Studies of Charmonium at BESIII

Ronggang Ping (For the BESIII Collaboration) Institute of High Energy Physics, CAS

Charm2015, May 18-22, Wayne State University, Detroit

Introduction

[GeV/c²]

MASS

• Vector charmonium data sets

Vector charmonium	Previous data	BESIII now	Goal
J/ψ	BESII: 58 M	1.2B(20×BESII)	10 B
ψ(3686)	CLEO: 28 M	0.5B(20×CLEO)	3 B
$\psi(3770)$	CLEO: 0.8 fb ⁻¹	2.9fb ⁻¹ (3.5×CLEO)	20 fb ⁻¹

- $\eta_c, \eta_c(2S), \chi_{cJ}$ are available via γ transition, and h_c available via pion transiton.
- charmonium physics
 - $\rho\pi$ puzzle, and violation of the 12% rule
 - non- $D\overline{D}$ decays of $\psi(3770)$
 - light hadron structure and properties
- rare decays: $J/\psi \to \gamma\gamma, \ \gamma\phi, \ \phi\pi^0$

Search for $\psi(3770)$ decays to light hadrons **EESIII**

- $\psi(3770)$ decays are dominated by D<u>D</u> mode PDG 2014: $Br[\psi(3770) \rightarrow D\overline{D}] = 93^{+8}_{-9}\%$
- Non D<u>D</u> decay measurements $Br[\psi(3770) \rightarrow \text{light hadrons}] =$ $(14.7 \pm 3.2)\%$: BESII: Phys. Lett. B641, 145 (2006) $(-3.3 \pm 1.4^{+6.6}_{-1.8})$: CLEO: Phys. Rev. Lett., 96, 092002 (2006)
- NRQCD calculation yields upper limits of 5% for light hadron decays (PRL101, 112001), while other phenomenological model, e.g., hadron loops give large fractions(PRL102, 172001).
- Searchers for the exclusive non-D<u>D</u> decays are desirable, such as the radiative and light hadron decays.

- Using 2.9 fb⁻¹ taken at 3.773 GeV.
- Continuum backgrounds are subtracted using 44 pb⁻¹ data taken at 3.65 GeV.
- No significant events are observed .

-							
Mode f	N_{obs}^{f} (3.773)	$N_{\rm B}^f$ (3.773)	$N_{ m obs}^f$ (3.650)	N_{B}^{f} (3.650)	$f_{\rm co}^{3.773}$	$ \begin{array}{c} \mathcal{B}_{\psi(3770) \rightarrow f} \\ [\times 10^{-4}] \end{array} $	\mathcal{B}^{up} [$ imes 10^{-4}$]
$\Lambda \bar{\Lambda} \pi^+ \pi^-$	844.0 ± 33.6	5.2	$14.2^{+5.6}_{-4.2}$	0.1	45.27	$1.80^{+1.74}_{-2.30} \pm 0.40$	<4.7
$\Lambda ar{\Lambda} \pi^0$	124.9 ± 14.4	3.4	$7.1^{+5.0}_{-2.2}$	0.0	42.50	$-1.28^{+0.67}_{-1.51}\pm0.15$	< 0.7
$\Lambda ar{\Lambda} \eta$	74.0 ± 9.5	0.9	$3.0^{+3.6}_{-1.6}$	0.0	44.76	$-1.22^{+1.44}_{-3.21}\pm0.19$	<1.9
$\Sigma^+ \bar{\Sigma}^-$	100.5 ± 11.9	0.7	$3.3^{+4.3}_{-1.7}$	0.1	38.27	$-0.21^{+0.63}_{-1.56}\pm0.05$	< 1.0
$\Sigma^0 \overline{\Sigma}^0$	43.5 ± 6.7	0.0	$0.0^{+2.2}_{-0.0}$	0.0	38.69	$0.30^{+0.05}_{-0.58}\pm0.05$	< 0.4
Ξ-Ξ+	48.5 ± 7.0	0.0	$0.5^{+2.8}_{-1.4}$	0.0	41.74	$0.31^{+0.66}_{-1.32}\pm0.05$	<1.5
$\Xi^0 \overline{\Xi}^0$	43.5 ± 6.6	1.3	$2.0^{+3.2}_{-1.2}$	0.0	40.13	$-0.80^{+1.03}_{-2.72}\pm0.14$	<1.4

