Baryon Form Factors with BESIII

Cui Li (Uppsala University) on behalf of the BESIII Collaboration

14-19 February, FAIRNESS 2016

BESIII Experiment

Nucleon EM FFs

Hyperon EM FFs

Summary

Outline

- Motivation
- BEPCII and BESIII
- Nucleon Electromagnetic Form Factors
- □ Hyperon Electromagnetic Form Factors
- Summary

Motivation

BESIII Experiment

Nucleon EM FFs

Hyperon EM FFs

Summary

Motivation

Electromagnetic Form Factors

□ The nucleons are the fundamental building blocks of matter

Clearly understanding nucleons structure is critical to the understanding of the world

□ EM FFs are key ingredients to describe the internal structure

EM FFs provide the most direct access to the spatial charge and magnetization distributions

5/26

Baryon electromagnetic form factors

could be studied in:

Space-like:

- \Box elastic scattering $e^-B \rightarrow e^-B$
- \Box momentum transfer squared $q^2 < 0$
- **\Box** FFs are real as function of q^2

Time-like:

- $\Box \ e^+e^- \leftrightarrow B\bar{B}$
- \Box momentum transfer squared $q^2 > 0$
- \Box FFs are complex as function of q^2

We can measure baryon time-like EM FFs in BESIII

Two methods

Direct production

Initial state radiation (ISR)

	Energy Scan	Initial State Radiation
Data sample	A series of \sqrt{s}	one \sqrt{s}
q ² range	single at each beam energy	from threshold to \sqrt{s}
Integrated Lum.	low at each beam energy	high at one energy beam energy
	this talk	in progress

Measurement of TL EM FFs

- $\Box R = |G_E/G_M|$ measurement
- □ Angular dependence: $\frac{d\sigma}{dcos\theta} = N[(1 + cos^2\theta) + \frac{R^2}{\tau}(1 cos^2\theta)]$ *N* is the overall normalization.
- □ All the formulas are valid
 - \Box for the baryons with spin=1/2
 - assuming one photon exchange domination

8/26

Hyperon electromagnetic form factors

- $\hfill\square$ Hyperons unstable \rightarrow cannot serve as target
- Only Time-Like hyperon EM FFs are experimentally accessible.
- \Box e+e- -collisions are currently the best way to study hyperon structure.
- Difference between nucleon and hyperon EM FFs provides a powerful test of SU(3) symmetry

Polarization effect in the $e^+e^- ightarrow \Lambda\bar{\Lambda} ightarrow p\pi^-\bar{p}\pi^+$

In the time-like region:

- $\Box \ G_E(q^2) = |G_E(q^2)|e^{i\Phi_E}$
- $\Box \ G_M(q^2) = |G_M(q^2)|e^{i\Phi_M}$
- □ Relative phase: $\Delta \Phi = \Phi_M - \Phi_E$

A nonzero relative phase leads to polarization P_n of the outgoing baryons.

- The *n* is the normal to the production plane, *n̂* = *ê*_{e⁺} × *ê*_{λ̄}
 Î is Λ(λ̄) momenta direction in *c.m.* frame
- $\hat{\mathbf{m}} = \hat{\mathbf{n}} \times \hat{\mathbf{l}}$

$$\square P_n = \frac{\sin 2\theta Im[G_E(q^2)G_M^*(q^2)]/\sqrt{\tau}}{|G_M(q^2)|^2(1+\cos^2\theta)+\frac{1}{\tau}|G_E(q^2)|^2\sin^2\theta} \Longrightarrow \text{ gives modulus of } \Delta \Phi$$
$$\square C_{Im} = \frac{\sin 2\theta Re[G_E(q^2)G_M^*(q^2)]/\sqrt{\tau}}{|G_M(q^2)|^2(1+\cos^2\theta)+\frac{1}{\tau}|G_E(q^2)|^2\sin^2\theta} \Longrightarrow \text{ gives sign of } \Delta \Phi$$

Measure the Λ polarization

- The differential cross section of the decay proton angle: ^{dσ}/_{dcosθ_p} = ¹/₂(1 + α_ΛP_ncosθ_p)

 The polarization can be extracted by: P_n = ³/_{α_Λ} < cosθ_p >

 The spin correlation of the Λ and Λ̄:
 ^a
 - $C_{lm} = \left(rac{9}{lpha ar lpha}
 ight) < cos heta_{pl} cos heta_{ar pm} >$
- lacksquare α is the asymmetry parameter,

$$\alpha_{\Lambda} = 0.64, \alpha_{\bar{\Lambda}} = -0.64$$

Hence, the phase between the form factors would be known.

