Charmonium and light hadron spectroscopy

HAG UNIVERSI

Chengping Shen(沈成平) Beihang University

PIC 2013 : 4-7 September, 2013, IHEP

Outline

Charmonium states:
 Ψ(4040), Ψ(4160), η_c, η_c(2S), Ψ_{2,}
 X(3872)

- light hadron spectroscopy
 X(1835), ηη, ωω, φφ, ωφ
- Summary & Outlook

Results are from these experiments

Most of the results are from BESIII and Belle. Due to limited time, I can only cover a few topics. For more results, please refer to Belle and BESIII publication pages:

http://bes3.ihep.ac.cn/pub/physics.htm http://belle.kek.jp/bdocs/b_journal.html

Charmonium

• Charmed-quark(c) anticharmed-quark(\bar{c}) bound states.

Has been a power tool for the understanding of the strong interaction
 QCD is well tested at high energies
 In low-energy regime, many aspects are not understood
 Test QCD and improve out limited understanding of QCD

For Exotic hadrons and Quarkonium, please wait for Choi's report – next one !

¯ψ ^c 1--

_cη_c,η_c(2S)

0-+, 0++, 2++

 e⁺e⁻ annihilation (including ISR/double charmonium)

2. pp annihilation

3. Two-photon process

4. B decays -

5. Through charmonium transition

J/ψ,Ψ(2S)

 $\sim^{\gamma*}$

x _{c.J}, η _c

1⁻⁻ states: J/ψ, ψ', ψ", ψ(4040), ψ(4160), ψ(4415)

- Abundantly produced from e+e-, pp collisions
- Observed in 70's

6

J^{PC} = 1⁻⁻ states produce peaks in R_{had}

Extraction of resonance parameters from R measurement

$e^+e^- \rightarrow \eta J/\psi @4.01 GeV$

Hadronic transition between charmonium states above open-charm threshold is not well understood

- Data sample: 478 pb⁻¹ @4.01GeV **
- First observation: $e^+e^- \rightarrow \eta J/\psi$ (significance > 10σ)
- Measured Born cross section: (32.1±2.8 ±1.3) pb
- Assume $\eta J/\psi$ from $\psi(4040)$ $Br(\psi(4040) \rightarrow \eta J/\psi) = (5.2 \pm 0.5 \pm 0.2 \pm 0.5) \times 10^{-3}$ $Br(\psi(4040) \rightarrow \pi^0 J/\psi) < 2.8 \times 10^{-4} @90\% CL$
- Consistent with the theoretical calculation (Q.Wang et al., arXiv:1206.4511)
- Partial width of $\psi(4040) \rightarrow \eta J/\psi$: ~400keV (> two times $\psi(4040) \rightarrow \pi \pi J/\psi$)
- Events / 0.01 GeV/c² \sim Similar to the hadronic transition of Y(4S) (admixture of a four-quark state in the wave function, M. B. Voloshin, Mod. Phys. Lett. A 26, 773 (2011))

ψ**(4040) and** ψ**(4160) decay into** η **J/**ψ

- * BESIII can not measure the line shape of $\eta J/\Psi$. Belle did it via ISR.
 - $\eta \rightarrow \gamma \gamma$ and $\pi^+ \pi^- \pi^0$
- $J/\Psi \rightarrow e^+e^-$ mode is not used in $\eta \rightarrow_{YY}$ (high Bhabha bkg.)
- Ψ (2S) signal is a tagged signal
- σ (e⁺e⁻ \rightarrow Ψ (2S))=13.9 \pm 1.4 (stat)pb and 14.0 \pm 0.8 (stat) for $\eta \rightarrow \pi^+\pi^-\pi^0$ and $_{YY}$, in good agreement with the theoretical value of 14.7pb.

