

BESIII Overview

Guofa XU

IHEP, Beijing

For BESIII Collaboration

- Introduction to BEPCII and BESIII
- Light Hadrons
- XYZ physics
- Open Charm physics
- Summary

Beijing Electron Positron Collider II (BEPC II)

BESIII Collaboration

June 7, 2016

Sixth FPCapri2016

BESIII started data taking for physics since 2009

R Value

- $1.3 \times 10^9 \, \text{J}/\psi$
- $5 \times 10^8 \psi(2S)$
- 2.9 fb⁻¹ @ ψ_{3770}
- 0.5 fb⁻¹ @ ψ_{4040}
- 2.3 fb⁻¹ @ 4230/4260 MeV
- 0.5 fb⁻¹ @ 4360 MeV
- 0.5 fb⁻¹ @ 4600 MeV
- 1 fb⁻¹ @ ψ_{4415}
- 0.1 fb⁻¹ @ 4470/4530 MeV
- 0.04 fb⁻¹ around Λ_c threshold
- 1 fb⁻¹ @ 4420 MeV
- R scan:
 - 2-3 GeV, 19 points, ~0.5 fb⁻¹
 - 3.85-4.59 GeV, 104 points, ~0.8 fb⁻¹

MORE:

- 3554 MeV 24 pb⁻¹ τ mass; 4100-4400 MeV 0.5 fb⁻¹ coarse scan
- On-going data taking

Sixth FPCapri2016

BESIII Physics Program

Light Hadrons

- Meson and baryon spectroscopy
- Search for exotic hadrons, e.g. glueballs, hybrids, tetraquarks
- Light meson decays

Charmonium Physics

- X, Y, and Z states
- Decays and transitions

Open Charm Physics

- D meson decays
- $D\overline{D}$ mixing
- CP violation in the charm sector

And many further topics e.g. tau and two-photon physics

Light Hadrons

June	7,	2016	
------	----	------	--

Suggested $q \overline{q}$ quark-model assignments for	
some of the observed light mesons.	

Scalar (0++)

> Eur. Phys. J. C 21, 531–543 (2001)

✓ f₀(1370): Large nn̄, small ss̄ and significant Glue content

✓ $f_0(1500)$: $s\bar{s}$ and $n\bar{n}$ out of phase ✓ $f_0(1710)$: Large $s\bar{s}$ content

> Physics Reports 389 (2004) 61

- ✓ f₀(1370) Largely $n\overline{n}$
- ✓ f₀(1500) mainly Glue
- ✓ $f_0(1710)$ mainly $s\bar{s}$

PRL 110, 021601 (2013)

✓ f₀(1710) dominant Glueball components

J^{PC}	$r_0 M_G$	$M_G ({ m MeV})$
0^{++}	4.16(11)(4)	1710(50)(80)
2^{++}	5.83(5)(6)	2390(30)(120)
0^{-+}	6.25(6)(6)	2560(35)(120)
1^{+-}	7.27(4)(7)	2980(30)(140)
2^{-+}	7.42(7)(7)	3040(40)(150)
3^{+-}	8.79(3)(9)	3600(40)(170)
3^{++}	8.94(6)(9)	3670(50)(180)
$1^{}$	9.34(4)(9)	3830(40)(190)
$2^{}$	9.77(4)(10)	4010(45)(200)
$3^{}$	10.25(4))(10)	4200(45)(200)
2^{+-}	10.32(7)(10)	4230(50)(200)
0^{+-}	11.66(7)(12)	4780(60)(230)

first studied by

- Crystal Ball (1982): f₀(1710)
- Crystal Barrel (1995): $f_0(1500) [pp \rightarrow \pi^0 \eta \eta]$
- E835 (2006): $f_0(1500) [pp \rightarrow \pi^0 \eta \eta]$ $f_0(1710) [pp \rightarrow \pi^0 \eta \eta]$
- WA102, GAMS:
 f₀(1500) [ηη mode]

BESIII: PWA of $J/\psi \rightarrow \gamma \eta \eta$, $\eta \rightarrow \gamma \gamma$

- $f_0(1710)$ and $f_0(2100)$ are dominant scalars
- f₀(1500) exists (8.2σ)
- f_2 '(1525) is the dominant tensor
- f₂(1810) and f₂(2340) exist (6.4 and 7.6 σ)
- No evidence for $f_J(2220)$

