(Selected recent experimental results in) Hadronic charmed meson & baryon decays

Hajime Muramatsu
University of Minnesota

Outline

► ∧_c hadronic decays

- BF($\Lambda_c^+ \rightarrow p \ K^- \pi^+$)
- BF($\Lambda_c^+ \rightarrow n \ K_S^0 \ \pi^+$)
- DCSD: BF($\Lambda_c^+ \rightarrow p \ K^+ \pi^-$)
- BF($\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu}$)

D hadronic decays

- Line-shape of $\sigma(e^+e^- \rightarrow D\overline{D})$
- Amplitude analysis : $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
- BF(D $\rightarrow \omega \pi$)
- BF(D $^0 \rightarrow K_S K^+ K^-)$

Quantum-Correlated Charm analysis

- D⁰ → $K_S \pi^+ \pi^-$ via GGSZ method

I apologize that I couldn't cover other recent results today

- The lightest charmed baryons
 - \rightarrow most of the charmed baryons will eventually decay into Λ_c . Important to know the decay properties of Λ_c .
- Absolute BFs are not well determined, yet.
 Often, used the golden mode, Λ_c⁺ → p K⁻ π⁺ to normalize.
- Total measured BF is ~ 50%.
- Also, no neutron mode has been measured.

Belle:BF($\Lambda_c^+ \to p \ K^- \pi^+$) PRL 113, 042002 (2014)

- First model independent measurement on the golden mode.
- Sample: 978 fb⁻¹ near the Y(nS) resonances, with n = 1, 2, 3, 4, 5.
- Reconstruct $e^+e^- \to D^{(*)-} \overline{p} \pi^+ \Lambda_c^+$. # of inclusive Λ_c^+ is obtained from the recoil against $D^{(*)-} \overline{p} \pi^+$.

- Reconstruct $\Lambda_c^+ \rightarrow p \ K^- \pi^+$ based on the inclusive sample.
- BF = $(6.84\pm0.24^{+0.21}_{-0.27})\%$

The most accurate measurement to date!

BESIII: BF($\Lambda_c^+ \to p \ K^- \pi^+$) PRL 116, 052001 (2016)

- First absolute BF measurement.
- Sample: near $\Lambda_c^+ \overline{\Lambda}_c^-$ mass threshold, $E_{cm} = 4.6$ GeV. 567 pb⁻¹: Simple pair production: No additional particles produced.
 - → Makes possible to employ the double-tag technique.
- For instance, for the case of $\Lambda_c^+ \to p \ K^- \pi^+$ and $\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^-$:

Singe Tag: $N_{ST} = N_{\Lambda c \bar{\Lambda} c} \times BF(\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^-) \times \epsilon(\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^-)$ Double Tag: $N_{DT} = N_{\Lambda c \bar{\Lambda} c} \times BF(\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^-) \times BF(\bar{\Lambda}_c^+ \to p \ K^- \pi^+) \times \epsilon(\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^- \text{ and } \Lambda_c^+ \to p \ K^- \pi^+)$ Then, $BF(\Lambda_c^+ \to p \ K^- \pi^+) = N_{DT}/N_{ST} \times \epsilon(\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^-)/\epsilon(\bar{\Lambda}_c^- \to \bar{\Lambda} \pi^- \text{ and } \Lambda_c^+ \to p \ K^- \pi^+)$.

Notice that the systematic uncertainty associated with the reconstruction of $\bar{\Lambda}_{c^-} \to \bar{\Lambda} \pi^-$ tends to be canceled in the ratio of efficiencies.

Extracting N_{ST} and N_{DT}

- Look for 12 different tag modes.
- Fit to $M_{BC} = \sqrt{(E_{beam}^2 |\vec{p}_{\Lambda}|)}$

- In the above DT case,
 summed over the 12 tag modes
- Simultaneously fit to the all $N_{DT} = N_{\Lambda c \bar{\Lambda} c} \times BF_{tag} \times BF_{sig} \times \epsilon_{DT}$, while constraining $N_{\Lambda c \bar{\Lambda} c}$, taking into account correlations over modes.

