

Semileptonic D-decays at BESIII

An Fenfen

On behalf of the BESIII collaboration

7th Charm Meeting May 18-22, 2015

Outline

- Measurement Technique
- Study of $D^+ \to K^- \pi^+ e^+ v_e$
- Study of $D^+ \to \omega(\phi) e^+ v_e$
- Study of $D^+ \to K_L e^+ v_e$

Measurement Technique

- About 2.92 fb⁻¹ of data is collected at ψ(3770), which ensures a pure DD final state with no additional final state hadrons. In events where one D is fully reconstructed, semileptonic signals are searched at the recoiling side.
- Tagged Side $D^- \rightleftharpoons K^+_{\pi^-_{\pi^-}}$ $e^+ \longrightarrow \psi(3770) \longleftarrow e^-$ Recoiling Side $D^+ \longleftarrow K_L$ $e^+_{\nu_e}$
- Branching fractions can be obtained using:

 $Br(D^+ \to X \ e^+ \nu_e) = \frac{N_{sig}}{\sum_{\alpha} N_{tag}^{obs,\alpha} \epsilon_{tag,sig}^{\alpha} / \epsilon_{tag}^{\alpha}}$

 N_{sig} is the number of semileptonic candidates, $N_{tag}^{obs,\alpha}$ the number of observed tagged mode α , while ϵ_{tag}^{α} and $\epsilon_{tag,sig}^{\alpha}$ the reconstruction efficiencies of tagged mode α and both the tagged and semileptonic mode.

- Six hadronic decay modes are chosen as tags: $D^+ \rightarrow K^- \pi^+ \pi^+, D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0, D^+ \rightarrow K_S^0 \pi^+$ $D^+ \rightarrow K_S^0 \pi^+ \pi^0, D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^-, D^+ \rightarrow K^+ K^- \pi^+$
- Tags are selected based on two variables, and tag yield is obtained by fitting m_{BC} . $\Delta E = E_D - E_{beam}, \ m_{BC} = \sqrt{E_{beam}^2 - |\vec{p}_D|^2}$

m_{BC} Distribution

Tag yield is obtained by fitting m_{BC} . In the case of $D^+ \rightarrow K^- \pi^+ e^+ v_e$ study, the fits are illustrated as below.

Signal: MC shape convoluting a double Gaussion; Background : Argus Function

Study of $D^+ \rightarrow K^- \pi^+ e^+ v_e$

In the $D^+ \to K^- \pi^+ e^+ v_e$ decay, we can measure:

- Branching fractions
- The fractions and properties of different $K\pi$ (non-)resonant amplitudes
 - S: non-resonant, $K_0^*(1430)$
 - P: <u>K*(892)</u>, K*(1410)
 - D: $K_2^*(1430)$
- q^2 dependent transition form factors in $D^+ \to \overline{K}^{*0}(892)e^+v_e$ (q^2 is the invariant mass of e^+v_e)
 - The $D^+ \to \overline{K}^{*0}(892)e^+v_e$ decay can be described in terms of 3 helicity basis form factors: H_{±,0}(q²) (Any dependence on the lepton mass is neglected), which are measured in a model-independent way
 - $H_{\pm,0}(q^2)$ are generally written as linear combinations of a vector $(V(q^2))$ and two axialvector $(A_{1,2}(q^2))$ form factors, which are measured based on SPD (Spectroscopic Pole Dominance) model in the amplitude analysis

These measurements are important to compare with theoretical calculations and previous experiments

Branching Fraction

- A nearly background-free (~0.7%) sample of more than 18000 candidates is selected. The $m_{K\pi}$ distribution is shown on the right.
- Branching fractions over the whole $m_{K\pi}$ range and in the $K^{*0}(892)$ dominated window [0.8, 1] GeV/ c^2 are calculated:

 $Br(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.09)\%$ $Br(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.08)\%$