Resonance Mass(MeV/ c^2) Width(MeV/ c^2) $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ Significance

PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

PRD 92, 052003(2015)

- Model-independent PWA;
- Provide a description of the scalar and tensor components of the $\pi^0\pi^0$ system;
- 0^{++} : $\sigma(f_0(500)), f_0(1370), f_0(1500), f_0(1710), \text{ and } f_0(2020);$
- ² 2⁺⁺: dominant by f₂(1270);

Decay rate of pure glueball from LQCD

 \blacktriangleright Pure scalar-glueball rate in J/ ψ radiative decays $BR(J/\psi \rightarrow \gamma G(0^{++}))=3.8(9)\times 10^{-3}$ neng Gui et al. 0 (2013) 021601 $\mathsf{BR}(\mathsf{J}/\psi \to \gamma \mathsf{f}_0(1710) \to \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$ $\Sigma Exp.:$ $\mathsf{BR}(\mathsf{J}/\psi \rightarrow \gamma \mathsf{f}_{0}(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$ BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \omega \omega$)=(3.1±1.0)×10⁻⁴ BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta$)=(2.35^{+0.13+1.24}_{-0.74})×10⁻⁴ \blacktriangleright Pure Tensor-glueball rate in J/ ψ radiative decays $BR(J/\psi \rightarrow \gamma G(2^{++})) = 1.1(2) \times 10^{-2}$ Bo Yang et al. 111.091601 Large decay rate is predicted **Need more experimental information!**

Pseudoscalar (0⁻⁺)--η(1440)

First observed in $p\overline{p}$

Nuovo Cimento 50A(1967)393

$$\checkmark p\bar{p} \rightarrow \eta (1440)\pi^{+}\pi^{-}(,\eta \rightarrow K\overline{K}\pi)$$

✓ Mass: 1425±7 MeV, Width: 80±10 MeV

> η (1405) and η (1475) observed in different decay modes

$\checkmark \pi^- p$: PRD40(1989)693, PLB516(2001)264

✓ Radiative J/ψ decay: PRL65(1990)2507, PRD46(1992)1951

✓ pp̄ annihilation at rest: PLB361(1995)187, PLB400(1997)226, PLB462(1999)453,
 PLB545(2002)261

Pseudoscalar (0⁻⁺)--η(1405)/η(1475)

The Structure of $\eta(1440)$

Experiment

- $\checkmark\eta(1440)$ split to $\eta(1405)$ and $\eta(1475)$ (from PDG04)
- ✓ η(1405)→ηππ , or through $a_0(980)\pi$ (or direct) to KKπ
- √η(1475)→K*(892)K

➢Quark-model

- η (1295): the first radial excitation of the η '
- $\eta(1475)$: the first radial excitation of the η
- η(1405) ?

Phys. Rev. D87, 014023(2013)

• $\eta(1405)$ and $\eta(1475)$ are the same state with a mass shift in different modes

Pseudoscalar (0⁻⁺)--η(1405)/η(1475)

√η(1405)→γρ η(1475)→γφ

Decay mode	Mass (MeV/ c^2)	Width (MeV/ c^2)	$B(J/\psi \to \gamma X)B(X \to \gamma V)$ $(\times 10^{-4})$	Experiment
$f_1(1285) \rightarrow \gamma \rho^0$	$1281.9 \pm 0.6 \\ 1271 \pm 7 \\ 1276.1 \pm 8.1 \pm 8.0$	24.0 ± 1.2 31 ± 14 $40.0 \pm 8.6 \pm 9.3$	$\begin{array}{c} 0.34 \pm 0.09 \\ 0.25 \pm 0.07 \pm 0.03 \\ 0.38 \pm 0.09 \pm 0.06 \end{array}$	PDG [1] MarkIII [7] BESII
$\eta(1440) \to \gamma \rho^0$	1400-1470 1432 ± 8 $1424 \pm 10 \pm 11$	50-80 90 ± 26 $101.0 \pm 8.8 \pm 8.8$	$\begin{array}{c} 0.64 \pm 0.12 \pm 0.07 \\ 0.64 \pm 0.12 \pm 0.07 \\ 1.07 \pm 0.17 \pm 0.11 \end{array}$	PDG [1] MarkIII [7] BESII
$\eta(1440) \to \gamma \phi$			< 0.82 (95% C.L.)	BESII

Fig. 2. The $\gamma \rho$ invariant mass distribution. The insert shows the full mass scale where the $\eta(958)$ is clearly observed.

