

XVI International Conference on Hadron Spectroscopy September 13-18, 2015, Newport News, VA

COLLINS ASYMMETRY AT BESIII

<u>Kai Zhu</u>

On behalf of the BESIII Collaboration Institute of High Energy Physics

Outline

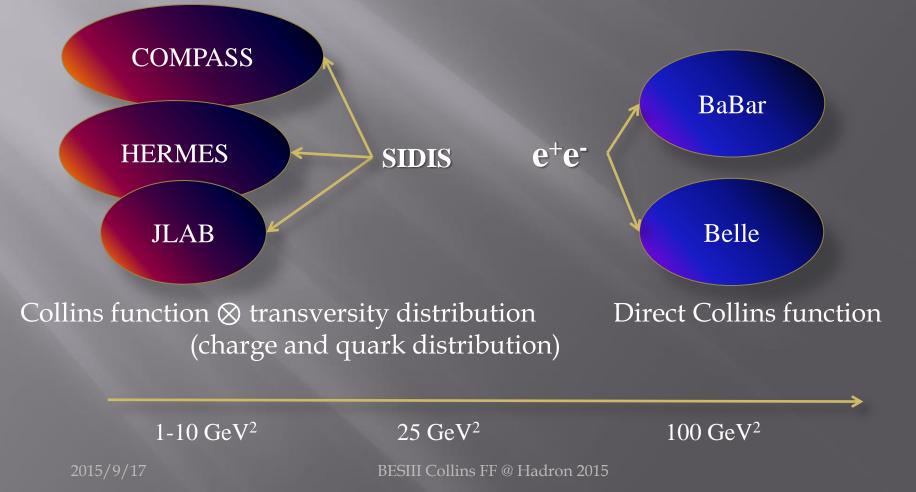
Introduction of Collins Function **BEPCII and BESIII detector** Analysis overview ➢ Reference frame > Measurement > Results Systematics > Summary

arXiv: 1507.06824

Fragmentation Functions

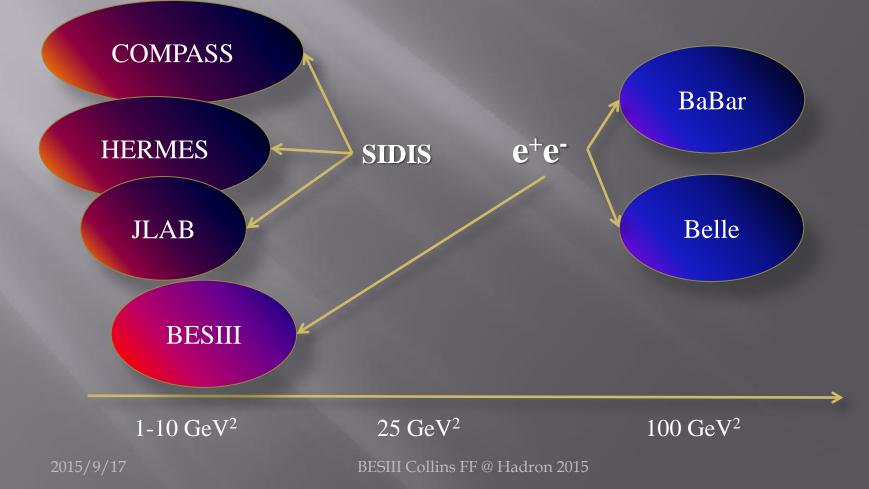
- **First** set: cross section observables in semiinclusive e^+e^- annihilation $e^+e^- \rightarrow \gamma/Z \rightarrow h+X$ $\frac{1}{\sigma_0} \frac{d^2 \sigma^h}{dx \, d \cos \theta} = \frac{3}{8} (1 + \cos^2 \theta) \underline{F_T^h(x,s)} + \frac{3}{4} \sin^2 \theta \underline{F_L^h(x,s)} + \frac{3}{4} \cos \theta \underline{F_A^h(x,s)}$
- Second set: final state parton distribution functions $\frac{1}{\sigma_0} \frac{d\sigma^h}{dx} = F^h(x,s) = \sum_i \int_x^1 \frac{dz}{z} C_i(z,\alpha_s(\mu),\frac{s}{\mu^2}) D_i^h(\frac{x}{z},\mu^2) + \mathcal{O}(\frac{1}{\sqrt{s}})$

probability parton *i* fragments into a hadron *h*


K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)

