Review of Light Hadron Spectra at BESIII

Daihui Wei

(on behalf of BESIII Collaboration)

Moriond QCD and High Energy Interactions March 9th - March 16th 2013

- Introduction
- Latest results on hadron spectroscopy
- Summary and prospects

Bird view of BEPCII

Storage ring

BESIII at **BEPCII**

τ –charm **physics**

- Charmonium decays/transitions
- Light hadron spectroscopy
 - ...
 - η and η ' physics
- Charm physics
 - **τ** physics

J/ψ and ψ ' Data samples

(×10⁶) So far BESIII has collected : 200 J/ψ 180 2009: 106 Million ψ' 160 w 140 2012: 0.4 Billion ψ' 120 100 80 2009: 225 Million J/ψ 60 • 2012: 1 Billion J/ψ 40 20 0 MKIII BESII CLEO BESIII CBAL BESI

The results in this talk are based on the data sample of 106M ψ^{\prime} events and 225M J/ ψ events

Latest results on hadron spectroscopy

- Confirmation of p p mass threshold enhancement
 Confirmation of X(1835) and observation of two
 new structures
- \checkmark X(1870) in J/ $\psi \rightarrow \omega$ X, X $\rightarrow a_0(980)\pi$
- \checkmark X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$
- $\checkmark \ \ M \omega \ \varphi \ \ threshold \ enhancement \ in \ J/\psi \rightarrow \gamma \ \omega \ \ \varphi$
- ✓ N* baryons in ψ' →p $\overline{p}\eta$, p $\overline{p}\pi^0$ decays

Confirmation of $p \bar{p}$ mass threshold enhancement

 $J/\psi \rightarrow \gamma p \overline{p}$

Theoretical interpretation:

- conventional meson?
- > ppbar bound state/multiquark
- ➢ glueball

≻...

Final state interaction (FSI)

Confirmation of $p \bar{p}$ mass threshold enhancement

Fit with one resonance at BESII did:

 $\psi' \rightarrow \pi^+ \pi^- J / \psi, J / \psi \rightarrow \gamma p \overline{p}$

Chinese Physics C 34, 421 (2010)

 $M(R_{thr}) = 1861^{+6}_{-16} \text{ (MeV)}, \quad \Gamma(R_{thr}) = 0^{+32}_{-0} \text{ (MeV)},$ $B_1(J/\psi \rightarrow \gamma R_{thr}) \times B_2(R_{thr} \rightarrow pp) = (5.9^{+2.8}_{-3.2}) \times 10^{-5}$

PRD 82, 092002(2010)

Several non-observations

PWA on the p \overline{p} mass threshold structure in $J/\psi \rightarrow \gamma p\overline{p}$

- > Evident narrow ppbar mass threshold enhancement in J/ Ψ decays.
- Partial Wave Analysis (PWA):
 - Concentrate on dealing with the $p\overline{p}$ mass threshold structure, especially to determine the J^{PC}.
 - Convariant tensor amplitudes (S. Dulat and B. S. Zou, Eur.Phys.J A 26:125, 2005).
 - Include the Juich-FSI effect (A. Sirbirtsen et al. Phys.Rev.D 71:054010, 2005).9

PWA results and projections in $J/\psi \rightarrow \gamma p\overline{p}$

 The fit with a BW and S-wave FSI(I=0) factor can well describe ppb mass threshold structure

It is much better
 than that without
 FSI effect (~7 \sigma)

Measurement for $X(p \overline{p})$

PWA results are carefully checked from different aspects:

- Contribution of additional resonances
- Solution with different combinations
- Different background levels and fitting mass ranges
- Different BW formula

All uncertainties are considered as systematic errors

- Different FSI models →Model dependent uncertainty
- Spin-parity, mass, width and B.R. of X(pp):

 $J^{PC}=0^{-+}$ \rightarrow >6.8 σ better than other J^{PC} assignments.