 $N_{\Lambda c \bar{\Lambda} c}$ will be a byproduct.

Mode	This work (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$
$pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$
$\Lambda\pi^+$	$1.24 \pm 0.07 \pm 0.03$
$\Lambda\pi^+\pi^0$	$7.01 \pm 0.37 \pm 0.19$
$\Lambda\pi^+\pi^-\pi^+$	$3.81 \pm 0.24 \pm 0.18$
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$

- Also obtained $N_{\Lambda c \bar{\Lambda} c} = (105.9 \pm 4.8 \pm 0.5) \times 10^{3}$.
- Other BF($\Lambda_c^+ \rightarrow$ hadrons) are measured with improved precisions.

- BESIII : BF($\Lambda_c^+ \to p \ K^- \pi^+$) = (5.84±0.27±0.23)%

Belle: BF($\Lambda_c^+ \rightarrow p \ K^- \pi^+$) = (6.84±0.24^{+0.21}_{-0.27})%

- Consistent? ... within ~2σ ...

Hopefully, the agreement would improve further in the near future. (more data? new technique?)

BESIII: BF($\Lambda_c^+ \rightarrow n K_S^0 \pi^+$)

- BESIII preliminary result based on the same '4.6 GeV sample'.
- First direct measurement Λ_c decaying into the neutron.
- Employing the same double tag technique based on the 11 tag modes.

•
$$K_S^0 \to \pi^+\pi^-$$
,

$$ullet$$
 $\bar{\Lambda}
ightarrow ar{p} \pi^+$,

•
$$\bar{\Sigma}^0 \to \gamma \bar{\Lambda}$$
 with $\bar{\Lambda} \to \bar{p} \pi^+$,

$$\bullet$$
 $\bar{\Sigma}^- \to \bar{\Lambda} \pi^-$,

•
$$\pi^0 \rightarrow \gamma \gamma$$
.

Totally, 11415±159 events are reconstructed by 11 ST modes.

Belle: BF($\Lambda_c^+ \rightarrow p \ K^+ \pi^-$) arXiv:1512.07366

- First observation of Doubly Cabibbo-suppressed decay of Λ_c .
- 980 fb⁻¹ near the Y(nS) resonances, with n = 1, 2, 3, 4, 5.
- Stat. significance = 9.4 σ . $N_{SIG} = 3379\pm380(stat)\pm78$ (SCS contamination: $\Lambda_c^+ \to \Lambda(\to p\pi^-)K^+$)

BF($\Lambda_c^+ \to p \ K^+ \pi^-$)/BF($\Lambda_c^+ \to p \ K^- \pi^+$) = (2.35±0.27±0.21)×10⁻³

BESIII: BF($\Lambda_c^+ \rightarrow \Lambda I^+ \nu_I$) c \rightarrow s $I^+ \nu_I$

- Not really a hadronic decay of Λ_c , but still interesting Λ_c decays. Last year, BESIII reported BF($\Lambda_c^+ \to \Lambda \ e^+ \ v_e$) = (3.63±0.38±0.20)% (PRL 115, 221805 (2015)).

Based on the data taken near the threshold: 567 pb⁻¹ at E_{cm} = 4.6 GeV.

- They now have a preliminary result on $\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}$.

Preliminary

- BF($\Lambda_c^+ \to \Lambda \ \mu^+ \ \nu_\mu$) = (3.49±0.46±0.26)% consistent with the measured electric mode.
- Thus; $\Gamma(\Lambda_c^+ \to \Lambda \ \mu^+ \ \nu_\mu)/\Gamma(\Lambda_c^+ \to \Lambda \ e^+ \ \nu_e) \\ = 0.96 \pm 0.16 \pm 0.04$

BESIII: line shape of DD pair near the mass threshold

- Measurement of $\psi(3770)$ parameters.
- It has been seen the distorted resonance shape in other experiments.