Spin-dependent Fragmentation

Relate the polarization of the quark to that of the final hadron Non-perturbative QCD Spontaneous breaking Longitudinal polarization of chiral symmetry Transverse polarization Collins FF $D_{hq^{\uparrow}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h}$ **Unpolarized FF** J. Collins, Nucl. Phys. B936, 161 (1993)


Measurements

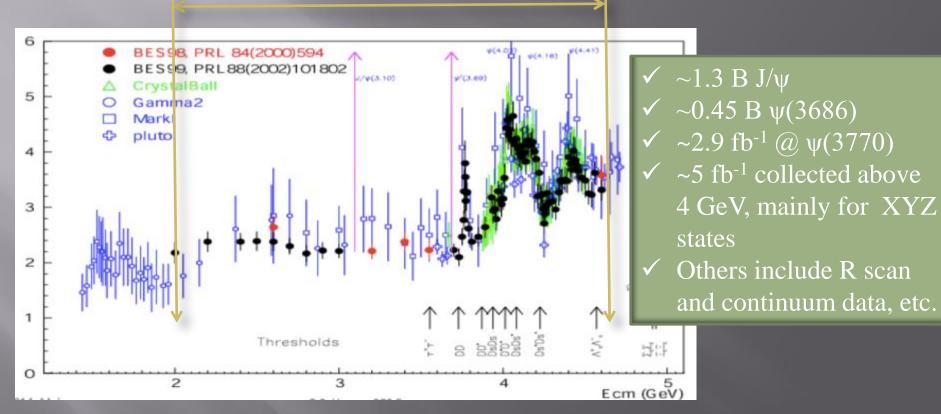
Global analysis (universality of the Collins FF)

Measurements

Global analysis (universality of the Collins FF)

BEPCII & BESIII

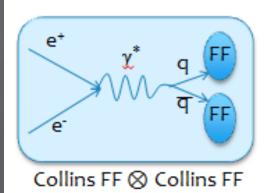
BEPCII

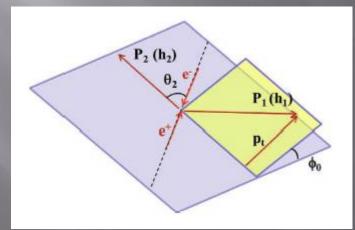

BESIII

$\sqrt{s} = 2 \sim 4.6$ GeV, rich physics potential . Light hadron, charmonium, charm, R & QCD.

BESIII (data samples)

2-4.6 GeV


62 pb⁻¹ @ 3.65 GeV (used by this work)


2015/9/17

Reference Frame and method

Collins Effect: transverse quark spin relates to an azimuthal asymmetry

 $e^+e^- \rightarrow q\bar{q} \rightarrow hX$ (with unpolarized beams) Impossible: Collins effect of single (anti-)quark Possible: Correlation of quark and anti-quark

Parameterization: $a \cos(2\phi_0) + b$ $a = a (\theta_2, z_1, z_2)$ $z = 2E_h/Q$

Difference due to energy scale

 $1-10 \text{ GeV}^2$

 100 GeV^2

At BESIII: No obvious thrust axis π dominant

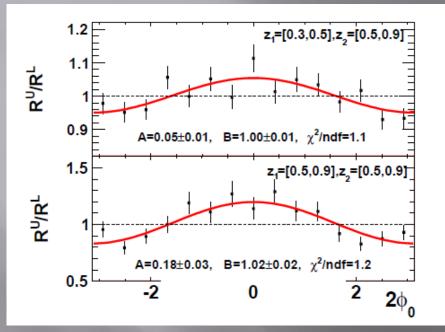
Event selection

- To select $e^+e^- \to \pi\pi X$
- Charged tracks from MDC
- Photons from EMC
- PID by combined information of dE/dx and TOF
- $N_{trk} \ge 3 \&\& N_{\pi} \ge 2 \&\& N_e = 0$
- $E_{vis} > 1.5 \text{ GeV}$

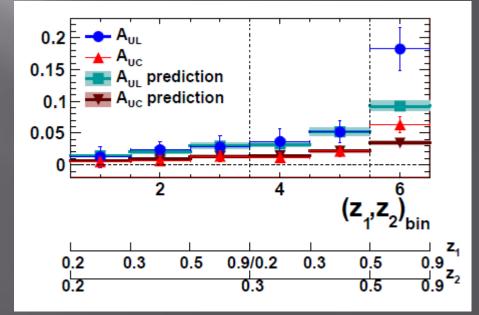
Pion pair:

- Fractional energy 0.3 < z < 0.9 $(z \equiv 2E_h/\sqrt{s})$
- Open angle $\theta_{\pi\pi} > 120^{\circ}$
- Save all possible combinations

