Recent charm results obtained at BESIII

Tian MA

Institute of High Energy Physics, CAS (on behalf of BESIII collaboration)

YongPyong-2013

YongPyong Winter Conference on Particle Physics Feb. 24-28, 2013, Korea

Outline

- Charm meson production at threshold
- Leptonic decay $D^+ \rightarrow \mu^+ \nu_{\mu}$
 - Decay constant f_{D+}
 - CKM matrix element $|V_{cd}|$
- Semileptonic decay $D^0 \to K^-(\pi^-)e^+\nu_e$
 - Form factor $f_{+}^{K}(0)$, $f_{+}^{\pi}(0)$
 - CKM matrix elements |Vcs(d)|
- Rare decay $D^0 \rightarrow \gamma \gamma$
- Summary

Charm Meson Production at Threshold

- At $\psi(3770)$ charm production is D^+D^- and $D^0\overline{D}{}^0$
- Advantage:
 - Clean environment
 - Known initial energy and quantum numbers (quantum correlated for $D^0 \overline{D}^0$ pair)
 - Both D and \overline{D} fully reconstructed
 - Absolute measurements

- Double-tag technique
 - Reconstruct D first, search for signal \overline{D} on the other side
 - Two variables: $\Delta E \& M_{BC}$

$$\Delta E = E_D - E_{\text{Beam}}$$
$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$

BESIII Data

• World's largest $\psi(3770)$ sample

 Tools/techniques for precision charm physics still under development – all the following results are PRELIMINARY

Leptonic decay
$$: D^+ \to \mu^+ \nu_{\mu}$$

Semileptonic decay $: D^0 \to K^-(\pi^-)e^+\nu_e$
Rare decay $: D^0 \to \gamma\gamma$

Leptonic Decay

- Decay constant f_D incorporates the strong interaction effects (wave function at the origin)
- Use charm leptonic decays to validate theory (LQCD) and apply to B mixing, which requires f_B
- Multiple tests with charm: f_D , f_{Ds} , and f_D / f_{Ds}
- Sensitivity to New Physics (charged Higgs contribution, ...)

D⁺ Leptonic Decays – Tag Selection

D⁺ Leptonic Decays – Signal Selection

- Exactly one track in addition to tag, with the right charge
- Positive muon identification
- No extra photon
- Select on consistency with leptonic decay:

$$M_{\rm miss}^2 = \left(E_{\rm Beam} - E_{\mu}\right)^2 - \left(-\vec{p}_{\rm tag} - \vec{p}_{\mu}\right)^2 pprox 0$$

425 signal candidates

BESIII Preliminary

D⁺ Leptonic Decays – Backgrounds

BESIII Preliminary

Estimated with Monte Carlo events

Source mode	Number of events
$D^+ \rightarrow K^0_L \pi^+$	7.9 ± 0.8
$D^+ \to \pi^+ \pi^0$	3.8 ± 0.5
$D^+ \to \tau^+ \nu_{\tau}$	6.9 ± 0.7
Other decays of D mesons	17.9 ± 1.1
$e^+e^- \rightarrow \gamma \psi(3686)$	0.2 ± 0.2
$e^+e^- \rightarrow \gamma J/\psi$	0.0 ± 0.0
$e^+e^- \rightarrow light \ hadron \ (continuum)$	8.2 ± 1.4
$e^+e^- \rightarrow \tau^+\tau^-$	1.9 ± 0.5
$\psi(3770) \rightarrow non - D\bar{D}$	0.9 ± 0.4
Total	47.7 ± 2.3

Event type	Number
$N(D^+ ightarrow \mu^+ u_\mu)^{ m candidate}$	425
$N_{ m b}$	$47.7 \pm 2.3 \pm 1.3$
$N(D^+ \to \mu^+ \nu_\mu)$	$377.3 \pm 20.6 \pm 2.6$

$$\frac{\text{BESIII Preliminary}}{N(D^+ \to \mu^+ \nu)} = 377.3 \pm 20.6$$
$$\mathcal{B}(D^+ \to \mu^+ \nu) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$$
$$f_{D^+} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$$

- Consistent with CLEO-c
- Still statistics limited need more data!

