Semileptonic D-decays at BESIII
An Fenfen

On behalf of the BESIII collaboration

$7^{\text {th }}$ Charm Meeting
May 18-22, 2015

Outline

- Measurement Technique
- Study of $D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}$
- Study of $D^{+} \rightarrow \omega(\phi) e^{+} v_{e}$
- Study of $D^{+} \rightarrow K_{L} e^{+} v_{e}$

Measurement Technique

- About $2.92 \mathrm{fb}^{-1}$ of data is collected at $\psi(3770)$, which ensures a pure $D \bar{D}$ final

- Branching fractions can be obtained using:

$$
\operatorname{Br}\left(D^{+} \rightarrow X e^{+} v_{e}\right)=\frac{\mathrm{N}_{\mathrm{sig}}}{\sum_{\alpha} \mathrm{N}_{\mathrm{tag}}^{\mathrm{obs}, \alpha} \epsilon_{\mathrm{tag}, \mathrm{sig}}^{\alpha} / \epsilon_{\mathrm{tag}}^{\alpha}}
$$

$N_{s i g}$ is the number of semileptonic candidates, $N_{\text {tag }}^{o b s, \alpha}$ the number of observed tagged mode α, while $\epsilon_{\text {tag }}^{\alpha}$ and $\epsilon_{\text {tag,sig }}^{\alpha}$ the reconstruction efficiencies of tagged mode α and both the tagged and semileptonic mode.

- Six hadronic decay modes are chosen as tags:

$$
\begin{aligned}
& D^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}, \mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+} \pi^{0}, \mathrm{D}^{+} \rightarrow \mathrm{K}_{S}{ }^{0} \pi^{+} \\
& \mathrm{D}^{+} \rightarrow \mathrm{K}^{0}{ }^{0} \pi^{+} \pi^{0}, \mathrm{D}^{+} \rightarrow \mathrm{K}_{S}{ }^{0} \pi^{+} \pi^{+} \pi^{-}, \mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}
\end{aligned}
$$

- Tags are selected based on two variables, and tag yield is obtained by fitting $m_{B C}$.

$$
\Delta E=E_{D}-E_{\text {beam }}, m_{B C}=\sqrt{E_{\text {beam }}^{2}-\left|\vec{p}_{D}\right|^{2}}
$$

$m_{B C}$ Distribution

Tag yield is obtained by fitting $m_{B C}$. In the case of $D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}$ study, the fits are illustrated as below.

Signal: MC shape convoluting a double Gaussion; Background : Argus Function

Study of $D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}$

In the $D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}$ decay, we can measure:

- Branching fractions
- The fractions and properties of different $K \pi$ (non-)resonant amplitudes
- S: non-resonant, $K_{0}^{*}(1430)$
- P: $K^{*}(892), K^{*}(1410)$
- D: $K_{2}^{*}(1430)$
- q^{2} dependent transition form factors in $D^{+} \rightarrow \bar{K}^{* 0}(892) e^{+} v_{e}\left(q^{2}\right.$ is the invariant mass of $\left.e^{+} v_{e}\right)$
- The $D^{+} \rightarrow \bar{K}^{* 0}(892) e^{+} v_{e}$ decay can be described in terms of 3 helicity basis form factors: $\mathrm{H}_{ \pm, 0}\left(\mathrm{q}^{2}\right)$ (Any dependence on the lepton mass is neglected), which are measured in a model-independent way
- $\quad H_{ \pm, 0}\left(q^{2}\right)$ are generally written as linear combinations of a vector $\left(V\left(q^{2}\right)\right)$ and two axialvector $\left(A_{1,2}\left(q^{2}\right)\right)$ form factors, which are measured based on SPD (Spectroscopic Pole Dominance) model in the amplitude analysis

These measurements are important to compare with theoretical calculations and previous experiments

Branching Fraction

- A nearly background-free ($\sim 0.7 \%$) sample of more than 18000 candidates is selected. The $m_{K \pi}$ distribution is shown on the right.
- Branching fractions over the whole $m_{K \pi}$ range and in the $K^{* 0}(892)$ dominated window $[0.8,1] \mathrm{GeV} / c^{2}$ are calculated:

$$
\begin{array}{ll}
\operatorname{Br}\left(\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \mathrm{e}^{+} v_{\mathrm{e}}\right) & =(3.71 \pm 0.03 \pm 0.09) \% \\
\operatorname{Br}\left(\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \mathrm{e}^{+} \mathrm{v}_{\mathrm{e}}\right)_{[0.8,1]} & =(3.33 \pm 0.03 \pm 0.08) \%
\end{array}
$$

- Amplitude analysis is performed based on this sample (see next page).