Two definitions


- Normalized ratio $R = \frac{N(2\phi_0)}{\langle N_0 \rangle}$
 - $N(2\phi_0)$: dipion yield in each $2\phi_0$ subdivision
 - $\langle N_0 \rangle$: averaged bin content
 - Three types of ratio
 - R^U : unlike-sign $(\pi^{\pm}\pi^{\mp})$
 - R^L : like-sign $(\pi^{\pm}\pi^{\pm})$
 - R^C : all pion-pairs $(\pi\pi)$
- Double ratio

 $\frac{R^{\mathrm{U}}}{R^{\mathrm{L(C)}}} = A\cos(2\phi_0) + B$

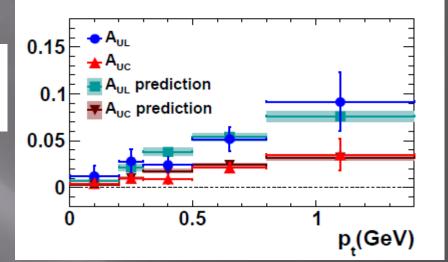

A^{UL(UC)} mainly contains the Collins effect *B* should be consistent with unity

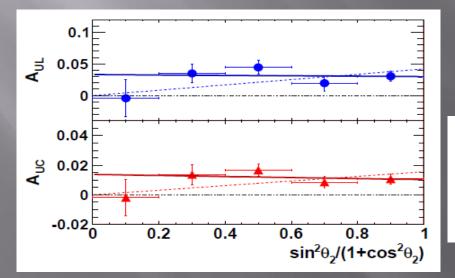
arXiv: 1507.06824

Results

Obvious asymmetry is observed!

Prediction is from Z.-B. Kang, etc arXiv: 1505.05589

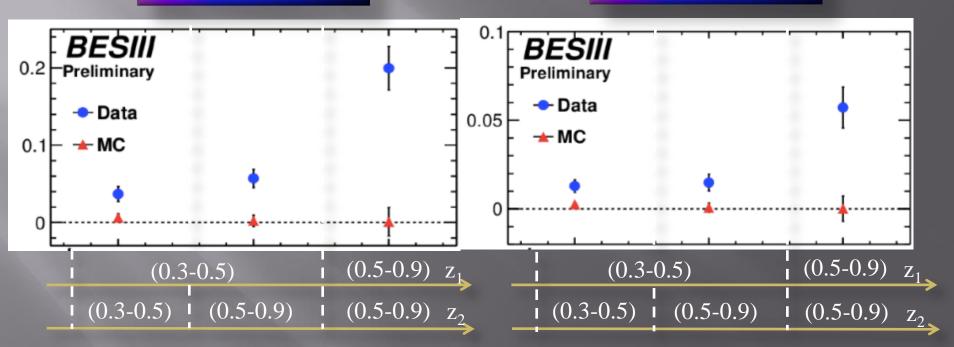

2015/9/17


arXiv: 1507.06824

Results (II)

Asymmetry dependence on transverse momentum

Prediction is from Z.-B. Kang, etc arXiv: 1505.05589

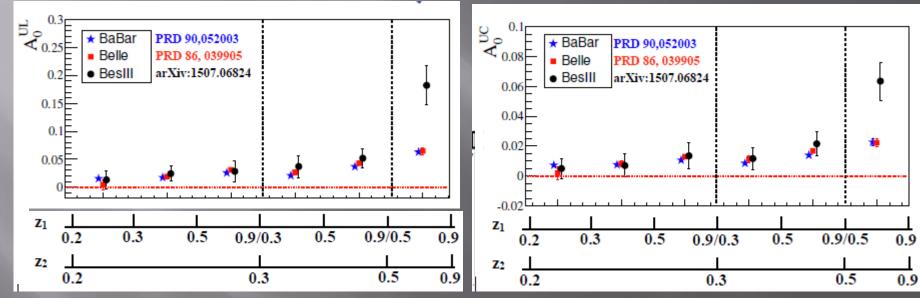

A linear dependence on $\sin^2 \theta_2 / (1 + \cos^2 \theta_2)$ is expected

Data/MC comparisons

MC is generated without Collins effect.