• An unbinned maximum likelihood fit to the signal events and η and J/ Ψ sidebands simultaneously • Two coherent P-wave BWs for Ψ (4040) and Ψ (4160)

transition rates to η J/ Ψ are large, being of order 1 MeV/c²

Cross section of e⁺e⁻ $\rightarrow \eta J/\Psi$

- We find no evidence for the Y(4260), Y(4360), Ψ(4415) or Y(4660) in the η J/ψ final states
- * The cross sections of $e^+e^- \rightarrow \eta J/\psi$ are around 70 pb and 50 pb at the Ψ (4040) and Ψ (4160) peaks, to be compared with around 20pb and 10pb measured in e⁺e⁻ $\rightarrow \pi^+\pi^-J/\psi$

This is the first time that the ψ (4040) and ψ (4160) have been observed to decay to final states not involving charm meson pairs.

Spin singlet states: $\eta_c \eta_c(2S) h_c$

Be produced in y y process, B decay, pp collision, ...

Least-understood states below the DD threshold

11

η_c(1S)

S-wave spin-singlet ground state, first found by Markll in 1980
 PRL 45, 1146 (1980)

The mass & width

J/ ψ radiative transition:M ~ 2978.0MeV/ c^2 , Γ ~ 10MeV $\gamma\gamma$ process:M = 2983.1 ± 1.0 MeV/ c^2 , Γ = 31.3 ± 1.9 MeV

Measure η_c in $\psi' \rightarrow \gamma \eta_c$

The interference between η_c and non-resonant is significant.Simultaneous fit to 6 modes,Mass = 2984.3 ± 0.6 ± 0.6 MeV/c²

Width = $32.0 \pm 1.2 \pm 1.0$ MeV

13

BEST

Comparison with the η_c results

$\eta_c(2S)$

Crystal Ball's "first observation" of $\psi' \rightarrow \gamma X$ never been confirmed PRL 48 70 (1982); until Belle found it in $B \rightarrow K\eta_c(2S)$ in 2002.

Observed in different production mechanisms,

- 1. B→Kη_c(2S)
- 2. $\gamma \gamma \rightarrow \eta_c (2S) \rightarrow KK\pi$
- 3. double charmonium production

Belle: PRL 89 102001 (2002) CLEOc: PRL 92 142001 (2004) Belle: NPPS.184 220 (2008); PRL 98 082001(2007) BaBar: PRL 92 142002 (2004); PR D72 031101(2005) BaBar: PR D84 012004 (2011)

4. <u>M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$ </u> CLEO found no signals in 25M ψ' . $BF(\psi' \rightarrow \gamma \eta_c(2S)) < 7.6 \times 10^{-4}$ PRD 81 052002 (2010)

Experimental challenge : search for photons of 50 MeV

Evidence $\eta_c(2S) \rightarrow KsK^{+-} \pi^{-+} \pi^+ \pi^-$

PRD 87,052005(2013)

- For η_c(2S), only two measured decay Brs are available: KKπ and K⁺K⁻ π⁺ π⁻ π⁰
- $\psi' \rightarrow \gamma \eta_c(2S)$: M1 transition
- Search for more η_c(2S) decay modes
- To measure the mass, width of η_c(2S)

The measured M and Γ are consistent with values in PRL109, 042003 (2012)

Summary for $\eta_c(2S)$

18

$X(3823) \rightarrow \chi_{c1}\gamma \text{ in } B \rightarrow \chi_{c1}\gamma K$

Simultaneous fit to $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm} \& B^{0} \rightarrow \chi_{c1} \gamma K_{S}$ χ_{c1} reconstructed in $\gamma J/\psi$

 $M_{X(3823)} = M_{X(3823)}^{meas} - M_{\psi'}^{meas} + M_{\psi'}^{PDG}$ $= 3823.1 \pm 1.8 \pm 0.7 \, MeV$

The measured mass and other properties are consistent with the missing $\psi_2(1 \ {}^3D_2)$ state

What is the X(3872)?

