

Meson Transition Form Factors at BES-III

October 29, 2013 | Christoph Florian Redmer for the BES-III Collaboration

10th European Reasearch Conference on

"Electromagnetic Interactions with Nucleons and Nuclei"

Paphos, Cyprus, 2013

OHANNES GUTENBERG

Introduction

The BES-III Experiment

Measurement of Space – like Transition Form Factors

• Example: $\gamma\gamma^* \rightarrow \pi^0$

Summary

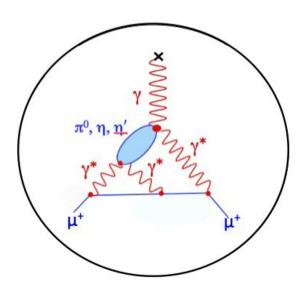
Introduction

Motivation:

JGU

ANNES GUTENBERG

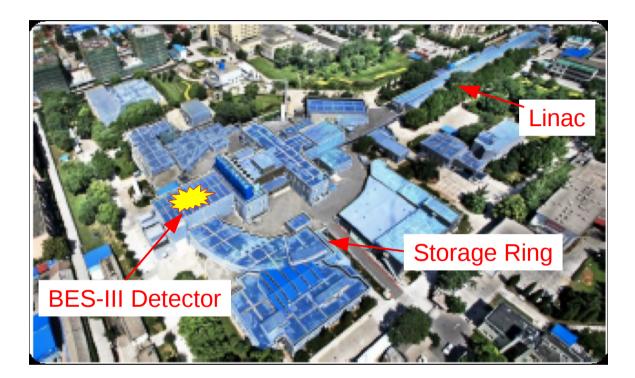
Muon Anomaly: a_{μ}


$$a_{\mu} = \frac{1}{2}(g_{\mu} - 2)$$

$$a_{\mu}^{theo} - a_{\mu}^{exp} \rightarrow 3.4 \,\sigma$$

Prediction: $a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$ Completely limited by hadronic contributions !

Here: Hadronic Light-by-Light Scattering:


- Perturbative methods not applicable
- Transition Form Factors as input
 - High precision measurements needed

EINN2013, Paphos

^{JG} Beijing Electron Positron Collider BEPC-II

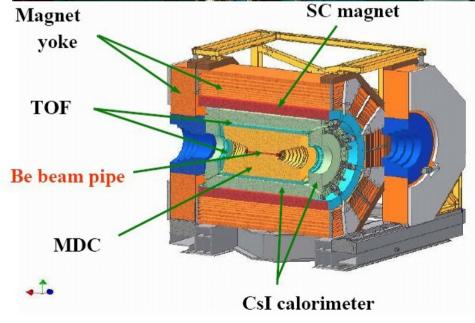
IOHANNES GUTENBERG

Beam Energy 1.0 - 2.3 GeV

Energy Spread $\sigma(E)/E = 5.16 \cdot 10^{-4}$

Design Luminosity 10³³ cm⁻² s⁻¹ @ ψ(3770)

Achieved Luminosity $0.7 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1} @ \psi(3770)$


- 2004: start of BEPC-II construction
- 2008: first e⁺e⁻ collisions
- Since 2009: BEPC-II/BES-III data taking

BES-III Detector

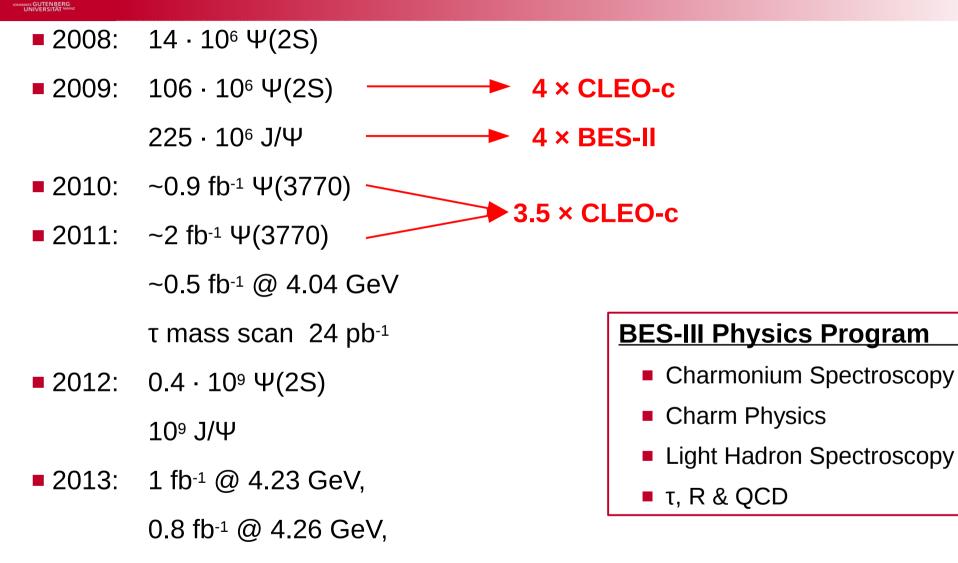
JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