Motivation

BESIII Experiment

Nucleon EM FFs

Hyperon EM FFs

Summary

R, J

11/26

BEPCII and **BESIII**

Motivation

BEPCII and BESIII

Bird view of Beijing Electron Positron Collider (BEPCII)

13/26

BEPCII storage rings

Double-ring e^+e^- collider:

- Beam energy: 1.0-2.3GeV
- \Box Crossing angle: ± 11 mrad
- Design
 - Luminosity: $1 \times 10^{33} cm^{-2} s^{-1}$
- Achieved: $8.5 \times 10^{32} cm^{-2} s^{-1}$
- $\hfill\square$ Energy spread: 5.16 \times 10^{-4}
- Optimum energy: 1.89*GeV*

BESIII detector

BESIII detector:

- □ MDC: main drift chamber (40% He + 60% propane)
- □ TOF: time of flight (two layers plastic scintillators)
- □ EMC: electromagnetic calorimeter (CsI(TI))
- □ MUC: muon system (resistive plate chambers)

Performance:

Expt.	MDC Wire resolution	MDC dE/dx resolution	EMC Energy resolution	Expt.	TOF time resolution	
CLEO BABAR Belle	110 μm 125 μm 130 μm	5% 7% 5.6%	2.2 - 2.4% 2.67% 2.2%	CDF Belle	100 ps 90 ps 68 ps (Barrel)	
BESIII	115 <i>µ</i> m	< 5%	2.3%	BESIII	100 ps (ETOF)	B

The BESIII data sample

15/26

The small and big scan

Mentioned in this talk.

Small scan at 2011/2012. $\sim 157 pb^{-1}$

Big scan at 2014/2015. \sim 525pb⁻¹

$E_{cm}(GeV)$	$Luminosity(pb^{-1})$	Used for		$E_{cm}(GeV)$	$Luminosity(pb^{-1})$	Purpose
Circ	V (1 /	Proton FFs		2.0	9.3	Nucleon FFs
2.2324	2.6			2.1	11.3	Nucleon FFs
		$\Lambda \ { m FFs}$		2.15	2.8	Y(2175)
2.4	3.4	Proton FFs		2.175	10.1	Y(2175)
	0.4	$\Lambda \ { m FFs}$		2.2	13.0	Nucleon FFs & $Y(2175)$
		Proton FFs		2.2324	11.2	Hyp Threshold $(\Lambda \bar{\Lambda})$
2.8	3.8	ΛFFs		2.3094	20.5	Nucleon & Hyp FFs
					20.0	Hyp Threshold $(\Sigma^0 \overline{\Lambda})$
3.05	14.9	Proton FFs		2.3864	22.1	Hyp FFs
3.06	15.1	Proton FFs		2.3004	22.1	Hyp Threshold $(\Sigma^0 \overline{\Sigma}^0)$
	30.7	Proton FFs		2.396	64.8	Nucleon & Hyp FFs
3.08		ΛFFs				Hyp Threshold $(\Sigma^- \bar{\Sigma}^+)$
		AFFS		2.5	1.0	R scan
3.4	1.7			2.6444	66.3	Nucleon & Hyp FFs
3.5	3.6				00.5	Hyp Threshold $(\Xi^-\bar{\Xi}^+)$
3.542	18.2			2.7	1.0	R scan
3.6	9.6	Proton FFs		2.8	1.0	R scan
				2.9	102.1	Nucleon & Hyp FFs
3.65	48.8			2.95	15.7	$m_{par{p}}$ step
3.671	4.6			2.981	15.4	$\eta_c, m_{p\bar{p}} \text{ step}$
				3.0	15.3	$m_{p\bar{p}}$ step

3.02

3.08

16.6

123.0

 $m_{p\bar{p}}$ step

Nucleon FFs

Motivation

BESIII Experiment

Nucleon EM FFs

Hyperon EM FFs

Summary

17/26

Nucleon Electromagnetic FFs

Experimental status of proton EM FFs

Nucleon EM FFs

Proton FFs from 2012 scan

Phys. Rev. D 91, 112004 (2015)

- □ Uncertainty in effective FFs improved by 30%
- □ The $R = |G_E/G_M|$ ratio are close to unity
- **Consistent** with BaBar results in the same q^2 region

Proton FFs: prospects from 2015 scan

From proposal

\Box Expected statistical accuracies for *R* between the 9% and 35%.

