Achim Denig
Institute for Nuclear Physics
Johannes Gutenberg University Mainz

$R_{\text{had}}, \gamma\gamma$ Form Factors and the Standard Model Prediction of the Muon Anomaly

July 21-24, 2014
Centerville, Cape Cod, USA
5th Intl. Symposium on Lepton Moments
The Hadronic Contribution to $(g-2)_\mu$

$(g-2)_\mu$ Standard Model Theory

- R_{had} ratio, i.e. $\sigma_{\text{had}} = \sigma(e^+ e^- \to \text{Hadrons})$
- Meson transition form factors $|F(Q^2, Q'^2)|$

Hadronic Vacuum Polarization

Hadronic Light-by-Light Scattering

Perturbative Calculations (Theory)

Electroweak Contribution

$(g-2)_\mu$ Experiment

(g-2)$_\mu$ Interpretation

R$_{\text{had}}$, $\gamma\gamma$ form factors and the Muon Anomaly

Achim Denig
Outline

Hadronic Vacuum Polarization \(\leftrightarrow\) \(R_{\text{had}}\)
- Overview hadronic cross section measurements
 Initial State Radiation: KLOE vs. BABAR
- BES III status and expectations

Hadronic Light-by-Light \(\leftrightarrow\) \(F(Q_1^2,Q_2^2)\)
- Overview meson transition form factors
- BES III status and expectations

Conclusions & Outlook
R_{had}

Hadronic Cross Section

σ_{had}
Hadronic Cross Section Data (last 20 years)

- SLAC/Stanford BABAR \(\sqrt{s}=10.58 \text{ GeV} \)
- LNF/Frascati KLOE(-II) \(\sqrt{s}=1.02 \text{ GeV} \)
- IHEP/Beijing BESII, R scan >2 GeV
- Novosibirsk/CMD, SND \(R \text{ Scan} < 2.0 \text{ GeV} \)
- Novosibirsk/CMD, SND \(R \text{ Scan} < 2.0 \text{ GeV} \)
- KEK/Tsukuba BELLE-II \(\sqrt{s}=10.58 \text{ GeV} \)
- BESIII \(\sqrt{s}=3 ... 4 \text{ GeV} \)
 - also new R scan > 2 GeV

R Scan e+e- Radiative Return e+e-
Initial State Radiation (ISR) aka Radiative Return

- Pioneered by KLOE
- Needs no systematic variation of beam energy
- High statistics thanks to high integrated luminosities
- Precise knowledge of radiative corrections mandatory (H_{rad})

PHOKHARA event generator Czyż, Kühn, et al.

Entire E range $<E_{CM}$ accessible

$pQCD$
Most relevant Channel: \(e^+ e^- \rightarrow \pi^+ \pi^- \)

Systematic Uncertainties

- BABAR 0.5%
- KLOE 0.8%
- CMD2 0.8%*
- SND 1.5%*

* limited in addition by statistics

\(\rho \) resonance

\(\rho - \omega \) interference
Most relevant Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- KLOE and BABAR dominate the world average
- Relatively large systematic differences, esp. above ρ peak
- Knowledge of a_μ^{had} dramatically limited due to this difference

Note: KLOE05 superseded by KLOE08
Status Hadronic Vacuum Polarization

Future improvement of a^had_μ?

1st priority:
Clarify situation regarding $\pi^+\pi^-$
(KLOE vs. BABAR puzzle)

2nd priority:
Measure 3π, 4π channels

3rd priority:
KK and higher multiplicities

Ongoing ISR analyses
BESIII, BEPC-II collider

$R^\text{had}_{\gamma\gamma}$ form factors and the Muon Anomaly
BEPC II Project

CM Energy $2.0 - 4.6$ GeV
Design Luminosity $10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
Achieved Luminosity 70%@ψ(3770)
Data Samples for ISR Physics

Integrated luminosities BESIII

ISR luminosity = Ldt x H_{rad}
BES III Detector

- **Main Drift Chamber (MDC)**
 - $\sigma(p)/p = 0.5\%$
 - $\sigma_{dE/dx} = 6.0\%$

- **Time-of-flight system (TOF)**
 - $\sigma(t) = 90\text{ps (barrel)}$
 - $\sigma(t) = 110\text{ps (endcap)}$

- **EMC**
 - 6240 CsI(Tl) crystals
 - $\sigma(E)/E = 2.5\%$
 - $\sigma_{Z,\Phi}(E) = 0.5 - 0.7\text{ cm}$

- **Muon Chambers**
 - 8 – 9 layers of RPC
 - $p > 400\text{ MeV/c}$
 - $\delta R\Phi = 1.4 \sim 1.7\text{ cm}$

- **Superconducting Magnet**
 - 1 T magnetic field

Achim Denig

R$_{\text{had},\gamma\gamma}$ form factors and the Muon Anomaly
Flagship ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

Event yield after acceptance cuts only

Features:
- $\psi(3770)$ data only (2.9 fb$^{-1}$)
- no dedicated background subtraction
- tagged ISR photon
- large statistics of $e^+e^- \rightarrow \pi\pi\gamma$ events
- background dominated by $e^+e^- \rightarrow \mu\mu\gamma$
- data – MC differences visible