 $A^{UL} = R^{U}/R^{L}$

 $A^{UC} = R^{U}/R^{C}$


Other considerations and checks

- Misidentification of K and π : unfolding the measurement of $A^{\pi\pi}$ and $A^{K\pi}$
- Gluon radiation effect: subtracting normalized yields $R^U R^{L(C)}$
- Higher harmonic terms: including in the fit function
- Possible charge-dependent acceptance effects: studying double ratio of positively over negatively charged pion pairs; combining pion pair randomly
- Beam polarization: studying the angular distribution of $e^+e^- \rightarrow \mu^+\mu^-$

Collins asymmetry comparison

Comparison between different results obtained at different Q^2

- BaBar Belle @ $Q^2 \sim 110 \ GeV^2$
- BESIII @ $Q^2 \sim 13 \text{ GeV}^2$

From I. Garzia, INFN

Predicted in Collins original paper: -Larger asymmetry at lower *Q*² region -Asymmetries increase as *z* grows

BESIII Collins FF @ Hadron 2015

Summary

- We measure the Collins asymmetry by using 62/pb BESIII data @ 3.65 GeV
 - Obvious asymmetry is observed
 - Paper submitted on PRL (arXiv: 1507.06824)
 - Compared with other experimental results, not only e⁺e⁻ such as BaBar and Belle but also DIS etc., will check the universality of CFF, extract transversity in nucleon, explore Q² evolution and p_t dependence, then shed light on the fragmentation processes.
- Outlook at BESIII
 - Data at higher energy points or more data @ 3.65 GeV.

Summary

- We measure the Collins asymmetry by using 62/pb BESIII data @ 3.65 GeV
 - Obvious asymmetry is observed
 - Paper submitted on PRL (arXiv: 1507.06824)
 - Compared with other experimental results, not only e⁺e⁻ such as BaBar and Belle but also DIS etc., will check the universality of CFF, extract transversity in nucleon, explore Q² evolution and p_t dependence, then shed light on the fragmentation processes.
- Outlook at BESIII
 - Data at higher energy points or more data @ 3.65 GeV.

Thanks for your attention!

BACKUP

$z_1 \leftrightarrow z_2$	$\langle z_1 \rangle$	$\langle z_2 \rangle$	$\langle p_t \rangle ({\rm GeV})$	$\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$	$A_{\mathrm{UL}}(\%)$	$A_{\rm UC}(\%)$
[0.2, 0.3][0.2, 0.3]	0.245	0.245	0.262	0.589	$1.28 \pm 0.93 \pm 1.38$	$0.50\pm0.32\pm0.60$
[0.2, 0.3][0.3, 0.5]	0.311	0.311	0.329	0.576	$2.40 \pm 0.74 \pm 1.08$	$0.67 \pm 0.27 \pm 0.72$
[0.2, 0.3][0.5, 0.9]	0.428	0.426	0.444	0.572	$2.81 \pm 1.44 \pm 1.10$	$1.36\pm0.54\pm0.64$
[0.3, 0.5][0.3, 0.5]	0.379	0.379	0.388	0.563	$3.69 \pm 1.07 \pm 1.65$	$1.17\pm0.39\pm0.62$
[0.3, 0.5][0.5, 0.9]	0.498	0.499	0.479	0.564	$5.18 \pm 1.32 \pm 1.08$	$2.17\pm0.47\pm0.65$
[0.5, 0.9][0.5, 0.9]	0.625	0.628	0.499	0.570	$18.24 \pm 3.19 \pm 1.36$	$6.37 \pm 0.99 \pm 0.82$
$p_t ({\rm GeV})$	$\langle p_t \rangle ({\rm GeV})$	$\langle z_1 \rangle$	$\langle z_2 \rangle$	$\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$	$A_{ m UL}(\%)$	$A_{\rm UC}(\%)$
[0.00, 0.20]	0.133	0.291	0.348	0.574	$1.22 \pm 1.02 \pm 0.48$	$0.44 \pm 0.36 \pm 0.20$
[0.20, 0.30]	0.253	0.285	0.344	0.579	$2.79 \pm 0.89 \pm 0.93$	$1.00\pm0.32\pm0.34$
[0.30, 0.45]	0.405	0.327	0.346	0.570	$2.41 \pm 0.79 \pm 0.43$	$0.90\pm0.26\pm0.43$
[0.45, 0.80]	0.610	0.453	0.349	0.571	$5.16\pm0.95\pm0.87$	$2.11\pm0.41\pm0.27$
[0.80, 1.40]	0.923	0.646	0.334	0.584	$9.13\pm2.74\pm1.52$	$3.50\pm0.98\pm1.37$

TABLE I. Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each (z_1, z_2) and p_t bin. The uncertainties are statistical and systematic, respectively. The averages $\langle z_i \rangle$, $\langle p_t \rangle$ and $\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$ are also given.