Pseudoscalar (0⁻⁺)--n(1405)/n(1475)

	Resonance	Mass (MeV/c ²)	Γ (MeV/c²)	B.F.(×10⁻ ⁶)
Destructive	f ₁ (1285)	PDG	PDG	0.30±0.12±0.17
interference	η(1405/1475)	•1479±11±21	$133 \pm 35 \pm 20$	$11.8 \pm 2.2 \pm 1.9$
	X(1835)	1812±59±42	$161 \pm 47 \pm 24$	$9.0 \pm 2.6 \pm 2.2$
Constructive	f ₁ (1285)	PDG	PDG	0.29±0.12±0.17
interference	η(1405/1475)	$1479 \pm 11 \pm 16$	$132 \pm 36 \pm 31$	$7.9 \pm 1.3 \pm 1.9$
	X(1835)	1813±61±45	$160 \pm 81 \pm 43$	$1.6 \pm 0.5 \pm 0.3$

√η**(1475)**→γφ

Result (BESIII preliminary)

Assuming $\eta(1405)$ and $\eta(1475)$ belong to one meson [1]: $\Gamma(\eta(1405/1475) \rightarrow \gamma \rho) : \Gamma(\eta(1405/1475) \rightarrow \gamma \phi) = 3.8 : 1$

> The structure in $\gamma \phi$ favors $\eta(1475)$.

One state assumption: the ratio between $\gamma\rho$ and $\gamma\phi$ final states is a little bit larger than the prediction in Ref[1].

Two states assumption: $\eta(1475)$ probably the first radial excitation of the η

The partial width relationship of γho and $\gamma\phi$ final states		
BESIII prov	Constructive	Destructive
$\Gamma(f_1(1285) \rightarrow \gamma \rho)[3]: \Gamma(f_1(1285) \rightarrow \gamma \phi)^{(1)} n_{inal}$	(128.8 ± 96.7):1	(129.3 \pm 99.8):1
$\Gamma(\eta(1405/1475) \rightarrow \gamma \rho)[4]: \Gamma(\eta(1405/1475) \rightarrow \gamma \phi)$	′ ′ ′ (6.6 ± 2.1) : 1	(9.9 \pm 2.8) : 1

[1] X. G. Wu et, al. Phys. Rev. D 87, 014023.[2] L. Kopke and N. Wermes Phys. Rep. 174, 67.

[3] BES Collaboration Phys. Lett. B 594, 47.[4] Particle Data Group Chin. Phys. C 38, 090001.

June 7, 2016

Sixth FPCapri2016

TABLE V. The mass, width, and branching fractions of J/ψ decays into $\{\omega, \phi\}X(1440)$.

$J/\psi \rightarrow \omega X(1440)$	$J/\psi \rightarrow \omega X(1440)$
$(X \rightarrow K_S^0 K^+ \pi^- + \text{c.c.})$	$(X \rightarrow K^+ K^- \pi^0)$
$M = 1437.6 \pm 3.2 \text{ MeV}/c^2$	$M = 1445.9 \pm 5.7 \text{ MeV}/c^2$
$\Gamma = 48.9 \pm 9.0 \text{ MeV}/c^2$	$\Gamma = 34.2 \pm 18.5 \text{ MeV}/c^2$
$B(J/\psi \rightarrow \omega X(1440) \rightarrow \omega K_S^0 K^+ \pi^- + \text{c.c.}) = (4.8)$	$36 \pm 0.69 \pm 0.81) \times 10^{-4}$
$B(J/\psi \rightarrow \omega X(1440) \rightarrow \omega K^{+} K^{-} \pi^{0}) = (1.92 \pm 0.)$	$57 \pm 0.38) \times 10^{-4}$
$B(J/\psi \to \phi X(1440) \to \phi K_S^0 K^+ \pi^- + \text{c.c.}) < 1.93$	3×10^{-5} (90% C.L.)
$B(J/\psi \rightarrow \phi X(1440) \rightarrow \phi K^+ K^- \pi^0) < 1.71 \times 10^{-5}$	⁻⁵ (90% C.L.)

