Recent Charmonium Results at BESIII Experiment

Cong Geng

[BESIII Collaboration]

Center for Particle Physics and Technology, University of Science and Technology of China

gengcong@mail.ustc.edu.cn

Outline

- BEPCII and BESIII
- Observation of h_c at BESIII
- \triangleright Precision measurement of the η_c properties at BESIII
- \triangleright The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$
- \triangleright Observation of $\chi_{cJ} \rightarrow VV$ and γV
- \triangleright Evidence of $\psi' \rightarrow \gamma P(P = \pi^0, \eta, \eta')$
- Summary

BEPCII storage rings

BESIII

- First collisions in BESIII: July 2008
- Physics in BESIII: March 2009
- Record luminosity (April 2011): 6.9x10³²cm⁻²s⁻¹

So far world largest data samples:

- ~225 Million J/Ψ
- ~106 Million Ψ'
- \sim 2.9 fb⁻¹ $\Psi(3770)$
- ~0.5 fb⁻¹ @Ψ(4010)

BESIII will also collect:

- more J/ψ , ψ' , $\psi(3770)$
- data at higher energies

 (for XYZ searches, R scan and Ds physics)

Observation of h_c at BESIII

$h_c(^1P_1)$ in charmonium family

- > Spin singlet P wave (S=0, L=1)
- Potential model if non-vanishing spinspin interaction:

$$\Delta M_{hf}(1P) = M(h_c) - 1/9(M(\chi_{c0}) + 3M(\chi_{c1}) + 5M(\chi_{c2})) \neq 0$$

- ≥ E835 found evidence for h_c in pp→ h_c → $\gamma η_c$
- CLEO-c observed h_c in ee $\rightarrow \psi$ ' $\rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ $\Delta M_{hf}(1P)=0.08\pm0.18\pm0.12 MeV/c^2$

Observation of h_c at BESIII (inclusive)

BESIII Collaboration: PRL104, 132002, (2010)

- > Select inclusive $\pi^0 (\psi' \rightarrow \pi^0 h_c)$
- Select E1-photon in $h_c \rightarrow \gamma \eta_c$ (E1 tagged) or not (E1 untagged)
- ► E1-tagged selection gives $M(h_c)=3525.40\pm0.13\pm0.18 MeV$ $(\Delta M_{hf}(1P)=0.10\pm0.13\pm0.18 MeV/c^2)$ $\Gamma(h_c)=0.73\pm0.45\pm0.28 MeV$ (<1.44 MeV at 90% CL) $Br(ψ' → π^0h_c) × Br(h_c → γη_c)=$ $(4.58\pm0.40\pm0.50) × 10^{-4}$
- E1-untagged together with tagged selection gives the first measurement

Br(
$$\psi' \rightarrow \pi^0 h_c$$
) =(8.4±1.3±1.0) ×10⁻⁴
Br($h_c \rightarrow \gamma \eta_c$) =(54.3±6.7±5.2)%

Measurements of the h_c properties at BESIII (exclusive)


```
Simultaneous fit to \pi^0 recoiling mass M(h_c) = 3525.31 \pm 0.11 \pm 0.15 MeV \Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25 MeV N = 832 \pm 35 BESIII preliminary \chi^2/d_0 \Omega_1^4 J_0 J_0^2 I_0^2 J_0^2 I_0^4 J_0^2 I_0^4 I_
```

Consistent with BESIII inclusive results PRL104,132002(2010)

CLEOc exlusive results $M(h_c)=3525.21\pm0.27\pm0.14 \text{ MeV/c}^2$ N = 136 ± 14 PRL101, 182003(2008)

Precision measurement of the η_c properties

Introduction

- The lowest lying S-wave spin singlet charmonium η_c was discovered in 1980 by MarkII.
- Earlier experiments using J/ψ radiative transition gives $M(\eta_c)\sim 2978.0 MeV/c^2$, $\Gamma(\eta_c)\sim 10 MeV$.
- Recent studies using the two-photon processes gives $M(\eta_c)=2983.1\pm1.0~MeV/c^2$, $\Gamma(\eta_c)=31.3\pm1.9~MeV$.
- The most recent study from CLEO-c pointed out the distortion of the η_c line shape in ψ ' decays.
- \triangleright Measurement of the η_c properties at BESIII
 - Data sample: $1.06*10^8 \, \psi$ events, $45 \, \text{pb}^{-1}$ continuum data at $3.65 \, \text{GeV}$
 - ♦ Decay modes (X_i): KsKπ, K+K- π^0 , ηπ+ π^- , KsK3π, K+K- $\pi^+\pi^-\pi^0$, 3($\pi^+\pi^-$), where Ks \rightarrow $\pi^+\pi^-$, η \rightarrow γγ, π^0 \rightarrow γγ