The differential decay width of the $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \mathrm{e}^{+} v_{e}$ decay can be fully described using: [citation: N. Cabibbo and A. Maksymowicz, Phys. Rev. 137, B438 (1965)]

- $\mathrm{m}_{K \pi}$ - inv. mass squared of $K \pi$
- q^{2} - inv. mass of $e^{+} v_{e}$
- $\theta_{K}, \theta_{e}, \chi$ angles

Amplitude Analysis

PDF Parameterization

(citation: BABAR Collaboration, Phys. Rev. D 83, 072001 (2011))

Unbinned Maximum likelihood fit (background considered)

- Non-resonant S-wave amplitude:

Magnitude: polynomial variation with $m_{K \pi}$ Phase δ_{S} : same as in LASS scattering experiment [Nucl. Phys. B296, 493 (1988)]

Other amplitudes: Breit-Wigner function with mass-dependent width

- Form factors are parameterized based on SPD model:

$$
V\left(q^{2}\right)=\frac{\mathrm{V}(0)}{1-q^{2} / m_{V}^{2}}, \quad A_{1,2}\left(q^{2}\right)=\frac{\mathrm{A}_{1,2}(0)}{1-q^{2} / m_{A}^{2}}
$$

Fit Results with $\mathbf{S + P}$ (preliminary)

- The fractions of the components can be extracted

$$
\begin{aligned}
f\left(\mathrm{D}^{+} \rightarrow\left(\mathrm{K}^{-} \pi^{+}\right)_{K^{* 0}(892)} \mathrm{e}^{+} v_{\mathrm{e}}\right) & =(93.93 \pm 0.22 \pm 0.18) \% \\
f\left(\mathrm{D}^{+} \rightarrow\left(\mathrm{K}^{-} \pi^{+}\right)_{S-\text { wave }} \mathrm{e}^{+} v_{\mathrm{e}}\right) & =(6.05 \pm 0.22 \pm 0.18) \%
\end{aligned}
$$

other components have significances less than 5σ and correspond to fractions below 1%

- The S-wave phase measured from amplitude analysis is illustrated in the following pages
- $m_{K^{* 0}(892)}=(894.60 \pm 0.25 \pm 0.08) \mathrm{MeV} / c^{2}$
$\Gamma_{K^{* 0}(892)}=(46.42 \pm 0.56 \pm 0.15) \mathrm{MeV} / c^{2}$
$r_{B W}=(3.07 \pm 0.26 \pm 0.11)(\mathrm{GeV} / c)^{-1}$
- $m_{V}=\left(1.81_{-0.17}^{+0.25} \pm 0.02\right) \mathrm{GeV} / c^{2}$ (first measurement)
$m_{A}=\left(2.61_{-0.17}^{+0.22} \pm 0.03\right) \mathrm{GeV} / c^{2}$
$A_{1}(0)=0.573 \pm 0.011 \pm 0.020$
$r_{V}=V(0) / A_{1}(0)=1.411 \pm 0.058 \pm 0.007$
$r_{2}=A_{2}(0) / A_{1}(0)=0.788 \pm 0.042 \pm 0.008$

Projections of data and fitted MC distribution

The signal contains S-wave and $K^{* 0}(892)$ components.
In the lower histograms, χ of the (combined) bins of the upper histograms are provided.

S-wave Phase Measurement

Instead of using the LASS parameterization for δ_{S}, we fit the phase in different $m_{K \pi}$ intervals, assuming δ_{S} remains constant within each interval.

- Bin division: similar size for each bin, wider for the last two due to low population
- $\quad K^{* 0}(892)$ related parameters are also set free
- Blue dots: BESIII Model-independent measurement

Red or dotted lines: predicted by fit based on LASS parameterization

Green dots: BABAR Model-independent measurement
with $\mathrm{S}+\bar{K}^{* 0}(892)+\bar{K}^{* 0}(1410)$
[citation: BABAR Collaboration, Phys. Rev. D 83, 072001 (2011)]

Model-independent measurement of BESIII are consistent with its result from amplitude analysis within 1σ.

