55	***
Γ_{IML} (keV)	$17.14^{+22.93}_{-12.03}$	$1.82^{+1.95}_{-1.19}$	***
Γ_{LQCD} (keV)	10 ± 11	•••	

- No significant η_c and η_c (2S) signals are observed. Upper limits on B(ψ (3770) $\rightarrow \gamma \eta_c$ (η_c (2S))) are set.
- The upper limit for $\Gamma(\psi(3770) \rightarrow \gamma \eta_c)$ is within the error of the theoretical predictions (IML, LQCD), but $\Gamma(\psi(3770) \rightarrow \gamma \eta_c(2S))$ is larger than the prediction (IML) and limited by large systematic uncertainties.

$\psi(3770) \rightarrow \gamma \chi_{cJ}$ with $\chi_{cJ} \rightarrow \gamma J/\psi \rightarrow \gamma I^+I^-$

PRD 91, 092009 (2015)

S-D mixing model predictions
 [PRD44,3562; PRD64,094002, PRD69,094019]

$$\Gamma(\psi(3770) \to \gamma \chi_{c1})$$
: 59~183 *KeV* $\Gamma(\psi(3770) \to \gamma \chi_{c2})$: 3~24 *KeV*

- Measured branching fractions:
 - − B(ψ(3770)→ $\gamma\chi_{c1}$)=(2.48±0.15± 0.23)×10⁻³, is consistent with CLEO-c but with improved precision.
 - − B(ψ (3770) $\rightarrow \gamma \chi_{c2}$)<0.64×10⁻³

Τ 0/Ψ		
Experiment/theory	$\Gamma(\psi(3770) \to \gamma \chi_c$	$_{J})$ (keV)
	J=1	J=2
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4
Ding-Qin-Chao		
Nonrelativistic	95	3.6
Relativistic	72	3.0
Rosner S-D mixing		
$\phi = 12^{\circ}$	73 ± 9	24 ± 4
$\phi = (10.6 \pm 1.3)^{\circ}$	79 ± 6	21 ± 3
$\phi = 0^{\circ}$ (pure 1^3D_1 state)	133	4.8
Eichten-Lane-Quigg		
Nonrelativistic	183	3.2
With coupled-channel corr.	59	3.9
Barnes-Godfrey-Swanson		
Nonrelativistic	125	4.9
Relativistic	77	3.3

$\rho\pi$ puzzle and "12% rule"

Perturbative QCD provides the relation:

$$Q_h = \frac{\mathcal{B}_{\psi(3686)\to h}}{\mathcal{B}_{J/\psi\to h}} \approx \frac{\mathcal{B}_{\psi(3686)\to e^+e^-}}{\mathcal{B}_{J/\psi\to e^+e^-}} = 12.7\%$$
 ("12% rule")

Severe violation is found in $\rho\pi$ channel and others, i.e. $\rho\pi$ puzzle

- Various possible mechanisms for $\rho\pi$ puzzle have been proposed [Int. J. Mod. Phys. A 24, 499], but none provides an universally satisfactory explanation at present.
- More measurements of different J/ ψ and ψ (3686) decay modes at higher level precision are helpful to understand the puzzle.

Branching fraction for $\psi(3686) \rightarrow \omega K^+K^-$

PRD 89, 112006 (2014)

• Most precise measurement of $B(\psi(3686)\rightarrow \omega K^+K^-)$ =(1.56±0.04±0.11)×10⁻⁴

$$Q = \frac{\mathcal{B}(\psi(3686) \to \omega K^+ K^-)}{\mathcal{B}(J/\psi \to \omega K^+ K^-)} \approx (18.4 \pm 3.7)\%, \text{ smaller than previous result } (21.8 \pm 5.0)\%.$$

 A measurement of B(J/ψ→ωK+K-) with higher precision is needed to establish a significant deviation from 12% rule.