The simultaneous fit

BESIII Preliminary Results

- $\bullet \text{ mass} = 2984.4 \pm 0.5 \text{stat} \pm 0.6_{\text{sys}} \text{ MeV/c}^2$
- width = 30.5 ± 1.0 stat ± 0.9 _{svs} MeV
- $\phi = 2.35 \pm 0.05$ stat $\pm 0.04_{sys}$ rad

Simultaneous fit by considering the interference between η_c and non- η_c decays: an universal phase for different modes is used and assume all non- η_c is 0^{-+}

Comparison of BESIII preliminary results with other measurements

BESIII results include both stat. and syst. errors, which is the most precision measurement, the interference between ηc decay and non-resonance is important.

The world average in PDG2010 was using earlier results

The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$

Introduction

- First "observation" by Crystal Ball in 1982 (M=3.592, B=0.2%-1.3% from $\psi' \rightarrow \gamma X$, never confirmed by other experiments.)
- \triangleright Published results about $\eta_c(2S)$ observation:

Experiment	$M [\mathrm{MeV}]$	Γ [MeV]	Process
Belle [1]	$3654 \pm 6 \pm 8$	_	$B^{\pm} \to K^{\pm} \ \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$	_	$e^+e^- \to J/\psi c\bar{c}$
PDG [5]	3638 ± 4	14 ± 7	_

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm3$ MeV

- The M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$ has not been observed. (experimental challenge : search for real photons ~50MeV,)
- Better chance to observe $\eta_c(2S)$ in ψ ' radiative transition with $\sim 1.06*10^8 \ \psi$ ' data at BESIII.
- Decay mode studied: $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$ (K+K-π⁰ etc. in progress)

 Cong Geng @ PANIC11

Mass fitting (conti.)

- **Pure statistical significance more than 6σ**
- \blacktriangleright Significance with systematic variations not less than 5σ

Preliminary measurements from $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$

$$M(\eta_c(2S))=3638.5\pm2.3_{stat}\pm1.0_{sys} (MeV/c^2)$$

$$Br(\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi) = (2.98 \pm 0.57_{stat} \pm 0.48_{sys}) \times 10^{-6}$$

Br(
$$\eta_c(2S) \rightarrow KK\pi$$
)=(1.9 ± 0.4 ± 1.1)% from BaBar

$$Br(\psi' \rightarrow \gamma \eta_c(2S)) = (4.7 \pm 0.9_{stat} \pm 3.0_{sys}) \times 10^{-4}$$

CLEO-c: $<7.6 \times 10^{-4}$ (PRD81,052002(2010))

Potential model: $(0.1-6.2)\times10^{-4}$ (PRL89,162002(2002))

χ_{c1} decays into Vector Meson pairs $(\varphi\varphi,\omega\omega,\omega\varphi)$

Introduction

- \triangleright e⁺e⁻ $\rightarrow \psi$ ' $\rightarrow \gamma \chi_{cJ}$ is the clean mode for the study of χ_{cJ}
- Previous measurements from BESII. Only χ_{c0} and χ_{c2} decays into $\phi \phi$ and $\omega \omega$ are observed

$BR(10^{-3}) \qquad \qquad \chi_{c0}$		χ _{c2}	
$\rightarrow \phi \phi$	$0.94 \pm 0.21 \pm 0.13$	$1.70 \pm 0.30 \pm 0.25$	
$\rightarrow \omega \omega$	$2.29\pm0.58\pm0.41$	$1.77 \pm 0.47 \pm 0.36$	

BESII, PLB 642, 197 (2006)

BESII, PLB 630, 7 (2005)

- \triangleright χ_{c1} violate the helicity selection rule (HSR) and expected to be suppressed
- Recently, long-distance effects in χ_{c1} have been proposed to account for the HSR violation
- Property Decays χ_{cJ} →ωφ are doubly OZI suppressed and have yet to be observed

Study of $\chi_{cJ} \rightarrow \phi \phi$, $\omega \omega$, $\omega \phi$

Cong Geng @ PANIC11

2011/7/20

χ_{cJ} radiative decays into a Vector Meson

Introduction

 $\psi \rightarrow \gamma X \rightarrow \gamma \gamma V$ (V is ρ, ω and φ) provide information on the flavor content of the C-even resonance X

➤ Recent pQCD calculation includes nonperturbative QCD hadronic loop contribution to account for the discrepancy between experimental results and former theoretical predications (pQCD, NRQCD, NRQCD+QED)