NIM A614 (2010) 345

- Main Drift Chamber (MDC)
 - σ(p)/p = 0.5%

$$\sigma_{dE/dx} = 6.0\%$$


- Time-of-flight system (TOF)
 - $\sigma(t) = 90 \text{ps}$ (barrel)
 - $\sigma(t) = 110ps$ (endcap)
- EMC
 - 6240 CsI(TI) crystals
 - σ(E)/E = 2.5%

•
$$\sigma_{z,\Phi}(E) = 0.5 - 0.7 \text{ cm}$$

- Muon Chambers
 - 8 9 layers of RPC
 - p>400 MeV/c
 - δRΦ = 1.4 ~ 1.7 cm
- Superconducting Magnet
 1 T magnetic field

October 29, 2013

Acquired Data Sets

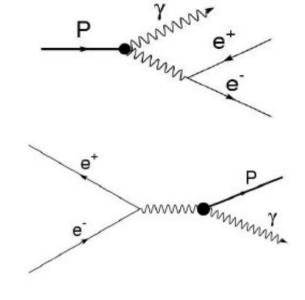
0.5 fb⁻¹ @ 4.36 GeV

World's largest samples of J/Ψ , Ψ (2S), and Ψ (3770)

October 29, 2013

JGU

How to measure TFF at BES-III

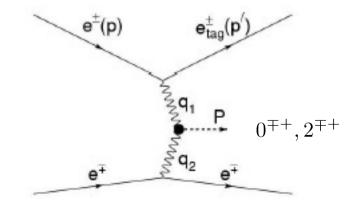

<u>Time – like Transition Form Factors:</u>

Dalitz decays

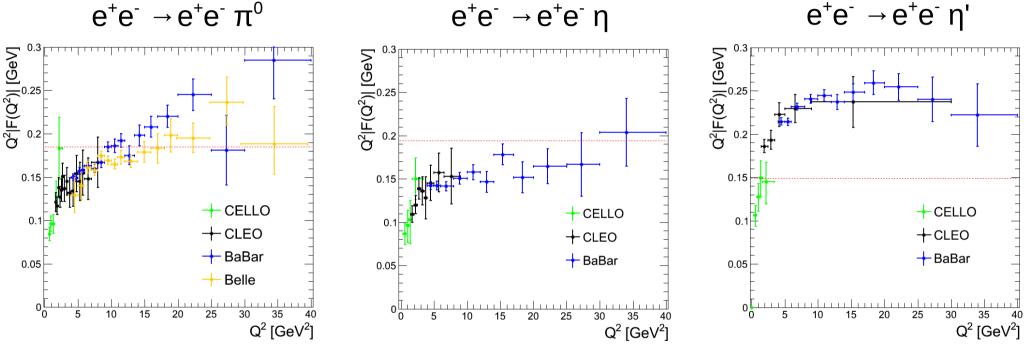
JGU

UNIVERSITÄT

- 0 < q² < M²
- Annihilation process
 - q² = s > M²



<u>Space – like Transition Form Factors:</u>


Two-photon production of mesons

•
$$F(Q_1^2, Q_2^2), \quad Q^2 = -q^2$$

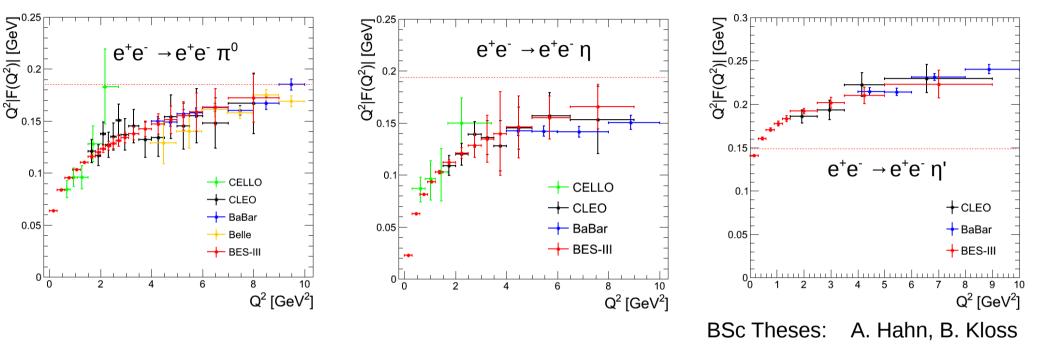
•
$$M^2 - s < Q_1^2 < 0$$
, $Q_2^2 \approx 0$ (single tag)