- Amplitude analysis is performed based on this sample (see next page). The differential decay width of the D⁺ → K⁻π⁺e⁺ν_e decay can be fully described using: [citation: N. Cabibbo and A. Maksymowicz, Phys. Rev. 137, B438 (1965)]
 - $m_{K\pi}$ inv. mass squared of $K\pi$
 - q^2 inv. mass of $e^+ v_e$
 - θ_K, θ_e, χ angles

Amplitude Analysis

PDF Parameterization

(citation: BABAR Collaboration, Phys. Rev. D 83, 072001 (2011))

- Unbinned Maximum likelihood fit (background considered)
- Non-resonant S-wave amplitude: Magnitude: polynomial variation with $m_{K\pi}$ Phase δ_S : same as in LASS scattering experiment [Nucl. Phys. B296, 493 (1988)]
- Other amplitudes: Breit-Wigner function with mass-dependent width
- Form factors are parameterized based on SPD model:

$$V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}, \ A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1 - q^2/m_A^2}$$

Fit Results with S+P (preliminary)

• The fractions of the components can be extracted

 $f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$ $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

other components have significances less than 5σ and correspond to fractions below 1%

• The S-wave phase measured from amplitude analysis is illustrated in the following pages

•
$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$

 $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$
 $r_{BW} = (3.07 \pm 0.26 \pm 0.11) (\text{GeV}/c)^{-1}$

•
$$m_V$$
 = (1.81^{+0.25}_{-0.17}±0.02) GeV/ c^2 (first measurement)
 m_A = (2.61^{+0.22}_{-0.17}±0.03) GeV/ c^2

 $A_1(0) = 0.573 \pm 0.011 \pm 0.020$

$$r_V = V(0)/A_1(0) = 1.411 \pm 0.058 \pm 0.007$$

 $r_2 = A_2(0)/A_1(0) = 0.788 \pm 0.042 \pm 0.008$

Projections of data and fitted MC distribution

The signal contains S-wave and $K^{*0}(892)$ components. In the lower histograms, χ of the (combined) bins of the upper histograms are provided.

S-wave Phase Measurement

Instead of using the LASS parameterization for δ_S , we fit the phase in different $m_{K\pi}$ intervals, assuming δ_S remains constant within each interval.

- Bin division: similar size for each bin, wider for the last two due to low population
- $K^{*0}(892)$ related parameters are also set free
- Blue dots: BESIII Model-independent measurement
 Red or dotted lines: predicted by fit based on LASS parameterization

Green dots: BABAR Model-independent measurement with $S+\overline{K}^{*0}(892) + \overline{K}^{*0}(1410)$

[citation: BABAR Collaboration, Phys. Rev. D 83, 072001 (2011)]

Model-independent measurement of BESIII are consistent with its result from amplitude analysis within 1σ .

Model-Independent Measurement of Form Factors

- Events located in the K^{*0}(892) window [0.8,1] GeV/c², are used to measure the form factors by a Projective Weighting Technique [citation: CLEO collaboration, Phys. Rev. D 81, 112001 (2010)].
- Signal is assumed to be composed of $K^{*0}(892)$ and a non-resonant S-wave.
- Helicity basis form factors include: P-wave related: H_{±,0}(q²) S-wave related: h₀(q²)
- Five weighted q^2 histograms are built. Weight is assigned to each event based on $(q^2, cos\theta_K, cos\theta_e)$.
- Form factors are independently computed in each q^2 bin.
- The model-independent measurements are generally consistent with CLEO's report and the predicted trend based on the SPD model from amplitude analysis.

Red dots : BESIII model-independent measurement Black dots : CLEO model-independent measurement Blue Line : BESIII result from amplitude analysis, which is based on SPD model and mass-dependent S-wave

Study of $D^+ \to \omega(\phi) e^+ v_e$

• Current status of
$$D^+ \to \omega(\phi) e^+ v_e$$

D^+ Decay Modes	Fraction	Confidence level	
$D^+ \rightarrow \omega e^+ \nu_e$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$		
$D^+ \to \phi e^+ \nu_e$	$< 9.0 \times 10^{-5}$	CL=90%	

- Form factors of $D^+ \rightarrow \omega e^+ v_e$ have never been measured before
- No significant excess of $D^+ \rightarrow \phi e^+ v_e$ is observed
- D⁺ → φe⁺v_e decay proceeds only through ω φ mixing or non-perturbative "Weak Annihilation" (WA) process (see Fig (b)). Measurement of its branching ratio can help to judge the dominant process.