Model-Independent Measurement of Form Factors

- Events located in the $K^{* 0}$ (892) window $[0.8,1] \mathrm{GeV} / \mathrm{c}^{2}$, are used to measure the form factors by a Projective Weighting Technique [citation: CLEO collaboration, Phys. Rev. D 81, 112001 (2010)].
- Signal is assumed to be composed of $K^{* 0}(892)$ and a non-resonant S-wave.
- Helicity basis form factors include:

P-wave related: $H_{ \pm, 0}\left(q^{2}\right)$
S-wave related: $h_{0}\left(q^{2}\right)$

- Five weighted q^{2} histograms are built.

Weight is assigned to each event based on $\left(q^{2}, \cos \theta_{K}, \cos \theta_{e}\right)$.

- Form factors are independently computed in each q^{2} bin.
- The model-independent measurements are generally consistent with CLEO's report and the predicted trend based on the SPD model from amplitude analysis.

Study of $D^{+} \rightarrow \omega(\phi) e^{+} v_{e}$

- Current status of $D^{+} \rightarrow \omega(\phi) e^{+} v_{e}$

D^{+}Decay Modes	Fraction	Confidence level
$D^{+} \rightarrow \omega e^{+} \nu_{e}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$	
$D^{+} \rightarrow \phi e^{+} \nu_{e}$	$<9.0 \times 10^{-5}$	CL $=90 \%$

- Form factors of $D^{+} \rightarrow \omega e^{+} v_{e}$ have never been measured before
- No significant excess of $D^{+} \rightarrow \phi e^{+} v_{e}$ is observed
- $D^{+} \rightarrow \phi e^{+} v_{e}$ decay proceeds only through $\omega-\phi$ mixing or non-perturbative "Weak Annihilation" (WA) process (see Fig (b)). Measurement of its branching ratio can help to judge the dominant process.

(a) Feynman diagram representing the charged current process $D^{+} \rightarrow \omega e^{+} v_{e}$

(b) Feynman diagram representing the WA process $D^{+} \rightarrow \phi e^{+} v_{e}$

Branching Fraction

- Semileptonic decays are identified using the variable U :

$$
\begin{aligned}
& U=E_{\text {miss }}-\left|\vec{p}_{\text {miss }}\right|, \quad E_{\text {miss }}=E_{\text {beam }}-E_{\omega(\phi)}-E_{e} \\
& \vec{P}_{\text {miss }}=-\vec{P}_{\text {tag }}-\vec{P}_{\omega(\phi)}-\vec{P}_{e}, \quad \vec{P}_{\text {tag }}=\vec{P}_{\text {tag }} \sqrt{E_{\text {beam }}^{2}-m_{D}^{2}}
\end{aligned}
$$

- U distribution for the $D^{+} \rightarrow \omega(\phi) e^{+} v_{e}$ decay:

Red dots: data
Black line: fit result
Blue area: total background
Green area: peaking background

Red dots: data
Black histogram: signal MC simulation
Arrows: signal region

- Branching fractions are compared with the world average value [citation: Particle Data Group, Chin. Phys. C, 527 38, 090001 (2014)].

Mode	This work	Previous
$\omega e^{+} \nu_{e}$	$(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$
$\phi e^{+} \nu_{e}$	$<1.3 \times 10^{-5}(@ 90 \%$ C.L. $)$	$<9.0 \times 10^{-5}(@ 90 \%$ C.L. $)$

Form Factors in $D^{+} \rightarrow \omega e^{+} v_{e}$

Form factors for $D^{+} \rightarrow \omega e^{+} v_{e}$ decay can be parameterized similarly as in the $D^{+} \rightarrow$ $K^{-} \pi^{+} e^{+} v_{e}$ decay. The projections and the form factor parameters are shown below:

Red dots: data Black Line: fit results Blue area: Background

$$
\begin{aligned}
& r_{V}=V(0) / A_{1}(0)=1.24 \pm 0.09 \pm 0.06 \\
& r_{2}=A_{2}(0) / A_{1}(0)=1.06 \pm 0.15 \pm 0.05
\end{aligned}
$$

Study of $D^{+} \rightarrow K_{L} e^{+} v_{e}$ (first measurement)