M. Ablikim et al, Phys. Rev. D77, 032005(2008)

BESIII: J/ ψ →ωη $\pi\pi$

TABLE I. Summary of measurements of the mass, width, and the product branching fraction of $\mathcal{B}(J/\psi \to \omega X) \times \mathcal{B}(X \to a_0^{\pm}(980)\pi^{\mp}) \times \mathcal{B}(a_0^{\pm}(980) \to \eta \pi^{\pm})$ where X represents $f_1(1285)$, $\eta(1405)$ and X(1870). Here the first errors are statistical and the second ones are systematic.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26 \substack{+0.72 \\ -0.36}$

FIG. 4 (color online). Results of the fit to the $M(\eta \pi^+ \pi^-)$ mass distribution for events with either the $\eta \pi^+$ or $\eta \pi^-$ in the $a_0(980)$ mass window. The dotted curve shows the contribution of non- ω and/or non- $a_0(980)$ background, the dashed line also includes the contribution from $J/\psi \rightarrow b_1(1235)a_0(980)$, and the dot-dashed curve indicates the total background with the non-resonant $J/\psi \rightarrow \omega a_0^{\pm}(980)\pi^{\mp}$ included. $\chi^2/d.o.f.$ is 1.27 for this fit.

M. Ablikim et al, Phys. Rev. Lett. 107, 182001(2011)

Sixth FPCapri2016

$\eta(1405)$ in J/ψ $\rightarrow \gamma 3\pi$

250

200

150

100

50

PRL 108, 182001 (201

Events/(0.02GeV/c²)

50 F

40 F

30

20

a

BESI

observed for the first time with a significance $>10\sigma$.

Resonance	$M({ m MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	Branching ratios
$\frac{\eta(1405)(\pi^+\pi^-\pi^0)}{\eta(1405)(\pi^0\pi^0\pi^0)}$	1409.0 ± 1.7 1407.0 ± 3.5	48.3 ± 5.2 55.0 ± 11.0	$\begin{array}{l} (1.50 \pm 0.11 \pm 0.11) \times 10^{-5} \\ (7.10 \pm 0.82 \pm 0.72) \times 10^{-6} \end{array}$

b

BESI

Measured results of $\eta(1440)$ at BES2/BESIII

BES2 BESIII

	ηππ	$K\overline{K}\pi$	3π	γν
γ	η(1405) (2.6±0.7)·10⁻⁴	η (1440)	η(1405) 3π (1.50±0.11±0.11)·10 ⁻⁵ 3π ⁰ (7.10±0.82±0.72)·10 ⁻⁶	η(1405) → γρ (1.07±0.17±0.11)·10 ⁻⁴ η(1475) → γφ (7.9±1.3±1.9/ 11.8±2.2±1.9)·10 ⁻⁶
ω	η(1405) (1.89±0.21± ^{0.21} _{0.23})·10 ⁻⁴	η(1440) K _s Kπ: (4.86±0.69±0.81)·10 ⁻⁴ K ⁺ K ⁻ π ⁰ : (1.92±0.57±0.38)·10 ⁻⁴		
ф	η(1405) (2.01±0.58±0.82)·10 ⁻⁵ (<4.45·10 ⁻⁵ @90%CL)	η <mark>(1440)</mark> K _s Kπ <1.93·10 ⁻⁵ @90%CL K ⁺ K ⁻ π ⁰ <1.71·10 ⁻⁵ @90%CL		
ρ				

Status of X(18??) at BESIII

- $X(p\overline{p})$: $J^{P} = 0^{-}$, $J/\psi \rightarrow \gamma p\overline{p}$,
- X(1835): $J^{P} = 0^{-}$, $J/\psi \rightarrow \gamma \pi^{+} \pi^{-} \eta'$,
- X(1840): J^P unknown, J/ψ→γ3(π⁺π⁻),
- X(1870): J^P unknown, J/ψ→ωηπ⁺π⁻,
- X(1810): $J^{P} = 0^{+}$, $J/\psi \rightarrow \gamma \omega \phi$,

PRL108,112003 PRL106, 072002 PRD88,091502 PRL107, 182001 PRD 87, 032008

X(18??) near proton-antiproton threshold :