(b) Feynman diagram representing the WA process $D^+ \rightarrow \phi e^+ v_e$

Branching Fraction

• Semileptonic decays are identified using the variable *U*:

$$\begin{split} U &= E_{miss} - |\vec{p}_{miss}|, \quad E_{miss} = E_{beam} - E_{\omega(\phi)} - E_e \\ \vec{P}_{miss} &= -\vec{P'}_{tag} - \vec{P}_{\omega(\phi)} - \vec{P}_e , \qquad \vec{P'}_{tag} = \vec{P}_{tag} \sqrt{E_{beam}^2 - m_D^2} \end{split}$$

• U distribution for the
$$D^+ \to \omega(\phi)e^+v_e$$
 decay:

• Branching fractions are compared with the world average value [citation: Particle Data Group, Chin. Phys. C, 527 38, 090001 (2014)].

Mode	This work	Previous
$\omega e^+ \nu_e$	$(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$
$\phi e^+ \nu_e$	$< 1.3 \times 10^{-5} \ (@90\% C.L.)$	$< 9.0 \times 10^{-5} \ (@90\% C.L.)$

Form Factors in $D^+ \rightarrow \omega e^+ v_e$

Form factors for $D^+ \rightarrow \omega e^+ v_e$ decay can be parameterized similarly as in the $D^+ \rightarrow K^- \pi^+ e^+ v_e$ decay. The projections and the form factor parameters are shown below:

 $r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$ $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

Study of $D^+ \rightarrow K_L e^+ v_e$ (first measurement)

- Branching fraction of $D^+ \rightarrow K_L e^+ v_e$ has never been measured before
- $K^0 \overline{K}^0$ mixing is expected to give rise to CP asymmetry with magnitude of about -3.3×10^{-3} in $D^+ \rightarrow K_L e^+ \nu_e$ decay [citation: Z.Z.Xing, Phys. Lett. B 353(1995)31; 363 (1995) 266]
- The differential decay width of $D^+ \to K_L e^+ \nu_e$ can be parameterized based on the transition form factor $f_+^K(q^2)$ and the CKM matrix element $|V_{cs}|$:

• Experimental study of $D^+ \to K_L e^+ \nu_e$ is important to test the theoretical prediction of $A_{CP}^{D^+ \to K_L e^+ \nu_e}$, the LQCD calculation on $f_+^K(0)$ and the unitarity of the CKM matrix.

Branching Fraction and $A_{CP}^{D^+ \to K_L e^+ \nu} e^{-K_L e^+ \nu}$

- K_L reconstruction:
 - The direction of K_L momentum can be determined from the induced shower in EMC.
 - K_L momentum can be inferred by constraining the neutrino U = 0 (for *U* definition see page 12).
 - Because nuclear interaction is different for K^0 and \bar{K}^0 , and $K^0 \bar{K}^0$ coherent oscillation is not considered in simulation, reconstruction efficiencies are corrected separately for K_L from K^0 and \bar{K}^0
- Branching fraction:
 - Signal yields are obtained by fitting m_{BC} of the tag side (see next page).
 - In this analysis, branching fraction is calculated separately for each charm and tag mode using: $\mathcal{B}_{\rm sig} = \frac{N_{\rm DT}(1 - f_{\rm bkg}^{\rm peak})}{\epsilon N_{\rm ST}}$
 - CP asymmetry is determined using:

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$

$D^+ o K^0_L e^+ u_e$								
Tag Mode	$N_{\rm ST}$	$N_{\rm DT}$	$f_{\rm bkg}^{\rm peak}(\%)$	$\epsilon(\%)$	$\mathcal{B}_{ m sig}(\%)$			
$D^- \to K^+ \pi^- \pi^-$	410200 ± 670	10492 ± 103	41.83 ± 0.28	33.96 ± 0.10	4.381 ± 0.050			
$D^- \to K^+ \pi^- \pi^- \pi^0$	120060 ± 457	3324 ± 64	44.78 ± 0.49	33.14 ± 0.19	4.613 ± 0.103			
$D^- \to K^0_S \pi^- \pi^0$	102136 ± 378	2658 ± 56	38.93 ± 0.58	35.67 ± 0.21	4.456 ± 0.108			
$D^- \to K^0_S \pi^- \pi^- \pi^+$	59158 ± 303	1459 ± 41	40.84 ± 0.76	32.51 ± 0.27	4.488 ± 0.145			
$D^- \to K^0_S \pi^-$	47921 ± 225	1287 ± 36	38.90 ± 0.88	35.07 ± 0.32	4.679 ± 0.155			
$D^- \to K^+ K^- \pi^-$	35349 ± 239	905 ± 32	44.64 ± 0.97	30.98 ± 0.35	4.575 ± 0.190			
Averaged					4.455 ± 0.038			
$D^- \to K_L^0 e^- \bar{\nu}_e$								
Tag Mode	$N_{\rm ST}$	$N_{\rm DT}$	$f_{\rm bkg}^{\rm peak}(\%)$	$\epsilon(\%)$	$\mathcal{B}_{ m sig}(\%)$			
$D^+ \to K^- \pi^+ \pi^+$	407666 ± 668	10354 ± 103	40.44 ± 0.29	34.02 ± 0.11	4.447 ± 0.051			
$D^+ \to K^- \pi^+ \pi^+ \pi^0$	117555 ± 450	3264 ± 63	42.28 ± 0.52	33.19 ± 0.19	4.829 ± 0.107			
$D^+ \to K^0_S \pi^+ \pi^0$	101824 ± 378	2642 ± 55	39.06 ± 0.58	35.92 ± 0.21	4.402 ± 0.104			
$D^+ \to K^0_S \pi^+ \pi^+ \pi^-$	59046 ± 303	1533 ± 42	39.68 ± 0.77	33.44 ± 0.27	4.683 ± 0.147			
$D^+ \to K^0_S \pi^+$	48240 ± 226	1217 ± 35	38.50 ± 0.88	35.20 ± 0.32	4.408 ± 0.147			
$D^+ \to K^+ K^- \pi^+$	35742 ± 240	942 ± 32	44.04 ± 0.95	32.40 ± 0.36	4.552 ± 0.181			
Averaged					4.508 ± 0.038			

Branching Fraction and $A_{CP}^{D^+ \to K_L e^+ \nu_e}$

The fraction of peaking backgrounds are estimated by MC.

Black dots: data; Blue: Fit result; Green Line: combinatorial background

Branching fraction: $\overline{B}(D^+ \to K_L e^+ \nu_e) = (4.482 \pm 0.027 \pm 0.103)\%$

CP asymmetry: $A_{CP}^{D^+ \to K_L e^+ \nu_e} = (-0.59 \pm 0.60 \pm 1.50)\%$

 $M_{\rm BC}\,({\rm GeV}/c^2)$

 $M_{\rm BC}\,({\rm GeV}/c^2)$

 $M_{\rm BC}\,({\rm GeV}/c^2)$

Form Factor measurement

Signal shape of q^2 distribution can be described using $\frac{dn_{\text{observed}}}{dq^2} = AN_{\text{tag}}p^3(q'^2)|f_+(q'^2)|^2\epsilon(q'^2) \otimes \sigma(q'^2,q^2)$ 2-par. Series Expansion is performed for form factor $f_+(q^2)$: $f_+(q^2) = \frac{1}{P(q^2)\phi(q^2,t_0)} \sum_{k=0}^{\infty} a_k(t_0) [z(q^2,t_0)]^k$