- Branching fraction of $D^{+} \rightarrow K_{L} e^{+} v_{e}$ has never been measured before
- $K^{0}-\bar{K}^{0}$ mixing is expected to give rise to CP asymmetry with magnitude of about -3.3×10^{-3} in $D^{+} \rightarrow K_{L} e^{+} v_{e}$ decay [citation: Z.Z.Xing, Phys. Lett. B 353(1995)31; 363 (1995) 266]
- The differential decay width of $D^{+} \rightarrow K_{L} e^{+} v_{e}$ can be parameterized based on the transition form factor $f_{+}^{K}\left(q^{2}\right)$ and the CKM matrix element $\left|V_{c S}\right|$:

$$
\frac{d \Gamma(D \rightarrow P e v)}{d q^{2}}=X \frac{G_{F}^{2}\left|V_{c s(d)}\right|^{2} p_{K(\pi)}^{3}}{24 \pi^{3}}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

For $P=K$ case, $X=1$

- Experimental study of $D^{+} \rightarrow K_{L} e^{+} v_{e}$ is important to test the theoretical prediction of $A_{C P}^{D^{+} \rightarrow K_{L} e^{+} v}{ }^{e}$, the LQCD calculation on $f_{+}^{K}(0)$ and the unitarity of the CKM matrix.

Branching Fraction and $A_{C P}^{D^{+} \rightarrow K_{L} e^{+} v_{e}}$

- K_{L} reconstruction:
- The direction of K_{L} momentum can be determined from the induced shower in EMC.
- K_{L} momentum can be inferred by constraining the neutrino $U=0$ (for U definition see page 12).
- Because nuclear interaction is different for K^{0} and \bar{K}^{0}, and $K^{0}-\bar{K}^{0}$ coherent oscillation is not considered in simulation, reconstruction efficiencies are corrected separately for K_{L} from K^{0} and \bar{K}^{0}
- Branching fraction:
- Signal yields are obtained by fitting $m_{B C}$ of the tag side (see next page).
- In this analysis, branching fraction is calculated separately for each charm and tag mode using:

$$
\mathcal{B}_{\text {sig }}=\frac{N_{\mathrm{DT}}\left(1-f_{\mathrm{bkg}}^{\text {peak }}\right)}{\epsilon N_{\mathrm{ST}}}
$$

- CP asymmetry is determined using:

$$
A_{C P} \equiv \frac{\mathcal{B}\left(D^{+} \rightarrow K_{L}^{0} e^{+} \nu_{e}\right)-\mathcal{B}\left(D^{-} \rightarrow K_{L}^{0} e^{-} \bar{\nu}_{e}\right)}{\mathcal{B}\left(D^{+} \rightarrow K_{L}^{0} e^{+} \nu_{e}\right)+\mathcal{B}\left(D^{-} \rightarrow K_{L}^{0} e^{-} \bar{\nu}_{e}\right)}
$$

$D^{+} \rightarrow K_{L}^{0} e^{+} \nu_{e}$					
Tag Mode	$N_{\text {ST }}$	$N_{\text {DT }}$	$f_{\text {bkg }}^{\text {peak }}$ (\%)	$\epsilon(\%)$	$\mathcal{B}_{\text {sig }}(\%)$
$D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$	410200 ± 670	10492 ± 103	41.83 ± 0.28	33.96 ± 0.10	4.381 ± 0.050
$D^{-} \rightarrow K^{+} \pi^{-} \pi^{-} \pi^{0}$	120060 ± 457	3324 ± 64	44.78 ± 0.49	33.14 ± 0.19	4.613 ± 0.103
$D^{-} \rightarrow K_{S}^{0} \pi^{-} \pi^{0}$	102136 ± 378	2658 ± 56	38.93 ± 0.58	35.67 ± 0.21	4.456 ± 0.108
$D^{-} \rightarrow K_{S}^{0} \pi^{-} \pi^{-} \pi^{+}$	59158 ± 303	1459 ± 41	40.84 ± 0.76	32.51 ± 0.27	4.488 ± 0.145
$D^{-} \rightarrow K_{S}^{0} \pi^{-}$	47921 ± 225	1287 ± 36	38.90 ± 0.88	35.07 ± 0.32	4.679 ± 0.155
$D^{-} \rightarrow K^{+} K^{-} \pi^{-}$	35349 ± 239	905 ± 32	44.64 ± 0.97	30.98 ± 0.35	4.575 ± 0.190
Averaged					4.455 ± 0.038
$D^{-} \rightarrow K_{L}^{0} e^{-} \bar{\nu}_{e}$					
Tag Mode	$N_{\text {ST }}$	$N_{\text {DT }}$	$f_{\text {bkg }}^{\text {peak }}$ (\%)	$\epsilon(\%)$	$\mathcal{B}_{\text {sig }}(\%)$
$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	407666 ± 668	10354 ± 103	40.44 ± 0.29	34.02 ± 0.11	4.447 ± 0.051
$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{0}$	117555 ± 450	3264 ± 63	42.28 ± 0.52	33.19 ± 0.19	4.829 ± 0.107
$D^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0}$	101824 ± 378	2642 ± 55	39.06 ± 0.58	35.92 ± 0.21	4.402 ± 0.104
$D^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{+} \pi^{-}$	59046 ± 303	1533 ± 42	39.68 ± 0.77	33.44 ± 0.27	4.683 ± 0.147
$D^{+} \rightarrow K_{S}^{0} \pi^{+}$	48240 ± 226	1217 ± 35	38.50 ± 0.88	35.20 ± 0.32	4.408 ± 0.147
${ }^{++} \rightarrow K^{+} K^{-} \pi^{+}$	35742 ± 240	942 ± 32	44.04 ± 0.95	32.40 ± 0.36	4.552 ± 0.181
Averaged					4.508 ± 0.038