- Total ~ 70 pb⁻¹ in $3643 < E_{cm} < 3890$ MeV.
- Single Tag method.
- Observed cross section = $N_D/(2 \times \epsilon_D \times Luminosity)$ in each E_{cm} bin.

$$= \int z_{D\overline{D}}(W\sqrt{1-x}) \, \sigma_{D\overline{D}}(W\sqrt{1-x}) \, \mathcal{F}(x,W^2) \, dx$$
 Coulomb Born Level ISR

$\sigma_{obs}(e^+e^- \rightarrow D\overline{D})$ around $E_{cm} = 3770$ MeV

- Simultaneously fit to $\sigma_{obs}(W)$ of $D^0\overline{D}^0$ and D^+D^- .
- Only $\sigma_{obs}(e^+e^- \rightarrow D^+D^-)$ is shown here.

Results

Can only determine Γ_{ee}^{ψ(3770)}×BF(ψ(3770)→DD̄)
 (this is essentially, our DD̄ YIELDS).

Source	$M^{\psi(3770)}[{ m MeV}/c^2]$	$\Gamma^{\psi(3770)}$ [MeV]	$\Gamma_{ee}^{\psi(3770) o D\overline{D}}$ [eV]
Exponential	3783.0 ± 0.3	27.5 ± 0.9	270 ± 24
VDM	3781.5 ± 0.3	25.2 + 0.7	230 ± 18
KEDR	$3779.3 \substack{+1.8 \\ -1.7}$	25.3 ^{+ 4.4} _{- 3.9}	160^{+78}_{-58} , 420^{+72}_{-80}
PDG	3773.2 ± 0.3	27.2 ± 1.0	$[262 \pm 18] \times B_{D\bar{D}}^{\ \ \dagger}$

 $^{\dagger}B(\psi(3770)\to D\overline{D})$

- The shown errors are statistical errors only.
- Consistent with the KEDR's result (as they should).
 Higher mass than
 the results without any interference effect considered.

BESIII: $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

- One of the 3 golden modes of neutral D decays.
- Based on the 2.93 fb⁻¹ taken at $E_{cm} = 3.773$ GeV.
- The knowledge of various intermediate states improve measurements such as;
 - its branching fraction
 - strong phase difference between D^0 and \bar{D}^0 in this final state thus, eventually the CKM unitary triangle γ.
- Existing experimental results are old (from Mark III and E691).

Constructing amplitudes

- Total decay amplitude = coherent sum of each amplitudes:

$$M(p_j) = \sum_n \rho_n e^{i\phi_n} A_n(p_j)$$

 ρ and φ are magnitude and phase of the nth amplitude. A_n describes the relative contributions of the nth amplitude:

The spin factors are constructed with covariant tensor formalism.

Fitting to masses

Fitted phases and fit fractions (FF)

Amplitude	ϕ_i	Fit fraction (%)
$D^0[S] \to \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3 \pm 0.2 \pm 0.1$
$D^0[D] o \bar K^* ho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9 \pm 0.4 \pm 0.7$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), \ a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3 \pm 0.1 \pm 0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1 \pm 0.1 \pm 0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7 \pm 0.2 \pm 0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4 \pm 0.3 \pm 0.5$
$D^0 \to (\rho^0 K^-)_A \pi^+, (\rho^0 K^-)_A [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1 \pm 0.2 \pm 0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4 \pm 1.6 \pm 5.7$
$D^0 \to (K^- \pi^+)_{\rm S} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \rightarrow (K^- \rho^0)_{\rm V} \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 ightarrow (ar K^{*0}\pi^-)_{ m P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 ightarrow ar{K}^{*0}(\pi^+\pi^-)_{ m S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6 \pm 0.6 \pm 0.6$
$D^0 \rightarrow (\bar{K}^{*0}\pi^-)_{ m V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
$D^0 \rightarrow ((K^-\pi^+)_{\rm S}\pi^-)_{\rm A}\pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6 \pm 0.9 \pm 2.7$
$D^0 \rightarrow K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
$D^0 \to (K^-\pi^+)_{\rm S}(\pi^+\pi^-)_{\rm S}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
$D^{0}[S] \to (K^{-}\pi^{+})_{V}(\pi^{+}\pi^{-})_{V}$	$1.59 \pm 0.13 \pm 0.41$	$5.4 \pm 1.2 \pm 1.9$
$D^0 \to (K^-\pi^+)_{\rm S}(\pi^+\pi^-)_{\rm V}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5 \pm 0.1 \pm 0.1$