Mode	CLEO ¹	pQCD ²	QCD^3	QCD+QED ³
$\chi_{c0} \to \gamma \rho^0$	< 9.6	1.2	3.2	2.0
$\chi_{c1} \rightarrow \gamma \rho^0$	$243 \pm 19 \pm 22$	14	41	42
$\chi_{c2} ightarrow \gamma ho^0$	< 50	4.4	13	38
$\chi_{c0} ightarrow \gamma \omega$	< 8.8	0.13	0.35	0.22
$\chi_{c1} ightarrow \gamma \omega$	$83 \pm 15 \pm 12$	1.6	4.6	4.7
$\chi_{\it C2} ightarrow \gamma \omega$	< 7.0	0.5	1.5	4.2
$\chi_{c0} \rightarrow \gamma \phi$	< 6.4	0.46	1.3	0.03
$\chi_{c1} \rightarrow \gamma \phi$	< 26	3.6	11	11
$\chi_{ extsf{c2}} ightarrow \gamma \phi$	< 13	1.1	3.3	6.5

Analysis Results

BESIII Collaboration: Phys. Rev. D 83, 112005 (2011)

Br. are in unit of 10⁻⁶.

Mode	BESIII	CLEO	pQCD
$\chi_{c0} \rightarrow \gamma \rho^0$	< 10.5	< 9.6	1.2
$\chi_{c1} \rightarrow \gamma \rho^0$	$228 \pm 13 \pm 22$	$243 \pm 19 \pm 22$	14
$\chi_{c2} \to \gamma \rho^0$	< 20.8	< 50	4.4
$\chi_{c0} \rightarrow \gamma \omega$	< 12.9	< 8.8	0.13
$\chi_{c1} \! \to \! \gamma \omega$	$69.7 \pm 7.2 \pm 6.6$	$83 \pm 15 \pm 12$	1.6
$\chi_{c2} \rightarrow \gamma \omega$	< 6.1	< 7.0	0.5
$\chi_{c0} \rightarrow \gamma \phi$	< 16.2	< 6.4	0.46
$\chi_{c1} \rightarrow \gamma \phi$	$25.8 \pm 5.2 \pm 2.3$	< 26	3.6
$\chi_{c2} \rightarrow \gamma \phi$	< 8.1	< 13	1.1

See an non-pQCD explanation "hadronic loop correction", D.Y Chen et al. arXiv:1005.0066v2[hep-ph]

CLEOc: PRL 101, 151801 (2008) pQCD: Y.J. Gao et al., hep-ph/0701009

Helicity Angle

L: Longitudinal polarization, T: Transverse polarization,

θ: Helicity angle

$$\frac{d\Gamma}{\Gamma d\cos\theta} \propto (1 - f_T)\cos^2\theta + \frac{1}{2}f_T\sin^2\theta \qquad \qquad f_T = \frac{|A_T|^2}{|A_T|^2 + |A_L|^2}$$

- Longitudinal polarization dominates in the $\chi_{c1} \to \gamma V$
 - As expected in axial-vector particle radiative decaying to a vector.

$$f_T = 0.158 \pm 0.034^{+0.015}_{-0.014}$$

$$f_T = 0.247^{+0.090^{+0.044}}_{-0.087-0.026}$$

$$f_T = 0.29^{+0.13}_{-0.12}^{+0.13}$$

Evidence for ψ ' decays into $\gamma\pi^0$ and $\gamma\eta$

Introduction

Important tests for various phenomenological mechanisms:

Vector meson Dominance Model (VDM); Two-gluon couplings to $q\bar{q}$ states; Mixing of η_c - $\eta^{(\prime)}$; Final-state radiation by light quarks.

- $\begin{array}{l} \blacktriangleright \quad R_{J/\psi} = B(J/\psi \to \gamma \eta) / \; B(J/\psi \to \gamma \eta') \; \text{predicted by 1st order perturbation} \\ \text{theory.} \; R_{\psi'} = B(\psi' \to \gamma \eta) / \; B(\psi' \to \gamma \eta') \approx R_{J/\psi} \; \; \text{was expected.} \end{array}$
- **Recently, CLEOc reported on J/ψ, ψ', ψ''\rightarrow \gamma P:**
 - Found no evidence for $\psi' \rightarrow \gamma \pi^0$ or $\gamma \eta$

CLEOc, PRD 79, 111101 (2009)

— Determine B(ψ '→γ π ⁰) < 5 x 10⁻⁶

— Obtain $R_{\psi'}$ < 1.8% at 90% CL and $R_{J/\psi}$ = (21.1 +/- 0.9)% $R_{\psi'}$ << $R_{J/\psi}$ poses a significant challenge to theory.