Branching Fraction and $A_{C P}^{D^{+} \rightarrow K_{L} e^{+} v_{e}}$

The fraction of peaking backgrounds are estimated by MC.

Black dots: data;
Blue: Fit result;
Green Line: combinatorial background

Branching fraction:
$\bar{B}\left(D^{+} \rightarrow \boldsymbol{K}_{L} e^{+} v_{e}\right)=(4.482 \pm 0.027 \pm 0.103) \%$
CP asymmetry:
$A_{C P}^{D^{+} \rightarrow K_{L} e^{+} v_{e}}=(-0.59 \pm 0.60 \pm \mathbf{1 . 5 0}) \%$

$M_{\mathrm{BC}}\left(\mathrm{GeV} / \mathrm{C}^{2}\right)$

$M_{\mathrm{BC}}\left(\mathrm{GeV} / \mathrm{C}^{2}\right)$

$M_{\mathrm{BC}}\left(\mathrm{GeV} / \mathrm{C}^{2}\right)$

Form Factor measurement

Signal shape of q^{2} distribution can be described using $\frac{d n_{\text {observed }}}{d q^{2}}=A N_{\text {tag }} p^{3}\left(q^{\prime 2}\right)\left|f_{+}\left(q^{\prime 2}\right)\right|^{2} \epsilon\left(q^{\prime 2}\right) \otimes \sigma\left(q^{\prime 2}, q^{2}\right)$ $\underset{\text { [cite: Becher and Hill, Phys. Lett. B } 633,61 \text { (2006) }}{\text { 2-par. Series Expansion is performed form factor } f_{+}\left(q^{2}\right): \quad f_{+}\left(q^{2}\right)=\frac{1}{P\left(q^{2}\right) \phi\left(q^{2}, t_{0}\right)} \sum_{k=0}^{\infty} a_{k}\left(t_{0}\right)\left[z\left(q^{2}, t_{0}\right)\right]^{k}}$

Simultaneous fits are performed:

$f_{+}^{K}(0)\left|V_{c s}\right|=0.728 \pm 0.006 \pm 0.011, \quad r_{1} \equiv a_{1} / a_{0}=1.91 \pm 0.33 \pm 0.24$

Summary

- In the study of $D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}$:
- Branching fractions are measured:

$$
\begin{array}{ll}
\operatorname{Br}\left(D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}\right) & =(3.71 \pm 0.03 \pm 0.09) \% \\
\operatorname{Br}\left(D^{+} \rightarrow K^{-} \pi^{+} e^{+} v_{e}\right)_{[0.8,1]} & =(3.33 \pm 0.03 \pm 0.08) \%
\end{array}
$$

- Amplitude analysis is applied:
- Fractions of the $K \pi$ components are analyzed. S-wave contribution is observed to be ($6.05 \pm 0.22 \pm 0.18$) $\%$.
- $K^{* 0}(892)$ properties and the form factors based on the SPD model are provided.
- Model-independent measurement of S-wave phase and the $K^{* 0}(892)$ helicity basis form factors are performed. They are generally consistent with previous reports and the amplitude analysis results.
- In the study of $D^{+} \rightarrow \omega(\phi) e^{+} v_{e}$:
- Branching fractions or upper limits are provided:

$$
\begin{aligned}
& \operatorname{Br}\left(D^{+} \rightarrow \omega e^{+} v_{e}\right)=(1.63 \pm 0.11 \pm 0.08) \times 10^{-3} \\
& \operatorname{Br}\left(D^{+} \rightarrow \phi e^{+} v_{e}\right)<1.3 \times 10^{-5}(@ 90 \% \text { C. L. })
\end{aligned}
$$

