

Ac decays at ₩SI

Xiao-Rui Lyu (吕晓睿) (E-mail: <u>xiaorui@ucas.ac.cn</u>) University of Chinese Academy of Sciences (UCAS), Beijing

Charm 2015, WSU, USA

Outline

- Introduction
- Measurements at BESIII (preliminary)
 - $\checkmark \Lambda_c^+$ hadronic decays
 - $\checkmark \Lambda_c^+$ semi-leptonic decays
- More potentials at BESIII
- **Summary**

Charm baryon vs. strange baryon

3

Charmed baryon thresholds

BESIII data taken

In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance! This is a marvelous achievement of BES!

First time to systematically study charmed baryon at threshold!

Λ_c^+ decay rates

More reliable to be treated in HQET than mesons as it consists of a heavy quark and a spin and isospin zero light diquark

- absolute BF's has large uncertainties
- □ semi-leptonic decay modes have not been fully explored; The only measured $BF(\Lambda_c \rightarrow \Lambda l^+ v_l)$ has large uncertainties of $\delta B/B \sim 16\%$
- no neutron modes have been measured

Absolute BF's of Λ_c^+ hadronic decays

- Absolute branching fractions (BF) of Λ_c^+ decays are still not well determined since its discovery 30 years ago
 - BFs of all the decay modes (~85%) are measured relative to $\Lambda_c^+ \rightarrow p K^- \pi^+$
 - − Charm counting → test SM
 - However, no completely model-independent measurements of the absolute BF of $\Lambda_c^+ \rightarrow p K^- \pi^+$ (from Argus and CLEO very old results) *uncertainties of BFs of* Λ_c^+ *decays are 25%~40% in PDG2014*
- Until Belle's first "model-independent" measurement: $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$ precision reaches to 4.7% [PRL113(2014)042002]
- However, measurement using the threshold pair-productions via e⁺e⁻ annihilations is unique: the most simple and straightforward

PDG2014

after adopting Belle's

Measuring decay rate with missing particle

567/pb data @4.6GeV

Production at threshold has advantages on this type of decays!

- semi-leptonic decay rates $BF(\Lambda_c \rightarrow \Lambda l^+ v_l)$
 - ✓ So far, large uncertainties of BF (δ B/B~16%) mainly through partial reconstruction in inclusive productions at \sqrt{s} ~10.4*GeV* at MARKII and CLEO
 - ✓ Systematic uncertainty ($\delta B/B \sim 14\%$) dominated due to the Λ_c SL modes
 - ✓ BESIII 567/pb data @4.6GeV will provide the measurement up to precision of δB/B~10% by using DT method
- no neutron modes has been measured
 - ✓ the first measurement of these modes up to the level of BF~0.5%.

Measurements of hadronic BFs

- Produced in the pair production $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$ at 4.6GeV;
 - kinematics does not allow additional particle produced along with the $\Lambda_c^+ \Lambda_c^-$ pair
 - fully reconstruct the pairs and take their yield ratios to measure the BFs: ratio of single tags (ST) and double tags (DT)
- 567/pb data consists of more than 100K Λ⁺_cΛ⁻_c pairs
 sensitivity of BF reaches to the level of 0.1%
- 12 hadronic modes are being measured at the same time based on a global fit [*Chinese Phys. C37(2013)106201*]

charge conjugate modes are implied in the following slides.

Estimation on the yields of the 12 modes

- Use energy difference (ΔE) to improve S/B
- Extract signal yields in the beam-constrained mass (M_{BC})

 $\checkmark \text{ ST yields } N_{i^+}^{ST} = N_{\Lambda_c^+ \Lambda_c^-} \cdot \mathcal{B}_i \cdot \varepsilon_{i^+}^{ST}$

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\overrightarrow{p}_{\Lambda_c^-}|^2}$$

We tune ST MC simulations according to the decay pattern in data to better control of systematics.