Branching fraction	Source
$(1.56 \pm 0.04 \pm 0.11) \times 10^{-4}$	this analysis
$(2.38 \pm 0.37 \pm 0.29) \times 10^{-4}$	BESII [20]
$(1.9 \pm 0.3 \pm 0.3) \times 10^{-4}$	CLEO [21]
$(1.5 \pm 0.3 \pm 0.2) \times 10^{-4}$	BES [22]
$(1.85 \pm 0.25) \times 10^{-4}$	PDG [5]

Search for rare phenomena

- Using high statistics charmonium decays:
 - Search for isospin-violating transition $\chi_{c0.2} \rightarrow \pi^0 \eta_c$
 - Search for C-parity violation in $J/\psi \rightarrow \gamma\gamma$, $\gamma\phi$
 - Observation of OZI-suppressed decay $J/\psi \rightarrow \pi^0 \phi$

Search for isospin-violating transition $\psi(3686) \rightarrow \pi^0\pi^0J/\psi$

 $\chi_{c0,2} \rightarrow \pi^0 \eta_c$

- Searches for the isospin-violating decay $\chi_{cJ} \rightarrow \pi^0 \eta_c$ give insights to the isospin violating mechanism.
- No statistically significant signal is observed. First report of upper limits:

$$\mathcal{B}(\chi_{c0} \to \pi^0 \eta_c) < 1.6 \times 10^{-3},$$

 $\mathcal{B}(\chi_{c2} \to \pi^0 \eta_c) < 3.2 \times 10^{-3}$

• Measured B($\chi_{c0} \rightarrow \pi^0 \eta_c$) is consistent with leadingorder QCD expansion prediction [PRD86, 074033]: $\mathcal{B}(\chi_{c0} \rightarrow \pi^0 \eta_c) \approx \mathcal{B}(\chi_{c1} \rightarrow \pi^+ \pi^- \eta_c)$

PRD 91, 112018 (2015)

Search for C-parity violation in

$$J/\psi \rightarrow \gamma\gamma$$
, $\gamma\phi$

PRD 90, 092002 (2014)

- Evidence for them in the EM sector would indicate physics beyond the SM.
- $J/\psi \rightarrow \gamma\gamma$, $\gamma\phi$ decays are searched for via $\psi(3686) \rightarrow \pi^+\pi^-J/\psi$.
- No C violation decays were observed!

Observation of OZI-suppressed decay

$$J/\psi \rightarrow \pi^0 \phi$$

PRD 91,112001 (2015)

- First evidence for a DOZI suppressed electromagnetic J/ψ decay.
- The structure at the ϕ mass region is attributed to the interference between the $J/\psi \rightarrow \pi^0 \phi$ and $J/\psi \rightarrow \pi^0 K^+ K^-$ decays.

Two possible solutions:

Solution	$N^{ m sig}$	δ	$2\Delta \log \mathcal{L}/N_f$	Z
I	838.5 ± 45.8	$-95.9^{\circ} \pm 1.5^{\circ}$	45.8/2	6.4σ
II	35.3 ± 9.3	$-152.1^{\circ} \pm 7.7^{\circ}$	45.8/2	6.4σ

Branching fraction:

I:
$$[2.94 \pm 0.16(\text{stat.}) \pm 0.16(\text{syst.})] \times 10^{-6}$$

II:
$$[1.24 \pm 0.33(\text{stat.}) \pm 0.30(\text{syst.})] \times 10^{-7}$$

Light hadron structure and properties

- The decays of charmonium offer a good laboratory for studying light hadron properties. In this presentation:
 - Study of $J/\psi \rightarrow \phi \pi^0 f_0(980)$
 - Measurement of $\chi_{cJ} \rightarrow \eta' K^+ K^-$
 - Study of $\chi_{cJ} \rightarrow \phi K^*(892)\overline{K}$

PRD 92,012007 (2015)

- Long standing puzzle of $f_0(980)$: $q\bar{q}$, $K\bar{K}$ molecule, four-quark state?
- In isospin-violating decay $J/\psi \rightarrow \gamma \eta (1405) \rightarrow \gamma \pi^0 f_0 (980)$ [PRL 108,182001]

-large isospin violation

$$\frac{\mathcal{B}(\eta(1405) \to \pi^0 f_0(980))}{\mathcal{B}(\eta(1405) \to \pi^0 a_0(980))} = (17.9 \pm 4.2)\%$$

-very narrow $f_0(980)$:

Γ≈10 MeV (PDG: 40-100MeV)

 $M(f_0(980))=989.4\pm1.3 MeV,$

 $\Gamma(f_0(980))=15.3\pm4.7~\text{MeV}$ (consistent with J/ $\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0(980)$) ¹⁶