D⁺ Leptonic Decays – Comparisons (from G. Rong)

25 February 2013

Semileptonic Decay

- Use Strong Interaction theory (LQCD) for form factor, extract CKM
- Use other measurements and unitarity for CKM and test theory
- Theoretical uncertainties can be reduced in determinations of |V_{ub}| if FF calculations can be validated with charm
- Multiple tests available, semileptonic D decays to pseudoscalar mesons are cleanest

D⁰ Semileptonic Decays – Tag Selection

D⁰ Semileptonic Decays – Signal Selection

- Tag plus exactly two oppositely-charged tracks
- Kaon/pion/electron ID
- Electron has right charge
- No extra neutral energy
- Select on consistency with semileptonic decay

$$U = E_{\rm miss} - \left| \vec{P}_{\rm miss} \right| \approx 0$$

• Fit *U* distribution to extract yield

D⁰ Semileptonic Decays – Branching Fraction

$$N_{tag}^{obs} = 2N_{D\bar{D}}B_{tag}\epsilon_{tag}$$

$$N_{sig}^{obs} = 2N_{D\bar{D}}B_{tag}B_{sig}\epsilon_{tag,sig}$$

$$B_{sig} = \frac{N_{sig}^{obs}}{\sum_{\alpha} N_{tag}^{obs,\alpha}\epsilon_{tag,sig}^{\alpha}/\epsilon_{tag}^{\alpha}}$$

BESIII Preliminary

Mode	measured branching fraction $(\%)$	PDG	CLEOc
$\bar{D^0} \to K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \to \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$

- Systematic uncertainties are preliminary
- Good consistency with CLEO-c, statistical precision is comparable with only 1/3 data analyzed

D^0 Semileptonic Decays – q^2 Distribution

• Partition D⁰ semileptonic candidates in bins of

 $q^2 = \left(E_v + E_e\right)^2 - \left|\vec{p}_v + \vec{p}_e\right|^2$ with $E_v = E_{\text{miss}}$ $\left|\vec{p}_v\right| = E_{\text{miss}}$

• Fit *U* distribution in each q^2 bin

D^0 Semileptonic Decays – extract $f(q^2)$

- Points are data with statistical errors only
- Curves are Fermilab-MILC (arXiv:1111.5471) with ±1σ (statistical) bands

D⁰ Semileptonic Decays – Form Factor Parameterizations

Simple Pole Model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Modified Pole Model

Becirevic and Kaidalov PLB 478, 417 ([']00)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Series Expansion

 $f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) [z(q^{2},t_{0})]^{k}$

Becher and Hill PLB 633, 61 ([•]06)

$$z(q^{2},t_{0}) = \frac{\sqrt{t_{+}-q^{2}} - \sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}} + \sqrt{t_{+}-t_{0}}} \quad t_{\pm} = (m_{D} \pm m_{X})^{2}$$