ST Λ_c^{\pm} yields in data

EVALUATE DT yields $N_{-j}^{DT} = \sum_{i^+ \neq j} N_{i^+ j^-}^{DT} + \sum_{i^- \neq j} N_{i^- j^+}^{DT} + N_{jj}^{DT}$

Hadronic branching fraction results

• a least square global fitter: simultaneous fit to the all tag modes while constraining the total Λ_c pair number, taking into account the correlations Chinese Phys. C 37, 106201 (2013)

	BESIII prel.			
Decay modes	global fit \mathcal{B}	PDG \mathcal{B}	Belle \mathcal{B}	•
pK_S	1.48 ± 0.08	1.15 ± 0.30		•
$pK^{-}\pi^{+}$	5.77 ± 0.27	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$	
$pK_S\pi^0$	1.77 ± 0.12	1.65 ± 0.50		
$pK_S\pi^+\pi^-$	1.43 ± 0.10	1.30 ± 0.35		
$pK^{-}\pi^{+}\pi^{0}$	4.25 ± 0.22	3.4 ± 1.0	$\sqrt{R(nk)}$	$(-\pi^+) \cdot \mathbf{RESIII}$
$\Lambda \pi^+$	1.20 ± 0.07	1.07 ± 0.28	D(pn)	
$\Lambda \pi^+ \pi^0$	6.70 ± 0.35	3.6 ± 1.3	precis	sion comparable with
$\Lambda \pi^+ \pi^- \pi^+$	3.67 ± 0.23	2.6 ± 0.7	Belle'	's result
$\Sigma^0 \pi^+$	1.28 ± 0.08	1.05 ± 0.28		$\mathbf{H} = \mathbf{P} \left(\mathbf{n} \mathbf{V}^{-} - \mathbf{t} \right) \mathbf{i} \mathbf{q}$
$\Sigma^+\pi^0$	1.18 ± 0.11	1.00 ± 0.34	V DESI	If rate $B(pK \pi^{-})$ is
$\Sigma^+\pi^+\pi^-$	3.58 ± 0.22	3.6 ± 1.0	small	er
$\Sigma^+\omega$	1.47 ± 0.18	2.7 ± 1.0	/ Impr	oved precisions of the
on	lv stat.	errors	other	11 modes significantly

BF of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

- $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ is a $c \rightarrow s l^+ \nu_l$ dominated process.
- Urgently needed for LQCD calculations.
- No direct absolute measurement for $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ available.

 $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (2.1 \pm 0.6)\%$ PDG 2014

scaling to (2.9±0.5)%, when taking the BELLE's B($pK^{-}\pi^{+}$) However, this is not a direct measurement.

- Theoretical predications for branching fraction of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ ranges from 1.4% to 9.2%.
- Thus, measuring B(Λ⁺_c → Λe⁺ν_e) will provide very important experimental information for
 - 1) testing the theoretical predications for $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$.
 - 2) calibrating the LQCD calculations.
 - 3) addition information for determining CKM elements.

BESIII Prel.:
$$B(\Lambda_c^+ \to \Lambda e^+ v_e) = (3.63 \pm 0.38 \pm 0.??)\%$$

- Statistics limited measurement.
 - Systematic error smaller than statistical
- Best precision to date: twofold improvement

(2.9±0.5)%

What is more potentials at **BESIII**

- Is 4.6GeV the BEPCII's ultimate?
- How about to go to the XS peak @4635MeV
 ✓ Belle's ISR data has large uncertainties of ~25%
 ✓ reduce uncertainties of the XS line shapes
- Prospects of increased threshold data set (naively say x10 statistics)
 - ✓ the intermediate structures in three-body decays via dedicated PWA analysis
 - ✓ more SL modes: nlv, $Λ^*lv$, ΣXlv...
 - ✓ decay asymmetry parameters in Λ_c^+ hadronic weak decays, such as $\Lambda_c^+ \to BP$ and $\Lambda_c^+ \to BV$
 - ✓ searching for Λ_c^+ low rate decays and rare decays, such as weak radiative decay Λ_c^+ → $\gamma \Sigma^+$, FCNC $\Lambda_c^+ \rightarrow p l^+ l^-$, LNV
 - ✓ the spin-parity of Λ_c^-

Summary

• BEPCII/BESIII accumulated ~567/pb data set @4.6GeV

- ◆ Opens a door to study the lowest charmed baryon state Λ_c⁺
 → low backgrounds and high detection efficiency
- Several physics potentials has been and is being explored
 - → absolute BFs of hadronic decays model-independently
 - $\rightarrow \Lambda_c$ SL decays
 - → ...
- More threshold data set will be good/necessary to complete knowledge on the Λ_c decay dynamics.

Thank you! 谢谢!