Resonance	Mass(MeV/c²)	Width(MeV/c²)		
X(ppbar)	$1832^{+19}_{-5}^{+18}_{-17} \pm 19 (model)$	$13 \pm 39^{+10}_{-13} \pm 4 \text{(model)}$		

 $BR[J/\psi \to \gamma X(p\bar{p})]BR[X(p\bar{p}) \to p\bar{p}] = [9.0^{+0.4}_{-1.1}(stat)^{+1.5}_{-5.0}(syst) \pm 2.3(model)] \times 10^{-5}_{-5.0}(syst) = 2.3(model)$

M_{ppbar} threshold structure of $\psi' \rightarrow \gamma p \overline{p}$ @BESIII

Confirmation of X(1835) and Observation of two new structures

Confirmation of X(1835) and Observation of two new structures

BESIII fit results:

Resonance	M(MeV/c²)	Γ (MeV/c²)	Stat.Sig.
X(1835)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$	$190.1 \pm 9.0^{+38}$ -36	>20
X(2120)	2122.4 ± 6.7 ^{+4.7} _{-2.7}	$83 \pm 16^{+31}_{-11}$	7.2 σ
X(2370)	2376.3 \pm 8.7^{+3.2}_{-4.3}	$83 \pm 17^{+44}_{-6}$	6.4 σ

X(1870) in $J/\psi \rightarrow \omega X$, $X \rightarrow a_0$ (980) π

X(1835) observed at BESII and then confirmed at BESIII in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta'$ a₀(980 w theoretical interpretations: pseudoscalar glueball, η/η' excited states ... (a)5000 study of its production in 20MeV 1400 4000 1200 hadronic decays 1000 3000 v to our surprise, we observed 800 Events 2000 600 a new structure around 1.87 GeV 400 1000 200 2.0 1.0 1.6 1.8 22 06 2.0 Ň 8 14 16 $M_{\eta \tau}$ $M(n\pi^+\pi^-$ PRL 107, 182001(2011) $20 \mathrm{MeV}/c^{2}$ (d)(c)800 BESIII 600 400 Events 200 2.0 2.2 1.8 2.0 2.2 0.8 $M(a_0(980)\pi)$ **Μ(ηπ⁺π⁻) non-a₀(980**

X(1870) in $J/\psi \rightarrow \omega X$, $X \rightarrow a_0(980)\pi$

X(1840) in $J/\psi \rightarrow \gamma 3(\pi^{+}\pi^{-})$

• Its mass is consistent with that of X(1835), but the width is much smaller than $\Gamma_{x(1835)}$ =190.1 ± 9.0⁺³⁸-36 MeV

• Most likely to be a new decay mode of X(1835)

$M_{\omega \phi}$ threshold enhancement in $J/\Psi \rightarrow \gamma \omega \phi$

Preliminary PWA results of $J/\Psi \rightarrow \gamma \omega \phi$

Resonance	\mathbf{J}^{PC}	$M({ m MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$> 30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	$> 10\sigma$
f ₀ (2020)	0++	1992	442	715 ± 45	100	2	$> 10\sigma$
$\eta(2225)$	0-+	2240	190	70 ± 30	23	2	6.4σ
phase space	0-+	2400	5000	319 ± 24	45	2	$> 8\sigma$

Is X(1810) the f0(1710)/f0(1790) or new state?

Observation of two N* baryons in $\psi' \rightarrow \pi^{0}p$ p decay

- Non-relativistic quark model is successful in interpreting of the excited baryons
- Predicted more excited stated ("missing resonance problem")
- J/ψ (ψ') decays offers an window to search for the missing resonance arXiv:1207.0223

PWA results on N* baryons in $\psi' \rightarrow \pi^{0}p$

Two new baryonic excited states are observed!

Preliminary results on N* baryon in $\psi' \rightarrow \eta p$ p decay

Br(ψ'→ppη)=(6.6±0.2±0.6)×10⁻⁵ PDG2010: (6.0±1.2)×10⁻⁵

Br(ψ'→N(1535)p)×Br(N(1535)→pη+c.c.) = $5.5^{+0.3+7.4}_{-0.3-1.1} \times 10^{-5}$

Summary and Prospects

- Huge data samples collected for charmonium decays at BESIII. A lot of results have been obtained,
 - \checkmark Confrimation of the p \overline{p} mass threshold enhancement
 - ✓ Confirmation of X(1835) and observation of two new structures X(2120) and X(2370)
 - \checkmark Observation of new structure X(1870) in J/ $\psi \rightarrow \omega \pi \pi \eta$
- 1 billion J/psi events were taken at BESIII

✓ _____

• We expect rich physics results in the coming years from BESIII ! Thanks !