- K*(892) and a₁(1260): RBW w/ energy dependent width
- ρ(770): GS formula (PRL 21, 244 (1968)
- K₁(1270): RBW
- Kπ S-wave: the same parametrization used in the BABAR's Dalitz analysis of D⁰ → K_S π⁺π⁻
 (PRD 78, 034023)

BESIII: $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

- According to the intermediate resonances, group the 23 amplitudes into 7 'components'.

Component	Branching fraction (%)	PDG value (%)
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23
$D^0 \to K^- a_1^+ (1260) (\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6
$D^0 \to K_1^- (1270) (\bar{K}^{*0} \pi^-) \pi^+$	$0.07 \pm 0.01 \pm 0.02 \pm 0.00$	$=0.29 \pm 0.03$
$D^0 \to K_1^- (1270)(K^- \rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.02 \pm 0.01$	
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.18 \pm 0.02$	0.51 ± 0.23
$D^0 \to \bar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.03 \pm 0.02$	0.99 ± 0.23
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26

- BF = FF×BF_{PDG}(D⁰ \rightarrow K⁻ π ⁺ π ⁺ π ⁻).
- The first and second errors are statistical and systematic uncertainties.
- The third error is due to the PDG input.
- Improvements over the existing results!

BESIII: D \rightarrow ωπ PRL 116, 082001 (2016)

- The first observation of this singly Cabibbo-suppressed decay
- Sample: 2.93 fb⁻¹ at E_{cm} = 3.773 GeV.
- Double tag technique to suppress contamination from continuum.
- Also measured D $\rightarrow \eta \pi$

Mode	This work	Previous measurements
	$(2.79\pm0.57\pm0.16)\times10^{-4}$	
$D^0 \rightarrow \omega \pi^0$	$(1.17\pm0.34\pm0.07)\times10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \rightarrow \eta \pi^+$	$(3.07\pm0.22\pm0.13)\times10^{-3}$	$(3.53\pm0.21)\times10^{-3}$
$D^0 \rightarrow \eta \pi^0$	$(0.65\pm0.09\pm0.04)\times10^{-3}$	$(0.68\pm0.07)\times10^{-3}$

BESIII: $D^0 \rightarrow K_S^0 K^+ K^-$

- PDG: BF(D⁰ \rightarrow K_S⁰ K⁺ K⁻) = (4.47±0.34)×10⁻³ : 7.6% uncertainty And no absolute BF measurement.
- Has rich substructure: e.g., a₀(980): Dalitz analysis is ongoing.
- Preliminary result on the BF measurement via Single Tag.

Quantum-Correlated Charm near mass threshold

At E_{cm}^{\sim} M($\psi(3770)$), a pair of $D^0 \overline{D}^0$ (and nothing else) is produced via $e^+e^- \rightarrow \gamma^* \ (\rightarrow \psi(3770)) \rightarrow D^0 \overline{D}^0$. The produced $D^0 \overline{D}^0$ is a C=-1 state.

Or

the two produced neutral mesons must have opposite CP (i.e., see Goldhaber and Rosner, PRD15, 1254 (1977). (one could also throw in an extra photon to have C=+1 state in D⁰D̄⁰γ) One application of this is to measure the strong phase difference between

 D^0 and $\overline{D}{}^0 \rightarrow K^0 \pi^+ \pi^-$ over Dalitz bins.