- \Box Combination of the last three energy points would lead to 15% accuracy in R.
- \Box Expected statistical accuracies for $|G_M|$ between 3 to 9%, 9 to 35% for $|G_E|$

Neutron EM FFs

Two measurements

- □ FENICE with 74 $e^+e^- \rightarrow n\bar{n}$ events
- recently confirmed by SND
- □ from *nn* threshold up to 2GeV
- Compare with proton FFs (BaBar)
 - both increase near threshold
 - close to each other
- BESIII: Based on the new scan data in 2-3.1GeV:
 - \Box Extract EM FFs in wide q^2 region
 - \Box Measure R for the first time

Motivation

BESIII Experiment

Nucleon EM FFs

Hyperon EM FFs

Summary

22/26

Hyperon Electromagnetic FFs

Experimental status

24/26

 $e^+e^-
ightarrow \Lambda ar{\Lambda}$ from 2012 scan

- Cross section does not vanish at threshold
- Suggested explanation Coulomb interaction at quark level
- Data sample is too small to extract angular distributions
 - □ model dependent efficiencies → the biggest contribution to the systematic uncertainty

Hyperon FFs: expectation from 2015 scan

For $\Lambda\bar{\Lambda},$ we could give angular distribution

- \rightarrow model dependence of efficiencies gone
- \rightarrow get rid of the biggest source of systematic uncertainties

We shall also be able to measure $e^+e^- \rightarrow \Lambda \bar{\Sigma}^0, \Sigma^0 \bar{\Sigma}^0, \Sigma^+ \bar{\Sigma}^-, \Sigma^- \bar{\Sigma}^+$

- Determine FFs, R and polarization at single energy points
- □ Measure effective FFs with possible energy points

Summary

2012 scan:

- □ The proton form factors and their ratio have been measured.
- \Box Preliminary results of Λ just released.

2015 scan:

- Proton FFs will be significantly improved
- BESIII's first result of neutron FFs will come
- \Box Possible to measure relative phase of Λ
- More and better measurements of baryon FFs will come

Measurements by ISR also in progress

Thank you!

backups

 $e^+e^-
ightarrow \Lambdaar{\Lambda}$ at $\sqrt{s}=2232.4$ MeV

BESIII has collected data at $\sqrt{s} = 2232.4$ MeV, which is only 1.0 MeV above $\Lambda\bar{\Lambda}$ threshold. Two separate analysis:

 \Box Reconstruct $\Lambda o p\pi^-$ and $\bar{\Lambda} o \bar{p}\pi^+$

- □ The momentum of final states are too low to leave message in the detector.
- Antiproton interacting on the beam pipe will produce secondary particles, whose vertex is around 3 cm.

$$\square N_{\Lambda\bar{\Lambda}} = 43 \pm 7$$

$$\Box$$
 Reconstruct $\bar{\Lambda} \rightarrow \bar{n}\pi^0$

The final states of π^0 has a mono-momentum around 105 MeV.

$$\square N_{\Lambda\bar{\Lambda}} = 22 \pm 6$$

Results of cross section

□ Data at $\sqrt{s} = 2400.0$, 2800.0 and 3080.0 MeV are also used to study $e^+e^- \rightarrow \Lambda\bar{\Lambda}$, with $\Lambda \rightarrow p\pi^-$ and $\bar{\Lambda} \rightarrow \bar{p}\pi^+$.

\sqrt{s} (MeV)	Reconstruction	σ_{Born} (pb)	G (×10 ⁻²)
2232.4	$\Lambda o p\pi^-, \overline{\Lambda} o ar{p}\pi^+$	$325\pm53\pm46$	
	$\overline{\Lambda} ightarrow ar{n} \pi^0$	$300\pm100\pm40$	
	combined	320 ± 58	63.4 ± 5.7
2400.0		$133\pm20\pm19$	$12.93 \pm 0.97 \pm 0.92$
2800.0		$15.3\pm5.4\pm2.0$	$4.16 \pm 0.73 \pm 0.27$
3080.0		$3.9\pm1.1\pm0.5$	$2.21 \pm 0.31 \pm 0.14$

