Radiative Transitions of the Y(4260) at BES III

Manuel Lara

Indiana University

April 12, 2015

-∢ ⊒ →

3

- Charmonium is a bound cc state
- Models have been extremely successful in predicting most of the states
- The discovery of the XYZ states shed new light on charmonium system
- What do these new states mean?

э

2

문▶ ★ 문≯

qq-gluon"hybrid"

- Excited gluonic field between the quarks acts as a constituent gluon
- Expected mass of charmonium hybrid: 4.2-4.5 GeV^a
- Allows for an extra quantum number: *I*gluon

^aE. Kou and O. Pene, Phys. Lett. B 631, 164 (2005) [hep-ph/0507119]

< ∃⇒

-

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0} \gamma$	26(11)	30(2)	$\psi' \to \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0}\gamma$	265(66)	199(26)	$\psi^{\prime\prime} ightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_{\rm q}^2.$

< E > < E >

____ ▶

Ξ.

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0} \gamma$	26(11)	30(2)	$\psi' ightarrow \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0}\gamma$	265(66)	199(26)	$\psi^{\prime\prime} \rightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_a^2$.

The Y(4260) has $J^{PC} = 1^{--}$ and decays into $\pi \pi J/\psi$

If the Y(4260) is a conventional meson then: spin triplet resonance with $c\bar{c}$ constituent quarks, similar to $\psi(2S)$

-∢ ⊒ →

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0}\gamma$	26(11)	30(2)	$\psi' \to \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0}\gamma$	265(66)	199(26)	$\psi^{\prime\prime} ightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_{\rm q}^2.$

The Y(4260) has $\mathsf{J}^\mathsf{PC} = 1^{--}$ and decays into $\pi\pi J/\psi$

If the Y(4260) is a conventional meson then: spin triplet resonance with $c\bar{c}$

constituent quarks, similar to $\psi(2S)$

Implies:

 $Y(4260) \rightarrow \gamma \chi_{c0}$ does NOT involve a spin flip

 $Y(4260) \rightarrow \gamma \eta_c$ does involve a spin flip

프 () () () (

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0} \gamma$	26(11)	30(2)	$\psi' \to \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0}\gamma$	265(66)	199(26)	$\psi^{\prime\prime} ightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_q^2$.

Example:

$$\begin{split} &\Gamma(\psi' \to \gamma \chi_{c0}) = 26 \text{ keV} \\ &\Gamma(\psi' \to \gamma \eta_c) = 0.4 \text{ keV} \\ &\frac{\Gamma(\psi' \to \gamma \chi_{c0})}{\Gamma(\psi' \to \gamma \eta_c)} = 65 \end{split}$$

-∢ ≣⇒

-

3

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0} \gamma$	26(11)	30(2)	$\psi' ightarrow \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0}\gamma$	265(66)	199(26)	$\psi^{\prime\prime} \rightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_q^2$. If the Y(4260) is a hybrid then: $c\bar{c}$ pair coupled to a constituent P-wave gluon

< ∃ >

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0}\gamma$	26(11)	30(2)	$\psi' \to \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0}\gamma$	265(66)	199(26)	$\psi^{\prime\prime} ightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_{\rm a}^2.$

If the Y(4260) is a hybrid then: $c\bar{c}$ pair coupled to a constituent P-wave gluon Implies:

 $Y(4260) \rightarrow \gamma \chi_{c0}$ does involve a spin flip

 $Y(4260) \rightarrow \gamma \eta_c$ does NOT involve a spin flip

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi \rightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0} \gamma$	26(11)	30(2)	$\psi' \rightarrow \eta_c \gamma$	0.4(8)	0.95(16)
$\psi^{\prime\prime} \to \chi_{c0} \gamma$	265(66)	199(26)	$\psi^{\prime\prime} \rightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_q^2$.

Example:

$$\begin{split} & \Gamma(\mathsf{Y}_{\text{hyb}} \to \gamma \chi_{c0}) \leq 20 \text{ keV} \\ & \Gamma(\mathsf{Y}_{\text{hyb}} \to \gamma \eta_c) = 42 \text{ keV} \\ & \frac{\Gamma(\mathsf{Y}_{\text{hyb}} \to \gamma \chi_{c0})}{\Gamma(\mathsf{Y}_{\text{hyb}} \to \gamma \eta_c)} \leq 0.5 \end{split}$$

·문▶ ★ 문▶

3

Transitions to χ_{c0}	Γ_{lat}/keV	Γ_{exp}/keV	Transitions to η_c	Γ_{lat}/keV	Γ_{exp}/keV
$\chi_{c0} \rightarrow J/\psi\gamma$	199(6)	131(14)	$J/\psi ightarrow \eta_c \gamma$	2.51(8)	1.85(29)
$\psi' \to \chi_{c0}\gamma$	26(11)	30(2)	$\psi' ightarrow \eta_c \gamma$	0.4(8)	0.95(16)
$\psi'' \to \chi_{c0} \gamma$	265(66)	199(26)	$\psi^{\prime\prime} ightarrow \eta_c \gamma$	10(11)	-
$Y_{hyb} \rightarrow \chi_{c0}\gamma$	≤20	-	$Y_{hyb} \rightarrow \eta_c \gamma$	42(18)	-