♦ Mass: Very close to D⁰D^{*0} threshold *

- Width: Very narrow, < 1.2 MeV</p>
- ♦ J^{PC}=1⁺⁺
 [LHCb]
- Production

 $M(\pi\pi J/\psi) - M(J/\psi)$ [GeV]

sin pp/pp collison – rate similar to charmonia In B decays – KX similar to cc, K*X smaller than cc SY(4260)→γ+X(3872) [BESIII, see next slides]

Nature (very likely exotic)
 Loosely D
⁰D^{*0} bound state (like deuteron?)?
 Mixture of excited χ_{c1} and D
⁰D^{*0} bound state?
 Many other possibilities (if it is not χ'_{c1}, where is χ'_{c1}?)

ISR ψ ' signal is used for rate, mass, and mass resolution calibration. N(ψ ')=1242 ; Mass=3685.96±0.05 MeV; σ_{M} =1.84 ±0.06 MeV BESIII preliminary

N(X(3872))=15.0±3.9 **5.3** σ M(X(3872)) = 3872.1±0.8±0.3 MeV [PDG: 3871.68±0.17 MeV]²²

Observation of $e^+e^- \rightarrow \gamma X(3872)$

$\sqrt{s} (\text{GeV}) \sigma^B[e^+e^- \rightarrow \gamma X(3872)] \cdot \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) \text{ (pb)}$

4.009	< 0.13 at 90% C.L.
4.230	$0.32 \pm 0.15 \pm 0.02$
4.260	$0.35 \pm 0.12 \pm 0.02$
4.360	< 0.39 at 90% C.L.

BESI

It seems X(3872) is from Y(4260) decays. At 4.26 GeV, $\sigma^{B}(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi) = (62.9 \pm 1.9 \pm 3.7) \text{ pb},$ $\frac{\sigma[e^{+}e^{-} \rightarrow \gamma X(3872)] \cdot \mathcal{B}(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)}{\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi)} = (5.6 \pm 2.0) \times 10^{-3}$

BESIII preliminary

23

If we take $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) \sim 5\%$, (>2.6% in PDG) $\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)} \sim 11.2\%$ Large transition ratio !

light hadron spectroscopy

Confirmation of X(1835) and two new structures

An amplitude analysis could help with interpretation for the additional new structures!

X(1835) favors 0⁻⁺

Possible theoretical explanation

Finally we need a full amplitude analysis to determine the property for the new structures, but there were many predictions which make the observation more interesting!

✓ It is the first time resonant structures are observed in the 2.3 GeV/c2 region, it is interesting since:

LQCD predicts that the lowest lying pseudoscalar glueball: around 2.3 GeV/c².

 $J/\psi \text{-->}\gamma\pi\pi\eta'$ decay is a good channel for finding O^+ glueballs.

Nature of X(2120)/X(2370)
 pseudoscalar glueball ?
 η/η' excited states?

PRD82,074026,2010 J.F. Liu, G.J. Ding and M.L.Yan PRD83:114007,2011 (J.S. Yu, Z.-F. Sun, X. Liu, Q. zhao), and more...

ָתָ, תְ (1760) and X(1835) in γγ→ η ' π + π -

Search for X(1835) in Belle experiment in two-photon process !

▼ X(1835) and n (1760) with interference (assuming J^{PC}=0⁻⁺)

▼ No interference between resonant and non-resonant

Two solutions (see Table)

★ thin solid line: total bkg ★ thick dashed (dot-dashed, dotted) lines: the η (1760) (X(1835), the interference term) ★ thin dashed, dot-dashed and dotted lines: non-resonant, η '-sidebands and η ' π + π - X bkg components