First Step: Focus on pseudoscalar mesons

- Recent results from B-factories cover only large Q^2 (5 < Q^2 [GeV²] < 40)
 - Discrepancy for π^{0} between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for (g-2)µ

CELLO: Z.Phys.C49 (1991) 401 CLEO: Phys.Rev.D57 (1998) 33 BaBar: Phys.Rev.D80 (2009) 052002 Phys.Rev.D84 (2011) 052001 Belle: Phys.Rev.D86 (2012) 092007

EINN2013, Paphos


JGU

HANNES GUTENBERG

Feasibility Studies

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Assumptions:

- √s = 3.773 GeV
- L_{int} = 10 fb⁻¹
- Only detector geometry

Result:

- TFF measurable up to Q² = 10 GeV²
- Unprecedented accuracy below 4 GeV²
- Above 4 GeV² accuracy comparable to CLEO

OHANNES GUTENBERG

Analysis Example: π^0 / η

Data

- Ψ(3770) on-peak, available: 2.92 fb⁻¹
- Monte Carlo
 - Signal: Ekhara 2.1
 - Background: Babayaga 3.5, KKMC

Event Selection:

- exactly one lepton candidate
- At least two, max four photons

Expected Background Channels

- Radiative Bhabha Scattering
- Hadronic Final States
- Two-Photon Production with ISR
- Two-Photon Production of other mesons

Analysis Example: π^0 / η

Data

JGU

DHANNES GUTENBERG

- Ψ(3770) on-peak, available: 2.92 fb⁻¹
- Monte Carlo
 - Signal: Ekhara 2.1
 - Background: Babayaga 3.5, KKMC

Plots on the following slides show MC only!

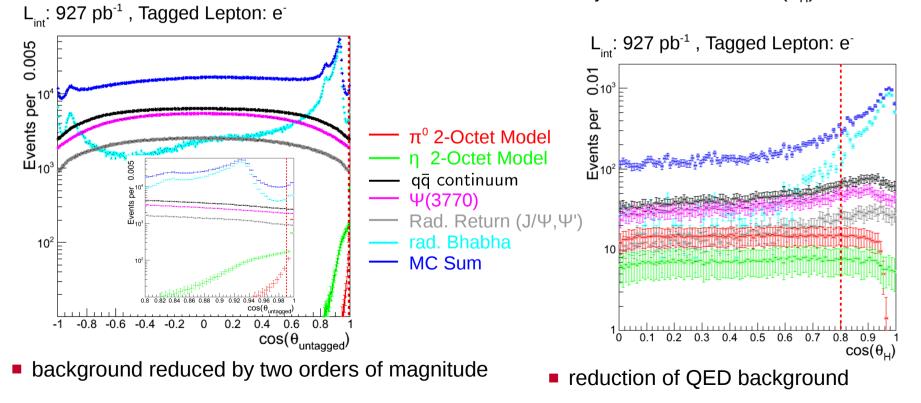
Event Selection:

- exactly one lepton candidate
- At least two, max four photons

Expected Background Channels

- Radiative Bhabha Scattering
- Hadronic Final States
- Two-Photon Production with ISR
- Two-Photon Production of other mesons

Analysis Steps


Low Q²_{untagged} Condition

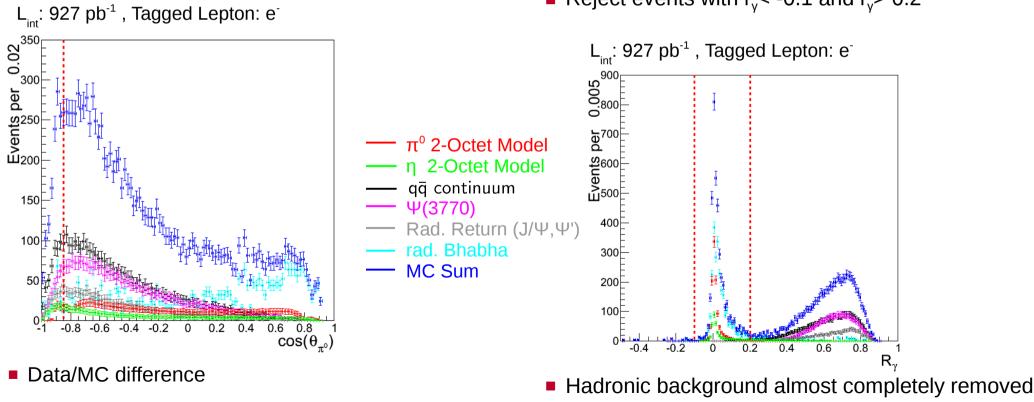
JGU

- Reconstruct untagged lepton
 - 4-Momentum conservation
- Reject events with $cos(\theta_{untagged}) > 0.99 \cdot q_{untagged}$