- Form factor parameters in $\mathrm{D}^{+} \rightarrow \omega \mathrm{e}^{+} v_{\mathrm{e}}$ are first measured:

$$
r_{V}=V(0) / A_{1}(0)=1.24 \pm 0.09 \pm 0.06 ; \quad r_{2}=A_{2}(0) / A_{1}(0)=1.06 \pm 0.15 \pm 0.05
$$

- In the study of $D^{+} \rightarrow K_{L} e^{+} v_{e}$:
- Branching fractions and CP assymetry are measured:

$$
\bar{B}\left(D^{+} \rightarrow K_{L} e^{+} v_{e}\right)=(4.482 \pm 0.027 \pm 0.103) \% \cdot A_{C P}^{D^{+} \rightarrow K_{L} e^{+} v_{e}}=(-0.59 \pm 0.60 \pm 1.50)
$$

- Form factor related parameters are also measured:

$$
f_{+}^{K}(0)\left|V_{C S}\right|=0.728 \pm 0.006 \pm 0.011, r_{1} \equiv a_{1} / a_{0}=1.91 \pm 0.33 \pm 0.24
$$

Backup

Estimation of Backgrounds in the Double Tag

By using MC-truth information of the K_{L} efficiency corrected $D \bar{D}$ MC samples, the double-tag D candidates can be divided into the following categories:
$>$ Signal: tag-side matched and signal-side matched signal events
> Background:

- Bkg I: $D \bar{D}$ decays of which hadronic tag D is misreconstructed and non- $D \bar{D}$ processes. Its proportion varies from 1% to $\mathbf{1 2 \%}$ according to the specific hadronic tag mode
- Bkg II: $(\sim 10 \%) D^{+} \rightarrow K_{L} e^{+} v_{e}$ events of which K_{L} shower is mis-reconstructed.
- Bkg III: $D^{+} \rightarrow X_{e} v_{e}$ non-signal events ($\sim 24 \%$), which are from $D^{+} \rightarrow \bar{K}^{*}(892)^{0} e^{+} v_{\boldsymbol{e}}(41.9 \%), D^{+} \rightarrow K_{S} e^{+} v_{e}$ $(41.2 \%), D^{+} \rightarrow \pi^{0} e^{+} v_{e}(10.2 \%), D^{+} \rightarrow \eta e^{+} v_{e}(6.0 \%)$ and $D^{+} \rightarrow \boldsymbol{\omega} \boldsymbol{e}^{+} \boldsymbol{v}_{\boldsymbol{e}}(\mathbf{0 . 7 \%})$
- Bkg IV: $D^{+} \rightarrow X \mu v_{\mu}$ events ($\sim 3 \%$), consist of $D^{+} \rightarrow$ $K_{L} \boldsymbol{\mu}^{+} \boldsymbol{v}_{\boldsymbol{\mu}}(\mathbf{6 5 . 2 \%}), D^{+} \rightarrow \bar{K}^{*}(\mathbf{8 9 2})^{0} \boldsymbol{\mu}^{+} \boldsymbol{v}_{\boldsymbol{\mu}}(\mathbf{2 3 . 3 \%})$ and $D^{+} \rightarrow K_{S} \mu^{+} v_{\mu}(11.5 \%)$

Composition of double-tag \boldsymbol{D} candidates

$q^{2}\left(\mathrm{GeV}^{2} / c^{4}\right)$

Bkg V: Non-leptonic D decay events ($\sim \mathbf{3 \%}$), which are from $D^{+} \rightarrow \bar{K}^{0} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{\mathbf{0}} \mathbf{(7 8 \%)}$ and $D^{+} \rightarrow \bar{K}^{0} K^{*}(892)^{+}(22 \%)$
In the determination of $B\left(D^{+} \rightarrow K_{L} e^{+} v_{e}\right)$, the peaking backgrounds consist of Bkg II \sim Bkg V.
This estimation brings in $\mathbf{1 . 6 \%}$ systematic uncertainty.