Table: J. J. Dudek, R. Edwards, and C. E. Thomas, Phys.Rev. D79, 094504 (2009)

Recall: radiative transitions that involve a spin flip in the final state are suppressed by $1/m_q^2$. BF(Y_{hyb} $\rightarrow \gamma \eta_c) = \frac{42keV}{95MeV} = 4.4 \times 10^{-4}$ BF(Y_{hyb} $\rightarrow \gamma \chi_{c0}) \leq 2.1 \times 10^{-4}$ $\sigma_{upper limit}(e^+e^- \rightarrow Y(4260)) = 1 \times 10^4 pb^1$ $\sigma_{upper limit}(e^+e^- \rightarrow Y(4260) \rightarrow \gamma \eta_c) = 4.4pb$ $\sigma_{upper limit}(e^+e^- \rightarrow Y(4260) \rightarrow \gamma \chi_{c0}) = 2.1pb$

¹T. E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett.96, 162003 (2006) + () + (

< ≣⇒

3

P.

æ –

η_{c} Decay Mode	Branching Fraction (%)
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	17.23
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	4.66
$\eta \pi^+ \pi^- \pi^+ \pi^-$	4.40
$K^{\pm}K_{s}\pi^{\mp}\pi^{+}\pi^{-}$	2.75
$\kappa^{\pm}\kappa_{s}\pi^{\mp}$	2.6
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	2.02
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	1.72
$\eta \pi^+ \pi^-$	1.66
$\kappa^+\kappa^-\pi^0$	1.04
$K^{+}K^{-}\pi^{+}\pi^{-}$	0.95
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.83

Table: η_c branching fractions taken from BESIII measurements

χ_{c0} Decay Mode	Branching Fraction (%)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	3.3
$2(\pi^{+}\pi^{-})$	2.25
$3(\pi^{+}\pi^{-})$	1.77
$K^{+}K^{-}\pi^{+}\pi^{-}$	1.20
$\kappa^+\kappa^-$	0.598
$\pi^+\pi^-\kappa_S\kappa_S$	0.57
KSKS	0.31
$\eta \eta$	0.3
$2(K^{+}K^{-})$	0.277
$\pi^+\pi^-p\bar{p}$	0.21
$\gamma J/\psi(e^+e^-/\mu^+\mu^-)$	0.154

Table: χ_{c0} branching fractions taken from PDG

æ –

• The BES Event Generator is used to generate background for each mode reconstructed.

A Breit-Wigner function is used for the signal shape

- Background Components
 - Continuum: 2nd order Chebychev Polynomial
 - ISR: Double Gaussian

∃→ < ∃→</p>

Energy (MeV)	Luminosity (pb ⁻¹)
4230	1054
4260	806

- 13 η_c modes are simultaneously fit
 - Assume a cross section and luminosity
 - Simultaneously fit with and without a signal
 - Olician Calculate significance
 - Repeat 50 times
 - Calculate mean and root mean square of significance

< ∃⇒

э

Repeat 1-5

This is an ongoing analysis, paper should be out in the coming months These are exciting times at BESIII. 5 papers have been published using the 4260 data set with many more coming in the following months.

- XYZ Data collection period: December 2012 June 2013 and 2014
- $\bullet~$ About 4.5 fb^{-1} of data was collected, mostly at 4.23, 4.26, 4.36, 4.42, and 4.6 GeV
- Y(4260) publications published thus far:
 - **()** Observation of a charged charmoniumlike structure in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at \sqrt{s} =4.26 GeV, Phys. Rev. Lett(2013) 252001
 - **2** Observation of a charged charmoniumlike structure $Z_c(4020)$ and search for the $Z_c(3900)$ in $e^+e^- \rightarrow \pi^+\pi^-h_c$, Phys. Rev. Lett. 111, 242001 (2013)
 - **3** Observation of a charged $(D^*\bar{D}^*)^{\pm}$ mass peak in $e^+e^- \rightarrow \pi D^*\bar{D}^*$ at \sqrt{s} =4.26 GeV, Published in Phys. Rev. Lett 112, 022001 (2014)
 - Observation of $e^+e^- \rightarrow \gamma X(3872)$ at BESIII, Published in Phys.Rev.Lett. 112 (2014) 092001
 - **2** Observation of $e^+e^- \rightarrow \pi^0\pi^0h_c$ and a neutral charmoniumlike state $Z_c^0(4020)$, Published in Phys.Rev.Lett. 113 (2014) 21, 212002

- 4 回 ト 4 三 ト

э.