PRD 87, 112011 (2013)

$\psi(3770) \rightarrow \gamma \eta_c, \ \gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$

- If $\psi(3770)$ is assigned as $1^{3}D_{1}$ state, the radiative transitions $\psi(3770) \rightarrow \gamma \eta_{c}, \gamma \eta_{c}(2S)$ are supposed to be highly suppressed.
- High multipoles beyond the leading one could be contributed. $B(\psi(3770) \rightarrow \gamma \eta_c) = 6.3^{+8.4}_{-4.4} \times 10^{-4}$ PRD 84, 074005 (2011) $B(\psi(3770) \rightarrow \gamma \eta_c(2S)) = 6.7^{+7.2}_{-4.4} \times 10^{-5}$ BESIII: the 2.92 fb⁻¹ ψ " data set $--K_{s}^{0}K\pi\pi^{0}$ --- polynomial bkg (a) 🗕 data 10^{3} - data -----ψ(3686) tail ---- χ_{e1} Events / (0.005 GeV/c² $K_{S}^{0}K\pi(\gamma)$ Events / (0.01 GeV/c² 30 $\eta_{1}(2S)$ $K_{s}^{0}K\pi(\gamma)$ $K_{s}^{0}K\pi\pi^{0}$ 25 ···· ψ(3686) $K^0_s K \pi \pi^0$ ---- $K_s^0 K \pi(\gamma)$ η_s(2S) signal

3.45

3.5

2.9

 $M_{K^0_s K \pi} \, (GeV/c^2)$

2.8

2.7

2015/5/19

3

Phys. Rev. D 89, 112005

3.1

3.2

3.6

 $M_{K^0_eK\pi}\,(GeV/c^2)$

3.65

3.7

3.55

Phys. Rev. D 89, 112005

 $\psi(3770) \rightarrow \gamma \eta_c, \ \gamma \eta_c(2S) \rightarrow \gamma K^0_S K \pi^{-1}$

Quantity	η_c	$\eta_c(2S)$	χ_{c1}
N _{obs}	29.3 ± 18.2	0.4 ± 8.5	34.9 ± 9.8
N _{up}	56.8	16.1	
ϵ (%)	27.87	25.24	28.46
$\mathcal{B}(\psi(3770) \rightarrow \gamma X \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}) \ (\times 10^{-6})$	< 16	< 5.6	$8.51 \pm 2.39 \pm 1.42$
$\mathcal{B}(\psi(3770) \rightarrow \gamma X) \ (\times 10^{-3})$	< 0.68	< 2.0	$2.33 \pm 0.65 \pm 0.43$
$\mathcal{B}_{\rm CLEO}(\psi(3770)\to\gamma X)~(\times 10^{-3})$			$2.9\pm0.5\pm0.4$
$\Gamma(\psi(3770) \to \gamma X) \text{ (keV)}$	< 19	< 55	
Γ_{IML} (keV)	$174.1_{-12.03}^{+22.93}$	$1.82^{+1.95}_{-1.19}$	
Γ_{LQCD} (keV)	10 ± 11		

- Upper limites are set for the radiative transitions $\psi(3770) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$
- The upper limits for the Γ(ψ(3770) → γη_c/η_c(2S)) cover the theoretical predictions, but the upper limits for Γ(ψ(3770) → γη_c(2S)) is too high due to the large systematic uncertainties.