 The fit with only η (1760) signal is also tried

Parameter	One resonance	Two interferin	ng resonances
		Solution I	Solution II
		X(1835)	
$M, \mathrm{MeV}/c^2$		1836.5	(fixed)
$\Gamma, \mathrm{MeV}/c^2$		190 (f	fixed)
Y		$332^{+140}_{-122} \pm 73$	$632^{+224}_{-231} \pm 139$
Y_{90}		< 650	< 1490
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}/c^2$		$18.2^{+7.7}_{-6.7} \pm 4.0$	$35^{+12}_{-13} \pm 8$
$(\Gamma_{\gamma\gamma}\mathcal{B})_{90} \text{ eV}/c^2$		< 35.6	< 83
S, σ		2.	.8
		$\eta(1760)$	
$M, \mathrm{MeV}/c^2$	$1768^{+24}_{-25} \pm 10$	1703^{+1}_{-1}	$^{2}_{1} \pm 1.8$
$\Gamma, \mathrm{MeV}/c^2$	$224^{+62}_{-56} \pm 25$	$42^{+3\hat{6}}_{-22}$	± 15
Y	$465^{+131}_{-124} \pm 60$	$52^{+35}_{-20} \pm 15$	$315^{+223}_{-165} \pm 88$
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}/c^2$	$28.2^{+7.9}_{-7.5} \pm 3.7$	$52^{+35}_{-20} \pm 15$ $3.0^{+2.0}_{-1.2} \pm 0.8$	$18^{+13}_{-10} \pm 5$
S, σ	4.7	4.1	
ϕ		$(287^{+42}_{-51})^{\circ}$	$(139^{+19}_{-9})^{\circ}$

$M(\eta' \pi^+ \pi^-)$ in η_c mass region

Assuming no interference
 between η_c and background

★ The fit with interference was also tried. The results of mass and width of η_c are almost the same. The differences are taken as sys error. \overline{Paran}

Parameters	This work	PDG
Y	$486^{+40}_{-39} \pm 53$	
,	$2982.7 \pm 1.8 \pm 2.2$	2980.3 ± 1.2
$\Gamma, \mathrm{MeV}/c^2$	$37.8^{+5.8}_{-5.3} \pm 2.8$	26.7 ± 3
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}/c^2$	$50.5^{+4.2}_{-4.1} \pm 5.6$	194 ± 97
 $\mathcal{B},~\%$	0.87 ± 0.20	2.7 ± 1.1

Search for $e^+e^- \rightarrow J/\Psi + X(1835)$ at 10.6 GeV

- Search for X(1835) in Belle experiment in e⁺e⁻ continuum process !
- ★ C-even glueballs can be studied in e⁺e⁻ → $γ^*$ → H+G_J, H denotes a ccbar quark pair or charmonium state
- Signal pdf is from MC with mass and width fixed to the values from BESIII [PRL 106, 072002, 2012]
- ✤ 90% C.L. upper limit on the σ (e+e-
- → J/Ψ X(1835))Br(X(1835) →>2
- charged tracks)<1.3 fb
 </p>

Mode	$N_{ m signal}$	$N_{ m backgroud}$
$M_{\rm recoil}(J/\psi \to \mu^+\mu^-)$	-20.0 ± 20.0	340.0 ± 18.0
$M_{\rm recoil}(J/\psi \to e^+e^-)$	-7.5 ± 7.6	859.5 ± 29.2

open histogram: J/Ψ sidebands shaded histogram: 29 charmed + uds background

BEST PWA of $J/\psi \rightarrow \gamma \eta \eta$

PRD 87,092002(2013)

- Search for glueballs, hybrids and multi-quarks
- LQCD: the lowest mass glueball with 0⁺⁺ is in the mass region from 1.5-1.7 GeV
- The mixing with q <u>q</u> nonet mesons makes the identification of the glueballs difficult
- Radiative J/ψ decay is a gluon-rich process
- J/ψ radiative decay to
 two pseudoscalar mesons
 offers a very clean
 laboratory to search for
 scalar and tensor glueballs

Resonance Mass(MeV/ c^2) Width(MeV/ c^2) $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ Significance