$\psi' \rightarrow \gamma P (P = \pi^0, \eta \text{ and } \eta') \text{ at BESIII}$

2011/7/20

Cong Geng @ PANIC11

$\psi' \rightarrow \gamma P (P = \pi^0, \eta \text{ and } \eta') \text{ at BESIII}$

Phys. Rev. Lett 105, 261801 (2010)

Mode	BESIII	Combined BESIII	PDG	(x 10 ⁻⁶)
		$1.58 \pm 0.40 \pm 0.13$		
$\psi' \to \gamma \eta (\pi^+ \pi^- \pi^0)$ $\to \gamma \eta (\pi^0 \pi^0 \pi^0)$	$1.78 \pm 0.72 \pm 0.17$	$1.38 \pm 0.48 \pm 0.09$	< 2	
$\psi' \rightarrow \gamma \eta' (\pi^+\pi^-\eta)$	$120 \pm 5 \pm 8$	$126\pm3\pm8$	121 ± 8	
$ ightarrow \gamma \eta' (\pi^+\pi^-\gamma)$	$129 \pm 3 \pm 8$			

- Measured branching ratios of $\psi' \rightarrow \gamma \eta$ and $\psi' \rightarrow \gamma \pi^0$ for the first time
- The first measurement of

$$R_{\psi'} = (1.10 \pm 0.38 \pm 0.07)\%$$

 \triangleright Confirmed R $_{\psi'} << R_{J/\psi}$

Theoretical explanation: Q. Zhao, Phys. Lett. B697, 52 (2011)

Summary

- High luminosity by BEPCII and the good performance of BESIII give us better chance to study the chamonium spectroscopy.
- > Study of h_c at BESIII (inclusive & exclusive) gives the measurements of mass, width of h_c as well as $Br(\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$).
- Precise measurement of the properties of η_c done at BESIII. The observed distortion η_c line shape described successfully by a interference model.
- > The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(25)$.
- \triangleright Observation of $\chi_{cJ} \rightarrow VV$, γV and $\psi' \rightarrow \gamma P(P = \pi^0, \eta, \eta')$

Backup

η_c lineshape from $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

The $\eta_{\mathcal{C}}$ lineshape is not distorted in the $h_{\mathcal{C}}{
ightarrow}\gamma\eta_{\mathcal{C}}$ Detail analysis of $\eta_{\mathcal{C}}$ parameters is ongoing!

Backgrounds for $\psi' \rightarrow \gamma \eta_c \rightarrow \gamma X_i$

- ψ ' $\rightarrow \pi^0 X_i$ With the optimized selection, the mass spectra for $\pi^0 X_i$ events are measured in data and scaled according to the full simulation to estimate the contribution in $\gamma \eta_c$ candidates.
- Non-resonant contribution $\psi' \rightarrow \gamma X_i$ the same final states, can not be removed
- Rare backgrounds
 Production rate or efficiency is very low, estimated according to the inclusive MC sample
- ➤ Continuum events
 Estimated by using the 45pb⁻¹ data taken at 3.65GeV

Backgrounds for $\psi' \rightarrow \gamma \eta_c \rightarrow \gamma X_i$ (conti.)

Mass spectrum fitting

$$\sigma \bigotimes (\epsilon |e^{i\phi}f_1\mathcal{S} + \alpha Non|^2 f_2) + BKG$$

- > S: signal function (BW with mass width floated)
- **Non**: PDF for the non-resonant γX_i (all assumed to 0^{-+})
- **BKG**: the sum of other backgrounds $\pi^0 X_i$ + other rare ψ ' decays + continuum, fixed in the fitting
- \triangleright ϕ : interference phase between η_c decay and non-resonant contribution

Fit results for individual modes:

it results for in	idi vidudi i	HOUCE	· · · · · · · · · · · · · · · · · · ·				
$\bmod e \ (i)$	signal yield	ε (%)	${\rm mass}~({\rm MeV}/c^2)$	width(MeV)) ϕ_i	$\chi^2/d.o.f$	significance
$K_SK^+\pi^-$	880.4	35.0	2984.7 ± 1.2	32.5 ± 2.3			6.4
$K^+K^-\pi^0$	948.4	25.0	2980.3 ± 1.5	30.5 ± 2.4	2.4 ± 0.4	0.9	3.4
$\eta\pi^+\pi^-$	573.4	25.0	2982.4 ± 1.8	31.0 ± 3.3	2.2 ± 0.2	1.2	3.8
$K_SK^+\pi^+\pi^-\pi^-$	432.3	11.0	2986.9 ± 2.1	34.1 ± 3.3	2.3 ± 0.2	0.7	4.4
$K^+K^-\pi^+\pi^-\pi^0$	1033.6	11.0	2985.4 ± 1.3	29.1 ± 2.8	2.6 ± 0.2	1.2	7.0
$3(\pi^+\pi^-)$	664.4	17.0	2986.8 ± 1.3	33.7 ± 3.1	2.5 ± 0.1	1.1	7.0
combined	4532.5	-	2984.5 ± 0.6	31.7 ± 1.1	2.5 ± 0.1	_	-
C.L.	-	-	1.1%	89%	28%	-	_