$(3770) \rightarrow \gamma \chi_{cl} \quad \text{with } \chi_{cl} \rightarrow \gamma J / \psi \rightarrow \gamma l^+ l^-$

- No significant non $D\overline{D}$ exclusive decays are established. How to understand the $\psi(3770)$ decay mechanisms and properties?
- If it contains additional light quarks or gluons, it may have large branching fractios decays into ligh hadrons.
- Light hadron transition or radiative transitions, e.g. $\pi \pi J / \psi$, $\pi J / \psi$, $\eta J / \psi$, and $\gamma \chi_{cl}$, can probe the $\psi(3770)$

Radiative decays							
$\gamma \chi_{c2}$		< 9 × 10	$^{-4}$ CL=90%	211			
$\gamma \chi_{c1}$	PDG2014	$(2.9 \pm 0.6) \times 10$)-3	253			
$\gamma \chi_{c0}$		$(7.3 \pm 0.9) imes 10$)-3	341			

• S - D mixing model: (PRD44,3562; PRD64,094002, PRD69,094019) $\Gamma(\psi(3770) \rightarrow \gamma \chi_{c1}): 59 \sim 183 \text{ KeV}$ Large uncertainties! $\Gamma(\psi(3770) \rightarrow \gamma \chi_{c2}): 3 \sim 24 \text{ KeV}$ 2015/5/19

 $\psi(3770) \rightarrow \gamma \chi_{cJ}$

arXiv:1504.07450v01

The analysis is based on the 2.92 fb⁻¹ ψ " data.
The χ_{cJ} are reconstructed with the decay χ_{cI} → γJ/ψ → γl⁺l⁻

Experiment/Theory	$\Gamma(\psi(3770) \to \gamma \chi)$ $J = 1$	$_{cJ}^{(keV)}$ J=2
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4
Ding-Qin-Chao [12]		
non-relativistic	95	3.6
relativistic	72	3.0
Rosner S - D mixing [13]		
$\phi = 12^{\circ} \ [13]$	73 ± 9	24 ± 4
$\phi = (10.6 \pm 1.3)^{\circ} [32]$	79 ± 6	21 ± 3
$\phi = 0^{\circ} \text{ (pure } 1^3 D_1 \text{ state) } [32]$	133	4.8
Eichten-Lane-Quigg [14]		
non-relativistic	183	3.2
with coupled-channel corr.	59	3.9
Barnes-Godfrey-Swanson [15]		
non-relativistic	125	4.9
relativistic	77	3.3

 $\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (2.48 \pm 0.15 \pm 0.23) \times 10^{-3},$ $\mathcal{B}(\psi(3770) \to \gamma \chi_{c2}) < 0.64 \times 10^{-3}$

Searches for isospin-violating transition $\chi_{c0,2} \rightarrow \pi^0 \eta_c$

- In quark model, the isospin-violating is broken due to the electromagnetic interaction or the up-down quark mass difference. The expected decay rates are very small.
- However, a larger isospin decay ratio is observed in charmonium transitions, e.g. $R=Br(\psi(2S) \rightarrow \pi^0 J/\psi)/Br(\psi(2S) \rightarrow \eta J/\psi)=0.374 \pm 0.072$, indicates the important role played by the nonperturbative effects. (PRL103,082003)
- Searches for the isospin-violating decay $\chi_{cJ} \rightarrow \pi^0 \eta_c$ gives insights in the isospin-violating mechanisms.
- QCD multipole expansion gives the relation: $Br(\chi_{c0} \to \pi^0 \eta_c) \approx Br(\chi_{c1} \to \pi^+ \pi^- \eta_c)$ (PRD86, 074033), and $Br(\chi_{c1} \to \pi^+ \pi^- \eta_c) \approx (2.22 \pm 1.24)\%$. (PRD 75, 054019)
- The analysis is based on the 106 million $\psi(2S)$ data set at the BESIII, and the η_c is constructed with the decay $\eta_c \to K_S^0 K^{\pm} \pi^{\mp}$.

Searches for isospin-violating transition $\chi_{c0,2} \rightarrow \pi^0 \eta_c$

- The peack near 3.12 GeV is due to the background $\psi(2S) \rightarrow \pi^0 \pi^0 J / \psi$.
- No significant η_c signals are observed, and upper limits are set.