Study of $J/\psi \rightarrow \phi \pi^0 f_0(980)$

Decay mode	Branching fractions
$J/\psi \rightarrow \phi \pi^0 f_0, f_0 \rightarrow \pi^+ \pi^-$	$(4.50 \pm 0.80 \pm 0.61) \times 10^{-6}$
$J/\psi \rightarrow \phi \pi^0 f_0, f_0 \rightarrow \pi^0 \pi^0$	$(1.67 \pm 0.50 \pm 0.24) \times 10^{-6}$
$J/\psi \rightarrow \phi f_1, f_1 \rightarrow \pi^0 f_0 \rightarrow \pi^0 \pi^+$	π^{-} (9.36 ± 2.31 ± 1.54) × 10 ⁻⁷
$J/\psi \to \phi f_1, f_1 \to \pi^0 f_0 \to \pi^0 \pi^0$	$\pi^0 \ (2.08 \pm 1.63 \pm 1.47) \times 10^{-7}$

- First observation of $J/\psi \rightarrow \phi \pi^0 f_0(980)$
- Evidence of axial-vector meson $f_1(1285) \rightarrow \pi^0 f_0(980)$

•
$$\frac{\mathcal{B}(f_1(1285) \to \pi^0 f_0(980))}{\mathcal{B}(f_1(1285) \to \pi^0 a_0(980))} = (3.6 \pm 1.4)\%,$$

consistent with triangle singularity predition (≈1%)[EPJA 51, 48]

$$-1/5$$
 of $\frac{\mathcal{B}(\eta(1405) \to \pi^0 f_0(980))}{\mathcal{B}(\eta(1405) \to \pi^0 a_0(980))}$

The nature of the resonances a_0 and f_0 as dynamically generated makes isospin breaking strength strongly process-dependent [EPJA 51, 48].

Measurement of $\chi_{cJ} \rightarrow \eta' K^+ K^-$

PRD 89,074030 (2014)

Mode I: $\eta' \to \gamma \rho^0 \to \gamma \pi^+ \pi^-$ Mode II: $\eta' \to \pi^0 \pi^+ \pi^- \to \gamma \gamma \pi^+ \pi^-$

- ${K_0}^*(1430)$ has been observed in ${K_0}^*(1430) \to K\pi$ only, but it is also expected to couple to $\eta' K$ [PRD 78, 052001, PLB 632, 471]
- Abundant structures are observed in the $M(K^+K^-)$ and $M(\eta'K^\pm)$
- PWA is performed to disentangle the structures and determine the detection efficiency.

Measurement of $\chi_{cJ} \rightarrow \eta' K^+ K^-$

PRD 89,074030 (2014)

- First observation of $K_0^*(1430) \rightarrow \eta' K^{\pm}$
- First measurements of

M(K+K-) (GeV/c2)

- $-\mathcal{B}(\chi_{c1} \to X\eta') \cdot \mathcal{B}(X \to K^+K^-)(X = f_0(980), f_0(1710) \text{ and } f_2'(1525))$
- $-\mathcal{B}(\chi_{c1} \to K_0^*(1430)^{\pm}K^{\mp}) \cdot \mathcal{B}(K_0^*(1430)^{\pm} \to \eta' K^{\pm})$

 $M(\eta'K)$ (GeV/c²)

cess		$\mathcal{B}(imes 10^{-4})$
	$\eta' \to \gamma \rho^0$	$9.09 \pm 0.54 \pm 0.86$
$\gamma_{c1} \rightarrow \eta' K^+ K^-$	$\eta' o \eta \pi^+ \pi^-$	$8.33 \pm 0.77 \pm 0.77$
	average	8.75 ± 0.87
	$\eta' \to \gamma \rho^0$	$1.84 \pm 0.31 \pm 0.33$
$\gamma_{c2} \rightarrow \eta' K^+ K^-)$	$\eta' \to \eta \pi^+ \pi^-$	$2.05 \pm 0.41 \pm 0.25$
	average	1.94 ± 0.34
$\rightarrow K_0^*(1430)^{\pm}K^{\mp}, K_0^*(1430)^{\pm} \rightarrow \eta'K^{\pm}$:	$6.41 \pm 0.57^{+2.09}_{-2.71}$
$\rightarrow \eta' f_0(980), f_0(980) \rightarrow K^+ K^-$		$1.65 \pm 0.47^{+1.32}_{-0.56}$
$\rightarrow \eta' f_0(1710), f_0(1710) \rightarrow K^+ K^-$		$0.71 \pm 0.22^{+0.68}_{-0.48}$
$\rightarrow \eta' f_2'(1525), f_2'(1525) \rightarrow K^+ K^-$		$0.92 \pm 0.23^{+0.55}_{-0.51}$