$f_0(1500)$	1468^{+14+23}_{-15-74}	$136\substack{+41+28\\-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759{\pm}6^{+14}_{-25}$	$172{\pm}10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0 σ
$f_0(2100)$	$2081{\pm}13^{+24}_{-36}$	273_{-24-23}^{+27+70}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
$f_{2}^{'}(1525)$	$1513 \pm 5^{+4}_{-10}$	75_{-10-8}^{+12+16}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229_{-42-155}^{+52+88}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362_{-30-63}^{+31+140}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

$\gamma\gamma \rightarrow \eta\eta$

PRD 82, 114031 (2010)

Fits for low-mass resonances with partial-wave decomposition

Parameter	Fit (1.1-1.64GeV)	Unit
Mass $f_0(Y)$	1262 ⁺⁵¹ ₋₇₈ ⁺⁸² ₋₁₀₃	MeV/c ²
Width	484 ⁺²⁴⁶ ₋₁₇₀ ⁺²⁴⁶ ₋₂₆₃	MeV
Γγγ Β(ηη)	121 ⁺¹³³ ⁺¹⁶⁹ ₋₅₃ ⁻¹⁰⁶	eV
Γγγ Β(ηη) f₂(1270)	11.5 ^{+1.8} _{-2.0} ^{+4.5} _{-3.7}	eV
χ ² (ndf)	137.1 (119)	

Parameter	Fit (1.1-2.0GeV)	Unit
Mass	1737 ±9 ⁺¹⁹⁸ -65	MeV/c ²
Width $f_2(X)$	228 +21 +234 -153	MeV
Γγγ Β(ηη)	5.2 ^{+0.9} -0.8 ^{+37.3} -4.5	eV
χ ² (ndf)	311.4(204)	

 χ^2 (ndf) Fit (1.1-Parameter Uni 1.64GeV) 1 Γγγ Β(ηη) f'2(1525) 23.1 +2.6 eV 136.4 (119) Sol. A 8.0 +2.0 Sol. B 137.2 (119) eV **5.0** ^{+5.8}-5.0 Sol. C 138.6 (119) eV

Structures are very complicated !

PDG: Product of Γγγ and B(ηη) *f*₂(1270) : 12.1 ± 2.8 eV : consistent *f*'₂(1525): 8.3 ± 2.1eV :

31

BESU PWA of $J/\psi \rightarrow \gamma \omega \phi$

- X(1810) was observed in $J/\psi \rightarrow \gamma \omega \phi$ by BESII [PRL96,162002]
- ♦ PWA: 0++ favors 0-+ or 2++ (>10 o)
- ♦ J/ψ → γ ω φ is a doubly OZI suppressed process
- Possible interpretations: a tetraquark state, a hybrid, or a glueball state, a dynamical effect arising from intermediate meson rescattering, or a threshold cusp of an attracting resonance.

Resonance	\mathbf{J}^{PC}	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	(0^{++})	1795 ± 7	95 ± 10	1319 ± 52	783	4 ($> 30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	20.4σ
$f_0(2020)$	0^{++}	1992	442	715 ± 45	100	2	13.9σ
$\eta(2225)$	0^{-+}	2226	185	70 ± 30	23	2	6.4σ
phase space	0^{-+}			319 ± 24	45	2	9.1σ

In order to search for possible structures in low mass region, we did $\chi\chi \rightarrow \forall\forall$

$$\sigma_{\gamma\gamma\to VV}(W_{\gamma\gamma}) = \frac{\Delta n}{\frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}}\epsilon(W_{\gamma\gamma})\Delta W_{\gamma\gamma}}$$

 $\frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}}$: the differential luminosity ϵ : efficiency $\Delta W_{\gamma\gamma}$: bin width

 Δn : the number of events in the $\Delta W_{\gamma\gamma}$ bin.

there are at least two different J^P components (J=0 and J=2)

$\Gamma_{\gamma\gamma}\mathcal{B}(X \to VV)$ (eV) for η_c , χ_{c0} and χ_{c2} : Fits: three incoherent BW \otimes double Gaussian + 2nd order

Chebychev polynomial

PRL 108, 232001 (2012)

The upper limits are obtained at the 90% confidence level.