Achim Denig

$R_{had, \gamma\gamma}$ form factors and the Muon Anomaly
$e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$: $\pi - \mu$ Separation

TMVA method (Neural Network):
- trained using $\mu\gamma$ and $\pi\pi\pi\gamma$ MC events
- information based on track level
- efficiency matrix (p,Θ) for data, MC
- correct for data - MC differences
- cross checked for different TMVA methods

Kolmogorov-Smirnov test: signal (background) probability = 0.735 (0.455)

Event yield $\pi\pi\gamma$ after π-μ separation
Event yield \(\mu \mu \gamma \) after \(\pi - \mu \) separation and all efficiency corrections

Features:
- background from \(\pi \pi \gamma \) very small
- PHOKHARA accuracy <0.5%
- luminosity measurement based on Bhabha ev., 1.0% accuracy

\[\Delta(\text{MC/QED-data}) = (0.51 \pm 0.28)\% \]

\(R_{\text{had}, \gamma \gamma} \) form factors and the Muon Anomaly
Result (still blind): $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

2 normalization methods:

1) normalization to L_{int} (obtained from Bhabha events)

$$\sigma_{\text{bare}}(e^+e^- \rightarrow \pi^+\pi^-) = \frac{N_{\pi\pi\gamma}/\epsilon_{\text{exp}}}{L_{\text{int}} \cdot H_{\text{rad}} \cdot \delta_{\text{vac}} \cdot (1 + \delta_{\text{FSR}})}$$

2) normalization to $\mu\mu\gamma$ events, i.e. R ratio ($\pi\pi\gamma/\mu\mu\gamma$)

$\rightarrow L_{\text{int}}, H_{\text{rad}}, \delta_{\text{vac}}$ cancel in ratio!

![Plot](image)

- using the luminosity
- using the R ratio

luminosity / R ratio

$$= (0.35 \pm 1.68)\%$$

limited by low $\mu\mu\gamma$ statistics
Meson Transition Form Factors

$F(Q_1^2, Q_2^2)$
Meson Transition Form Factors \(P \rightarrow \gamma^* \gamma(\gamma) \)

Time-like transition form factors:

- Dalitz decays
 - \(0 < q^2 < M_P^2 \)

- Annihilation process
 - \(q^2 = s > M_P^2 \)

Space–like transition form factors:

- Two-photon production of mesons in \(e^+e^- \)
Space-Like FFs $\gamma \gamma^* \rightarrow P$

Selection criteria
- 1 electron (positron) detected
- 1 positron (electron) along beam axis
- Meson fully reconstructed
→ cut on angle of missing momentum

Momentum transfer
- tagged: $Q^2 = -q_1^2 = -(p - p')^2$
 → Highly virtual photon
- untagged: $q^2 = -q_2^2 \sim 0$ GeV2
 → Quasi-real photon

EKRARA event generator
Czyż, Ivashyn
Existing Data on SL Transition Form Factors

Features:

- recent high-Q^2 data from BABAR and BELLE $Q^2 > 4 \text{ GeV}^2$
- above 1.5 GeV2 data from CLEO
- below 1.5 GeV2 data from CELLO, very poor accuracy

→ low Q^2 range not covered

most relevant for HLbL contribution to $(g-2)_\mu$

→ most relevant channels: $\pi^0, \eta, \eta', \pi\pi$

Initial BESIII publication $< 3.1 \text{ GeV}^2$
BES III Analysis: $e^+e^- \rightarrow e^+e^- \pi^0$

Event Selection:
- exactly one lepton candidate
- at least two, max four photons
- Helicity angle $\cos \Theta_H > 0.8$
- Kinematic cuts to reject ISR background
 \rightarrow cut on angle of missing momentum

Strategy:
- Count π^0 yield in bins of Q^2
- $d\sigma/dQ^2$
- Form factor $F(Q^2)$
BES III Analysis: $e^+e^- \rightarrow e^+e^-\pi^0$

- **Full Simulation**
 - L_{int}: 2.92 fb$^{-1}$
 - Single Tag with both, e^\pm
 - Extract TFF for $0.3 \leq Q^2[\text{GeV}^2] \leq 3.1$

→ Unprecedented $Q^2 < 1.5$ GeV2
Input for $(g-2)_\mu$

only MC shown red error bars correspond to BESIII statistics
Conclusions & Outlook
Conclusions and Outlook

• Exciting results to be expected from BESIII
 → Precision R measurements relevant for HVP contribution to \((g-2)_\mu\)
 → Space-like transition form factors of meson(s)

• Competing experiments ongoing in Frascati, Novosibirsk, soon BELLE-II (?)

What accuracy can be achieved for \(a^\text{had}_\mu\)?

Reduction of factor 2 of uncertainty in reach
New \((g-2)_\mu\) ring arrived at FNAL, also JPARC measurement Factor 4 improvement!

Let's speculate 😊

assume new exptl. measurement will be 1 sigma lower than today's value

assume we observe New Physics in \((g-2)_\mu\)

→ without change in theoretical uncertainty: \(\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 4.3 \text{ sigma}\)

→ reduction of theoretical uncertainty of factor 2: \(\Delta a_\mu = 7.7 \text{ sigma}\)