[cite: Becher and Hill, Phys. Lett. B 633, 61 (2006)

Simultaneous fits are performed:

 $f_{\pm}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$, $r_{1} \equiv a_{1}/a_{0} = 1.91 \pm 0.33 \pm 0.24$

Summary

- In the study of $D^+ \to K^- \pi^+ e^+ v_e$:
 - Branching fractions are measured:

 $Br(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.09)\%$ Br(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.08)\%

- Amplitude analysis is applied:
 - Fractions of the $K\pi$ components are analyzed. S-wave contribution is observed to be $(6.05 \pm 0.22 \pm 0.18)\%$.
 - $K^{*0}(892)$ properties and the form factors based on the SPD model are provided.
- Model-independent measurement of S-wave phase and the $K^{*0}(892)$ helicity basis form factors are performed. They are generally consistent with previous reports and the amplitude analysis results.
- In the study of $D^+ \to \omega(\phi)e^+v_e$:
 - Branching fractions or upper limits are provided: Br $(D^+ \rightarrow \omega e^+ \nu_e) = (1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$

Br($D^+ \to \phi e^+ \nu_e$) = (1.05 ± 0.11 ± 0.06) × 10 Br($D^+ \to \phi e^+ \nu_e$) < 1.3 × 10⁻⁵ (@90% C. L.)

- Form factor parameters in $D^+ \to \omega e^+ \upsilon_e$ are first measured: $r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06; r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$
- In the study of $D^+ \to K_L e^+ v_e$:
 - Branching fractions and CP assymetry are measured:

 $\bar{B}(D^+ \to K_L e^+ \nu_e) = (4.482 \pm 0.027 \pm 0.103)\% \ A_{CP}^{D^+ \to K_L e^+ \nu_e} = (-0.59 \pm 0.60 \pm 1.50)$

- Form factor related parameters are also measured: $f_+^K(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$, $r_1 \equiv a_1/a_0 = 1.91 \pm 0.33 \pm 0.24$

Backup

Estimation of Backgrounds in the Double Tag

By using MC-truth information of the K_L efficiency corrected $D\overline{D}$ MC samples, the double-tag D candidates can be divided into the following categories:

- Signal: tag-side matched and signal-side matched signal events
- **Background:**
- Bkg I: $D\overline{D}$ decays of which hadronic tag D is misreconstructed and non- $D\overline{D}$ processes. Its proportion varies from 1% to 12% according to the specific hadronic tag mode
- Bkg II: (~10%) $D^+ \rightarrow K_L e^+ \nu_e$ events of which K_L shower is mis-reconstructed.
- Bkg III: $D^+ \rightarrow Xev_e$ non-signal events (~24%), which are from $D^+ \rightarrow \overline{K}^*(892)^0 e^+ v_\rho$ (41.9%), $D^+ \rightarrow K_S e^+ v_\rho$ $(41.2\%), D^+ \to \pi^0 e^+ v_e (10.2\%), D^+ \to \eta e^+ v_e (6.0\%)$ and $D^+ \rightarrow \omega e^+ v_{\rho} (0.7\%)$
- Bkg IV: $D^+ \rightarrow X \mu v_{\mu}$ events (~3%), consist of $D^+ \rightarrow$ $K_L \mu^+ v_\mu$ (65.2%), $D^+ \to \overline{K}^*$ (892)⁰ $\mu^+ v_\mu$ (23.3%) and $D^+ \to K_S \mu^+ v_\mu \ (11.5\%)$
- Bkg V: Non-leptonic D decay events ($\sim 3\%$), which are from $D^+ \to \overline{K}{}^0 \pi^+ \pi^0$ (78%) and $D^+ \to \overline{K}{}^0 K^*$ (892)⁺ (22%)

Composition of double-tag D candidates

In the determination of $B(D^+ \rightarrow K_L e^+ \nu_e)$, the peaking backgrounds consist of Bkg II~Bkg V. This estimation brings in 1.6% systematic uncertainty.