 $< 0.34 \quad 1.72 \pm 0.33 \pm 0.14$ < 3.9 χ_{c0} $0.62 \pm 0.07 \pm 0.05$ < 0.04< 0.64 χ_{c2}

The measurements of $\Gamma_{\gamma\gamma}\mathcal{B}(X \to \phi\phi)$ are consistent with results [Eur. Phys. J. C 53, 1 (2008)] with improved precision.

Summary & Outlook

 Charmonium states provide a platform to study nonperturbative mechanism.

- Below the open-charm threshold: Spin-singlet states η_c , h_c , $\eta_c(2S)$ have been measured
- Lots of discoveries, expected and unexpected
 Xc_{c2}' is assigned; X(3823) is consistent with y₂(1 ³D₂)
 Are the X/Y states really new? Or the missing charmonium states X_{c1}'? What's their nature?
- Future potential model, Lattice QCD, sum rules, novel method
- BESIII and future experiments, Panda, Belle II, have chance to establish not-yet-observed states.

- Many interesting states are observed: X(1835)(0⁻⁺), X(ω φ)(0⁺⁺), ...
- Some of them may be exotic states candidates.
- ♦ Where is lowest scalar/ pseudo-scalar glueball($f_0(1500), f_0(1710), x(\omega \varphi)$?...)
- Troubled by the possible mixing between glueball and qq, it's hard to distinguish an exotic state from normal states.
- Amplitude analysis is needed to determine the property of these states.

s

$VV (V = \omega \text{ or } \phi)$ invariant mass distributions:

 $|\sum \vec{P_t^*}|$: the magnitude of the vector sum of the final particles' transverse momenta in the e^+e^- C.M. frame.

N(VV) in each VV mass bin is obtained by fitting the $|\sum \vec{P_t^*}|$ distribution. Signal pdf: MC simulation Background pdf: 2nd Cheby. poly.

The shaded histograms are from the corresponding normalized sidebands

There are some obvious structures in the low VV invariant mass region. We did spin-parity analysis.

Spin-parity analysis:

For $\gamma\gamma\to VV,$ five angles are kinematically independent: $z,~z^*,~z^{**},~\phi^*,$ and $\phi^{**}.$

Using $\omega \phi$ as an example:

- z: cosine of the scattering polar angle of ϕ in the $\gamma\gamma$ C.M. system;
- z* and φ*: the cosine of the helicity angle of K⁺ in the φ decays and the azimuthal angle defined in the φ rest frame with respect to the γγ → ωφ scattering plane;
- z^{**} and ϕ^{**} : the cosine of the helicity angle of normal direction to the decay plane of the $\omega \to \pi^+ \pi^- \pi^0$ and the azimuthal angle defined in the ω rest frame.

transversity angle (ϕ_T): $\phi_T = |\phi^* + \phi^{**}|/2\pi$ polar-angle product (Π_θ): $\Pi_\theta = [1 - (z^*)^2][1 - (z^{**})^2]$

 N_{event} is obtained by fitting the $|\sum \vec{P}_t^*|$ distribution in each ϕ_T and Π_{θ} bin in the 2D space.

z

Х,

The number of event projections in the 2D space of the transversity angle and polar-angle product

- for ωφ: a mixture of 0⁺ (S-wave) and 2⁺ (S-wave) describes data with χ²/ndf = 0.9 (ndf is the number of degrees of freedom)
- for $\phi\phi$: a mixture of 0⁺ (S-wave) and 2⁻ (P-wave) describes data with $\chi^2/ndf = 1.3$
- for $\omega\omega$: a mixture of 0⁺ (S-wave) and 2⁺ (S-wave) describes data with $\chi^2/ndf = 1.3$