Contributing to the measurement of γ/φ₃

$$\phi_{1}/\beta = \left(21.85^{+0.68}_{-0.67}\right)^{\circ}$$

$$\phi_{2}/\alpha = \left(87.6^{+3.5}_{-3:3}\right)^{\circ}$$
Least known!
$$\phi_{3}/\gamma = \left(73.2^{+6.3}_{-7.0}\right)^{\circ}$$
2015 CKMfitter (Direct Measurements)

B- f(D)K-

Determine ϕ_3 through the measurement of the interference between b \rightarrow c and b \rightarrow u transitions when D^0 and \overline{D}^0 both decay to the same final state f(D).

- B-Factories measure γ/φ_3 through B \rightarrow D K.
- For the case of $D^0 \rightarrow K_S \pi^+ \pi^-$, the binned decay rate over the Dalitz plot is given by;

$$\Gamma(B^{\pm} \to D(K_S \pi^+ \pi^-) K^{\pm})_i = T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \cos(\delta_B \pm \phi_3 - \Delta \delta_D)$$

$$= T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \{ c_i \cos(\delta_B \pm \phi_3) + s_i \sin(\delta_B \pm \phi_3) \}$$

Mirrored binning over x=y makes it so $c_i = c_{-i}$ and $s_i = -s_{-i}$

Distribution sensitive to variables:

 T_i : Bin yield measured in flavor decays

 r_B : color suppression factor ~ 0.1

 δ_B : strong phase of B decay

: weighted average of $\cos(\Delta\delta_D)$ and $\sin(\Delta\delta_D)$ respectively where $\Delta\delta_D$ is the difference between phase of D^0 and \overline{D}^0

Measured at B-Factories

Through QCA at Charm-Factories

Relations between c_i, s_i, and yields in Dalitz bins

- Define 'CP tags' (CP definite final states):

- Efficiency-corrected yields in the ith Dalitz bin are; (see PRD82, 112006 (2010) for more details)
 - ▶ $\propto \pm c_i$ for DT: D \rightarrow CP(\pm) states vs D \rightarrow K_S $\pi^+\pi^-$
 - $ightharpoonup
 ightharpoonup c_i c_j + s_i s_j$ for DT (two Dalitz): D $ightharpoonup K_S \pi^+ \pi^-$ vs D $ightharpoonup K_S \pi^+ \pi^-$
- Simultaneously fit to them to extract c_i and s_i .

Toy MC ϕ_3 estimate

BESIII: Results on c_i and s_i

- Based on BESIII 2.93fb⁻¹ at $E_{cm} = 3.773$ GeV.

BESIII:

- Only statistical errors are shown.
- Consistent with the previous CLEO measurement.

RMS 2.165

CLEO-c: RMS 3.927

- Very important inputs for the future analyses by LHCb and Belle II, where the statistical sensitivity starts to reach ~1~2 degrees.

Summary: Charmed baryon

- We are starting to;
 - \blacktriangleright see precision measurements in Λ_c decays
 - fill the unknown charts in the PDG
 - observe doubly Cabibbo-suppressed decays.
- B factories and BESIII will collect more data in the near future.
 Soon, we should be able to;
 - ▶ hopefully the agreement in BF($\Lambda_c^+ \rightarrow p \ K^+ \pi^-$) would be improved
 - > push the precisions to the level as we have in D/D_S
 - ▶ and certainly start to improve the limit (or discovery) on the forbidden or rare decays.

Summary: Charmed mesons

- The large $\psi(3770)$ sample of BESIII allows to make measurements with improved precisions, such as;
 - ▶ amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
 - ▶ the first observation of SCSD, D $\rightarrow \omega \pi$
 - ▶ improved BF($D^0 \rightarrow K_S^0 K^+ K^-$)
 - \blacktriangleright as well as resonance parameters of the $\psi(3770)$ state.
- Quantum-correlated $D^0\overline{D}^0$ in e^+e^- annihilations near threshold provides unique inputs to the CKM angle measurements, such c_i and s_i .
 - Could we see similar results based on ' $D^0\overline{D}^0\gamma$ ' (C=+1 state) in the future?
- As BESIII is accumulating 'D_S' data around E_{cm} ~ 4180 MeV, (the goal is to collect 3 fb⁻¹), expect new results on D_S decays in the near future.