• The comparison indicates that the QCD multipole expansion predicts that the branching fraction is 20 times of magnitude larger than our measurement

Search for C – violation decay $J/\psi \rightarrow \gamma\gamma, \gamma\phi \in \mathbb{R}$

- The *C*-parity violation is forbidden in the electromagnetic interatction, any observation of the $J/\psi \rightarrow \gamma\gamma$ decay indicates a new physics.
- Based on the 106 million $\psi(3686)$ data set, we use the decay $\psi(2S) \rightarrow \pi^+ \pi^- J / \psi$ to search for $J / \psi \rightarrow \gamma \gamma$
- Dominant backgrounds, $J/\psi \rightarrow \gamma \pi^0$, $\gamma \eta$, $\gamma \eta_c \rightarrow 3\gamma$, and $J/\psi \rightarrow 3\gamma$, are carefully studied with MC simulation. PRD 90, 092002

No C-violation decays were observed!

Search for OZI-suppressed decay $J/\psi \to \pi^0 \phi$ **EESII**

- The decay $J/\psi \rightarrow \phi \pi^0$ is highly suppressed dut to double OZI rule.
- The observation is helpful to understand the $\omega \phi$ mixing and SU(3) flavor symmetry breaking.
- The analysis is based on the 1.31 billion J/ ψ data sample, and the π^0 candidates are reconstructed with two photons
- The structure at the ϕ mass region is assumed due to the interference

between the J/ $\psi \rightarrow \phi \pi^0$ and $K^+ K^- \pi^0$ decays.

• Two solutions are obtained.

Solution	N^{sig}	δ	$2\Delta \log \mathcal{L}/N_f$	Z
Ι	838.5 ± 45.8	$-95.9^{\circ} \pm 1.5^{\circ}$	45.8/2	6.4σ
II	35.3 ± 9.3	$-152.1^\circ\pm7.7^\circ$	45.8/2	6.4σ

Branching fraction:

- I: $[2.94 \pm 0.16(\text{stat.}) \pm 0.16(\text{syst.})] \times 10^{-6}$
- II: $[1.24 \pm 0.33(\text{stat.}) \pm 0.30(\text{syst.})] \times 10^{-7}$

Search for OZI-suppressed decay $J/\psi \rightarrow \pi^0 \phi$

Nonet symmetry broken

$$\frac{B(\phi\pi^{0})}{B(\omega\pi^{0})} = \left(\frac{p_{\phi}}{p_{\omega}}\right)^{3} \frac{(r_{E} \tan \theta_{V} - 1/\sqrt{2})^{2}}{(r_{E} + \tan \theta_{V}/\sqrt{2})^{2}}$$

$$r_{E} = 1 \text{ (nonet symmetry)}$$

$$\theta_{V} = arc \tan(1/\sqrt{2}) \text{ (ideal } \omega - \phi \text{ mixing)}$$

$$(a) \text{ Nonet Symmetry (b)}$$

$$(b)$$

$$(b)$$

$$(c)$$

ideal mixing: $r_E - 1 = (21.0 \pm 1.6)\%$ or $(-16.4 \pm 1.0)\%$ (solution I) $(3.9 \pm 0.8)\%$ or $(-3.7 \pm 0.7)\%$ (solution II)

Nonet symmetry: $\phi_V = |\theta_V - \theta_V^{ideal}| = 4.97^\circ \pm 0.33^\circ$ (solution I)

 $=1.03^{\circ}\pm0.19^{\circ}$ (solution II)

quardratic mass formula: $\phi_V = 3.84^{\circ}$ (PDG)

fit to radiative transition: $3.34^{\circ} \pm 0.09^{\circ}$ (J. High Energy Phys. 0907,105)

Nonet asymmetry indication!

2015/5/19

Summary

By using BESIII data sets taken at J/ψ , $\psi(3686)$ and $\psi(3770)$ peak, we search for the radiative and rare decays:

- No significant decays of $\psi(3773) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$ are observed.
- The measurement of Br($\psi(3770) \rightarrow \gamma \chi_{c1}$) is improved.
- No significant decays for the isospin-violating transition $\chi_{c0/2} \rightarrow \pi^0 \eta_c$ are observed.
- The double -OZI decay $J/\psi \rightarrow \pi^0 \phi$ is observed.

A more interesting light hadron decays of charmonium will come soon!

2015/5/19