D^0 Semileptonic Decays $-f(q^2)$

*D*⁰ Semileptonic Decays – Form Factor Results

Simple Pole	$f_+(0) V_{cd(s)} $	m_{pole}	
$D^0 \to K e \nu$	$0.729 {\pm} 0.005 {\pm} 0.007$	$1.943{\pm}0.025{\pm}0.003$	
$D^0 o \pi e \nu$	$0.142{\pm}0.003{\pm}0.001$	$1.876{\pm}0.023{\pm}0.004$	
Modified Pole	$f_+(0) V_{cd(s)} $	α	
$D^0 ightarrow Ke u$	$0.725 {\pm} 0.006 {\pm} 0.007$	$0.265 {\pm} 0.045 {\pm} 0.006$	
$D^0 o \pi e \nu$	$0.140 {\pm} 0.003 {\pm} 0.002$	$0.315{\pm}0.071{\pm}0.012$	
2 par. series	$f_+(0) V_{cd(s)} $	r_1	
$D^0 \to K e \nu$	$0.726 {\pm} 0.006 {\pm} 0.007$	$-2.034{\pm}0.196{\pm}0.022$	
$D^0 o \pi e \nu$	$0.140 {\pm} 0.004 {\pm} 0.002$	$-2.117{\pm}0.163{\pm}0.027$	
3 par. series	$f_+(0) V_{cd(s)} $	r_1	r_2
$D^0 \to K e \nu$	$0.729 {\pm} 0.008 {\pm} 0.007$	$-2.179{\pm}0.355{\pm}0.053$	$4.539 {\pm} 8.927 {\pm} 1.103$
$D^0 \to \pi e \nu$	$0.144 {\pm} 0.005 {\pm} 0.002$	$-2.728 {\pm} 0.482 {\pm} 0.076$	$4.194{\pm}3.122{\pm}0.448$

• Reasonable consistency with CLEO-c, comparable precision with 2/3 of data still to analyze

D⁰ Semileptonic Decays – Comparisons(from C.L.Liu)

- Numbers are from HFAG 2012 report (arXiv:1207.1158)
- Error bar of BESIII prel. will shrink with full data

25 February 2013

D⁰ Rare Decay

- $D^0 \to \gamma \gamma$
 - Flavor Changing Neutral Current(FCNC) ($c \rightarrow u + \gamma$) is forbidden at tree level
 - Dominated by long-distance effect
- Within SM:
 - Short distance: $B(D^0 \rightarrow \gamma \gamma)^{\sim} 10^{-11}$
 - Long distance: $B(D^0 \rightarrow \gamma \gamma) \sim 10^{-8}$ (PRD 64, 074008)
- Minimal super-symmetric standard model predicts the rate could be enhanced by a factor of 100 by exchanging gluino (PLB 500,304) or B(D⁰ → γγ)~10⁻⁶

- As the main background components, we also study events from $D^0 \rightarrow \pi^0 \pi^0$, and present preliminary results as:
 - $B(D^{0} \rightarrow \gamma \gamma)/B(D^{0} \rightarrow \pi^{0} \pi^{0})$
- Analysis method
 - Reconstruct one D with two γs or $\pi^0 s$, where $\pi^0 \rightarrow \gamma \gamma$
 - Conservation of energy and momentum is required: $\Delta E \sim 0, \ M_{\rm BC} \sim M_{\rm D0}$
- Details selection criteria are tuned based on MC

Experiments	BESIII	BABAR	CLEOc	PDG11
B ^{up} (D ⁰ →γγ) [×10 ⁻⁶]	<4.6	<2.2	<8.63	<27

• Another double-tag technique is ongoing, which can reject most of backgrounds and reduce systematic uncertainties

25 February 2013

Summary

- First charm results from the BESIII experiment have been presented on
 - Leptonic decay:
 - $B(D^+ \rightarrow \mu^+ \nu_{\mu}) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$
 - $f_{D+} = (203.91 \pm 5.72 \pm 1.97) \text{ MeV}$
 - $|V_{cd}| = 0.222 \pm 0.006 \pm 0.005$
 - Semileptonic decay (0.92fb⁻¹, will improve use full dataset)

Mode	measured branching fraction (%)	PDG	CLEOc
$\bar{D^0} \to K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \to \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$

- Rare decay: $B(D^0 \rightarrow \gamma \gamma)/B(D^0 \rightarrow \pi^0 \pi^0) < 5.8 \times 10^{-3} @90\%$ C.L.
- Many other topics: $D^0 \overline{D}{}^0$ mixing, CP violation, rare decay and other semileptonic decays are ongoing.

Backup

BESIII at BEPCII

- Comparable capabilities to CLEO-c, plus muon ID
- The big advantage: BEPCII is a two-ring machine designed for charm
 - Design (achieved) luminosity at ψ (3770): 1 (0.65) x 10³³

25 February 2013