Helicity Condition for π^0

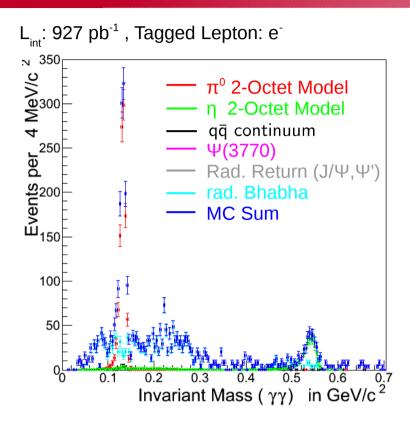
- Angle between γ in π° rest frame and π° in lab
- Flat for signal
- Peaked for background
- Reject events with $cos(\theta_{H}) > 0.8$

Analysis Steps


Polar angle of π^0

JGU

- Background enhanced at large $\cos(\theta_{\pi})$
- Signal almost evenly distributed
- Reject events with $cos(\theta_{\pi}) \cdot q_{tagged} > 0.8$

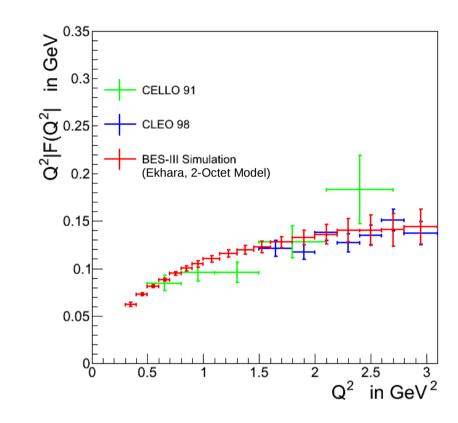

Condition on ISR

- ISR results in wrong Q²
- Useful observable: $r_{\gamma} = \frac{\sqrt{s} E_{e^{\pm}\pi^{0}\eta}^{CMS} p_{e^{\pm}\pi^{0}\eta}^{CMS}}{\sqrt{s}}$ • If ISR, $r_{\gamma} = \frac{2E_{\gamma}}{\sqrt{s}}$
- Reject events with $r_v < -0.1$ and $r_v > 0.2$

QED background reduced

Analysis Steps

- Clear signals from $\pi^0 / \eta \rightarrow \gamma \gamma$
- Data: Background underestimated
 - ➔ Use better MC generators
 - modified Babayaga@NLO
 - two-photon generator


- Study differential cross section dσ/dQ²
- Bin wise back ground subtraction
- Statistics from $\Psi(3770)$ data only sufficient for π^0 TFF up to $Q^2 = 3 \text{ GeV}^2$
 - Include large samples from XYZ searches

October 29, 2013

JG U

ANNES GUTENBERG

Expectations for π^0 TFF

Next steps:

JG U

HANNES GUTENBERG

- Study systematics
 - Largest contribution expected from background subtraction
- Include high energy data
- Other final states

October 29, 2013

C.F. Redmer - Meson Transition Form Factors at BES-III

- Full Simulation
 - L_{int}: 2.92 fb⁻¹
 - Single Tag with both, e[±]
- Extract TFF for $0.3 \le Q^2[GeV^2] \le 3.1$

Expected statistical precision:

- Unprecedented below Q² = 1.5 GeV²
 - \rightarrow Important for (g-2)_µ
- Compatible with CLEO

JG

HANNES GUTENBERG

Summary

- $\gamma\gamma$ Physics program started at BES-III
 - Measurement of space-like TFF of pseudoscalars, scalars, and tensors
 - Currently : single tagged measurements of π^0 , η , η'
 - Significant contribution for Q² < 10 GeV²
 - Result for π⁰ expected soon
 - 0.3 GeV² < Q² < 3.1 GeV² covered
 - Agreement with CELLO and CLEO measurements
 - Unprecedented accuracy for Q² < 1.5 GeV²
 - Analyses of η and η' ongoing
 - Investigation of $\pi^+\pi^-$ just started
 - Long Term Plan
 - Measurements of scalar and tensor mesons
 - Measurements of polarization observables
 - Double tagged measurements