Study of $\chi_{cJ} \rightarrow \phi K^*(892)\overline{K}$

PRD 91, 112008 (2015)

- First measurement of the decay $\chi_{cJ} \rightarrow \phi K^*(892) \overline{K}$ (neutral and charged $K^*(892)$)
- $\mathcal{B}(\chi_{cJ} \to \phi K^*(892)^{\pm} K^{\mp})$ is consistent with $\mathcal{B}(\chi_{cJ} \to \phi K^*(892)^0 \overline{K}^0)$
- First observation $h_1(1380) \rightarrow K^*(892)\overline{K}$

Decay Modes		$\phi K_s K^{\pm} \pi^{\mp} $ (×10 ⁻³)	$\phi K^+ K^- \pi^0 \ (\times 10^{-3})$
X c0		$1.65 \pm 0.21(\text{stat}) \pm 0.22(\text{sys})$	$1.90 \pm 0.14(\text{stat}) \pm 0.32(\text{sys})$
	$\phi K^*(892)^0 \bar{K^0} + \text{c.c.}$	$2.03 \pm 0.21 (stat) \pm 0.28 (sys)$	•••
χ_{c1}		$1.76 \pm 0.21(stat) \pm 0.26(sys)$	$1.62 \pm 0.12 (\mathrm{stat}) \pm 0.28 (\mathrm{sys})$
	$\phi K^*(892)^0 \bar{K^0} + \text{c.c.}$	$1.51 \pm 0.19 (stat) \pm 0.22 (sys)$	***
X c2		$2.56 \pm 0.23 (stat) \pm 0.35 (sys)$	$2.74 \pm 0.16(\text{stat}) \pm 0.44(\text{sys})$
		$2.27 \pm 0.22 (stat) \pm 0.32 (sys)$	•••

20

Summary

- By using BESIII data samples collected at J/ψ , ψ(3686) and ψ(3770) peak:
 - Measurements of $\psi(3770)$ radiative transitions:
 - B($\psi(3770) \rightarrow \gamma \chi_{c1}$)
 - Upper limits of B($\psi(3770) \rightarrow \gamma \eta_c (\eta_c(2S))$) and B($\psi(3770) \rightarrow \gamma \chi_{c2}$)
 - Rare phenomena in charmionium decays:
 - No isospin-violating decay $\chi_{c0,2} \rightarrow \pi^0 \eta_c$ is observed
 - No C-violation decay $J/\psi \rightarrow \gamma\gamma$, $\gamma\phi$ is observed
 - Observation of DOZI suppressed decay $J/\psi \rightarrow \pi^0 \phi$
 - Studies of light hadrons:
 - Study of $f_0(980)$ in $J/\psi \to \phi \pi^0 f_0(980)$
 - Observation of $K_0^*(1430) \to \eta' K^{\pm}$, $h_1(1380) \to K^*(892) \bar{K}$
 - Measurement of $\chi_{cl} \rightarrow \phi K^*(892) \overline{K}$

A lot more interesting results from charmonium decays at BESIII in the future are expected!

Thank you for your attention

backup

Beijing Electron Positron Collider (BEPC)

BESIII detector

Nucl. Instr. Meth. A614, 345 (2010)

	Sub-syst	em	BESIII
5	Single wire $\sigma_{r\phi}$ (µm)		130
MDC _	σ _p /p (1 GeV/c)		0.5%
	σ (σ (dE/dx)	
EMC -	$\sigma_{\rm E}/{\rm E}$ (1GeV)		2.5%
	Position resolution (1 GeV)		0.6 cm
TOF	()	Barrel	100
	$\sigma_{\rm T}$ (ps)	End cap	110
	No. of layers (barrel/end cap)		9/8
Muon -	cut-off momentum (MeV/c)		0.4
Solenoid magnet Field (T)		1.0	
	$\Delta\Omega/4\pi$		93%

Physics goals cover a diverse range:

Charmonium(like) physics: XYZ, spectroscopy, transition and decays

Open Charm physics: $D_0^ _0$ \overline{D}_1 ixing and C-P violation, (semi)leptonic+hadronic decays, ...

Light hadron: meson & baryon spectroscopy, glueballs and hybrids, e.m. form factors, ...

τ physics: precise R measurement, ...

and many more