Interference

Mass spectrum representation for $\psi' \rightarrow \gamma \eta_c(2S)$

- The 4C kinematic fitting used to select the γKsKπ candidates (χ^2_{4C} <50)
- \triangleright Still some KsK π BG events contribute the γ KsK π candidates with a fake photon.
- The invariant mass from 4C-kinematic fits make the BG ψ ' \rightarrow KsK π contaminates the $\eta_c(2S)$ mass region (3.6~3.66GeV).
- The mass from 3C-kinematic fits (the measured energy of the photon is free) is little biased by the fake photon.
- ➤ Difference small between 4C and 3C for signal events

So the 3C fit mass used to determine the yields and parameters

Mass fitting for $\psi' \rightarrow \gamma \eta_c(2S)$

 $\triangleright \eta_c(2S)$ signal:

- $\triangleright \chi_{cJ}$: MC shape \otimes a Gaussian
- \triangleright BG from π^0 KsK π :

Measurement + scaling with MC simulation

► BG from ψ '→KsKπ(γ_{FSR}) & continuum (KsKπ(γ ISR)):

Ratio of the two is fixed in the final mass fitting

ρ , ω and ϕ Reconstruction

Study of $\chi_{cJ} \rightarrow \phi \phi \ (\phi \rightarrow K^+K^-)$

- Vising kinematic fit to select $\gamma 2(K^+K^-)$ candidates
- KK pairs reconstruction by minimizing :
 [M₁(K+K)-M₀]² + [M₂(K+K)-M₀]²

Channel	$B(\times 10^{-4})$	$PDG(\times 10^{-4})$
$\chi_{c0} \to \phi \dot{\phi}$	$7.8 \pm 0.4 \pm 0.8$	9.2 ± 1.9
$\chi_{c1} \to \phi \phi$	$4.1 \pm 0.3 \pm 0.4$	_
$\chi_{c2} \rightarrow \phi \phi$	$10.7 \pm 0.4 \pm 1.1$	14.8 ± 2.8

First observation

Study of $\chi_{cJ} \rightarrow \omega \omega \ (\omega \rightarrow \pi^+ \pi^- \pi^0)$

- Using kinematic fit to select $5\gamma 2(\pi^+\pi^-)$ candidates
- Two π^0 pair reconstruction: minimizing

$$\sum_{m=0}^{\infty} (M_{\gamma\gamma} - M_{\pi^0})^2$$

by looping over 5γ

ω reconstruction: minimizing

$$\sum (M_{\pi^+\pi^-\pi^0} - M_{\omega})^2$$

Channel	$B(\times 10^{-4})$	$PDG(\times 10^{-4})$
$\chi_{c0} \to \omega \omega$	$9.5 \pm 0.3 \pm 1.1$	22 ± 7.0
$\chi_{c1} \rightarrow \omega \omega$	$6.0 \pm 0.2 \pm 0.7$	_
$\chi_{c2} \to \omega \omega$	$8.9 \pm 0.3 \pm 1.1$	19.0 ± 6.0

First observation

Study of $\chi_{cJ} \rightarrow \omega \phi \rightarrow \pi^+ \pi^- \pi^0 K^+ K^-$

- > Two tracks are identified as K+K⁻
- \triangleright Using kinematic fit to select 3γ2K2π candidates
- $\triangleright \pi^0 \omega$ are reconstructed by minimizing

$$(M_{\gamma\gamma} - M_{\pi^0})^2 + (M_{\gamma\gamma\pi^+\pi^-} - M_{\omega})^2$$

Channel	$B(\times 10^{-4})$	$PDG(\times 10^{-4})$
$\chi_{c0} \to \omega \phi$	$1.2 \pm 0.1 \pm 0.2$	_
$\chi_{c1} \rightarrow \omega \phi$	$0.22 \pm 0.06 \pm 0.02$	_
$\chi_{c2} \to \omega \phi$	< 0.2	

Doubly OZI suppressed $\chi_{cJ} \rightarrow \omega \phi$ are observed for the first time