
Strong phase in $D^0 \rightarrow K \pi$ decay measurement at BESIII

Xiao-Kang Zhou (Email:zhouxiaokang08@mails.ucas.ac.cn) University of Chinese Academy of Sciences (UCAS), China

Abstract

We study the process of $D^0\overline{D^0}$ pair productions based on 2.89 fb⁺ of e⁺e⁻ collision data collected with the BESIII detector at $\sqrt{s} = 3.773$ GeV, and measure the asymmetry of the decay rates of $D^{CP\pm} \rightarrow K \neg \pi^+$ ($D^{CP\pm}$ are the CP-odd and CP-even eigenstates) to be $(12.77\pm1.31^{+0.33}_{-0.31})^{\circ}$. Using the quantum-correlated technique, the asymmetry, $A_{CP\rightarrow K\pi}$ can be used to extract the strong phase difference $\cos\delta_{K\pi}$ between the doubly Cabibbo-suppressed process $\overline{D^0} \rightarrow K \neg \pi^+$ and Cabibbo-favored $D^0 \rightarrow K \neg \pi^+$. By taking inputs of other mixing parameters in world-average measurements, we obtain $\cos\delta_{K\pi} = 1.03 \pm 0.12 \pm 0.04 \pm 0.01$. Here, the first and second uncertainties are statistical and systematic, respectively. The third uncertainty corresponds to the uncertainties of the external inputs. This is the world-most accurate result of $\cos\delta_{K\pi}$, and can improve the world constrains on the mixing parameters and on the γ/ϕ_3 in the CKM matrix.

Introduction

 $D\bar{D}$ mixing is highly suppressed by the GIM mechanism and by the CKM matrix elements within the Standard Model (Observation of $D\bar{D}$ mixing by LHCb [PRL 110 (2013)101802]) The relative phase $\delta_{K\pi}$ between DCS (Double-Cabibbo-Suppressed) amplitude and the corresponding CF (Cabibbo-Favored) amplitude:

- > $\frac{\langle K^- \pi^+ | \overline{D}^+ \rangle}{\langle K^- \pi^+ | D^+ \rangle} = -re^{-i\delta_{xx}}$, $\delta_{K\pi} \propto$ the strong phase difference
- Improve the overall knowledge of charm mixing parameters
- > An important ingredient for (over-)constraining the CKM unitary triangle γ/ϕ_3

1.

 $\begin{array}{c} V_{cd} \\ W_{cd} \\ W_{cd$

Cabibbo-Favored: Br ~ 3.88% Double-Cabibbo-Suppressed: Br ~ 0.015% Left Figure: A example of CF decay. Right Figure: A example of DCS decay Charm events at threshold:

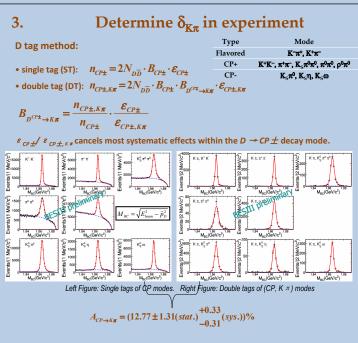
- charmevents at threshold.
- Quantum correlation of two *D* mesons: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D^0} \rightarrow C=-1$
- Very clean environment with little to no non- $D\bar{D}$ background

• Lots of systematic uncertainties cancel (double tag method)

Formalism:

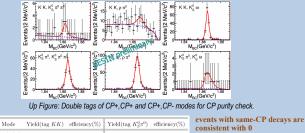
Omitting the higher orders of the mixing parameters, and assuming CP conservation:

 $2r\cos\delta_{\kappa\pi} + y = (1 + R_{WS})A_{CP \to K\pi}$ $A_{CP \to K\pi} = \frac{Br_{D_1 \to K\pi} - Br_{D_1 \to K\pi}}{Br_{D_2 \to K\pi} + Br_{D_1 \to K\pi}}$ $|D^{\circ}\rangle_{*}|\overline{D^{\circ}}\rangle_{*} = |D^{\circ}\rangle_{*}|\overline{D^{\circ}}\rangle_{*}$


 $|D_1\rangle = \frac{|D^0\rangle + |\overline{D^0}\rangle}{2}, |D_2\rangle = \frac{|D^0\rangle - |\overline{D^0}\rangle}{2}$

 $A_{CP+} = \langle K^{-} \boldsymbol{\pi}^{+} | \boldsymbol{D}_{1} \rangle, A_{CP-} = \langle K^{-} \boldsymbol{\pi}^{+} | \boldsymbol{D}_{2} \rangle$

world's largest samples of on-threshold ψ (3770) data and keep increasing in the future



PIC 2013

inty

CP purity check of CP-tag modes

The target CP modes are reconstructed by tagging CP+ (KK) and CP- ($K_s \pi^0$) decay.

		11			consistent with 0
$K_{S}^{0}\pi^{0}\pi^{0}$	$8 \pm 3(*)$	11.80 ± 0.11	171 ± 14	7.20 ± 0.09	
$\rho \pi^0$	$13\pm8(*)$	24.44 ± 0.16	299 ± 19	15.87 ± 0.16	consider as systematic uncertai
$K^0_S \omega$	158 ± 13	11.02 ± 0.11	$7 \pm 3(*)$	6.77 ± 0.08	

4. Systematic uncertainties

Correlated sys. uncertainties: cancelled in calculating $A_{CP \rightarrow K\pi}$

Un-correlated sys. Uncertainties are list below:

C -unipary								
Sourcellin	K^+K^-	$\pi^+\pi^-$	$K_{S}^{0}\pi^{0}\pi^{0}$	$\pi^0\pi^0$	$ ho^0 \pi^0$	$K_S^0 \pi^0$	$K_S^0 \eta$	$K_S^0 \omega$
BELepton veto	0.2	0.2						
ΔE	0.6	0.5	0.9	0.7	1.8	0.7	0.5	1.5
Fitting	0.2	0.5	0.5	0.7	0.3	0.2	0.4	0.2
$K_S^0 \ CP$ violation	_	_	0.2	_	_	0.2	0.2	0.2
CP purity	-	-	+1.3	_	+1.5	+0.2	-	+0.9
Quadratic sum	0.7	0.7	$^{+1.7}_{-1.0}$	1.0	$^{+2.4}_{-1.8}$	0.8	0.7	$^{+1.7}_{-1.5}$

Summary

We measure: $A_{CP \to K\pi} = (12.77 \pm 1.31(stat.) + 0.33 + 0.33 + 0.31 +$

We have: $2r\cos\delta_{\kappa_{\pi}} + y = (1+R_{\mu_S})A_{CP\to\kappa_{\pi}}$ with external inputs of the parameters in HFAG2013 and PDG, $R_p = (3.47 \pm 0.06) \cdot 10^{-3}, y = (6.6 \pm 0.9), 10^{-2}, r_{\mu_A} = (3.80 \pm 0.05) \cdot 10^{-3}$

we obtain $\cos \delta_{K\pi} = 1.03 \pm 0.12 \pm 0.04 \pm 0.01$

5.

CLEO measurements of strong phase differences and coherence factors done with 0.8 fb + at $\psi(3770)$. [CLEO, PRD 86 (2012) 112001] without external inputs: $\cos \delta_{nx} = 0.81 \pm 0.81 \pm 0.053$, with external inputs: $\cos \delta_{xx} = 1.15 \pm 0.019 \pm 0.053$.

BESIII result: the most precise measurement of $\delta_{K\pi}$ and compatible with the world average