- X(1840) is in agreement with X(1835) and X(*pp*), while its width is significantly different
- Are they the same particles?
- More studies are needed

$X(p\overline{p})/X(1860)$ in $J/\psi \rightarrow \gamma p\overline{p}$

- Strong enhancement first observed at BESII [PRL 91,022001(2003)] and confirmed by CLEO-c [PRD82,092002(2012)];
- CLEO-c [PRD82,092002(2012)];
 PWA was firstly performed at BESIII;
 Significance of the X(pp̄) component > 30σ, >5σ for the other components;
 The 0⁻⁺ assignment is better that other J^{PC};
 M=1832±¹⁹₅(stat)±¹⁸₁₇(syst)±19(mode)MeV/c²;

- Γ<76MeV/c² (90% C.L.);

No similar structure was observed in $J/\psi \rightarrow \omega p\overline{p}$ or $J/\psi \rightarrow \phi p\overline{p}$;

arXiv:1512.08197

Confirm X(1835) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Resonance	$M({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	N _{event}	
$f_1(1510)$	1522.7 ± 5.0	48 ± 11	230 ± 37	>5.7σ
X(1835)	1836.5 ± 3.0	190.1 ± 9.0	4265 ± 131	>20σ
<i>X</i> (2120)	2122.4 ± 6.7	83 ± 16	647 ± 103	>7.2σ
X(2370)	2376.3 ± 8.7	83 ± 17	565 ± 105	>6.4σ

- X(1835) was first observed at BES, and then confirmed at BESII [PRL95,262001(2005)];
- the angular distribution of the radiative photon is consistent with expectations for pseudoscalar;
- Many interpretation: pp bound state? Glueballs? Radial excitation of the η' meson?,...
- Needed higher statistic

Fit to Mass spectra of $\eta' \pi^+ \pi^-$: MODEL I

• Using the Flatté formula for the line shape

•
$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}, \sum_k g_k^2 \rho_k \simeq g_0^2 (\rho_0 + \frac{g_{p\bar{p}}^2}{g_0^2} \rho_{p\bar{p}})$$

• $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the summation of all other channels

The state around 1.85 GeV/ c^2	
\mathcal{M} (MeV/ c^2)	$1638.0 \begin{array}{c} ^{+121.9}_{-121.9} \begin{array}{c} ^{+127.8}_{-254.3} \end{array}$
$g_0^2 ((\text{GeV}/c^2)^2)$	$93.7 \begin{array}{c} +35.4 \\ -35.4 \\ -43.9 \end{array}$
$g_{p\bar{p}}^2/g_0^2$	$2.31 {}^{+0.37}_{-0.37} {}^{+0.83}_{-0.60}$
$M_{pole} (MeV/c^2) *$	1909.5 +15.9 +9.4 -15.9 -27.5
$\Gamma_{\rm pole} ({\rm MeV}/c^2) ^*$	$273.5 \begin{array}{c} +21.4 \\ -21.4 \\ -64.0 \end{array}$
Branching Ratio	$(3.93 {}^{+0.38}_{-0.38} {}^{+0.31}_{-0.84}) \times 10^{-4}$

* The pole nearest to the $p\bar{p}$ mass threshold

$\log \mathcal{L} = 630549.5$

Significance of $g_{p\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ X(1920) is needed with 5.7 σ

Fit to Mass spectra of $\eta' \pi^+ \pi^-$: MODEL II

• Using coherent sum of two Breit-Wigner amplitudes

	T -	$\sqrt{ ho_{out}}$	$\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}$
•	1 —	$\overline{M_1^2 - s - iM_1\Gamma_1}$	$\overline{M_2^2 - s - iM_2\Gamma_2}$

X(1835)	
M (MeV/ c^2)	1825.3 +2.4 +17.3 -2.4 -2.4
Γ (MeV/ c^2)	$245.2 {}^{+14.2}_{-12.6} {}^{+4.6}_{-9.6}$
B.R. (constructive interference)	$(3.01 {}^{+0.17}_{-0.17} {}^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72 {}^{+0.21}_{-0.21} {}^{+0.18}_{-0.35}) \times 10^{-4}$
X(1870)	
M (MeV/ c^2)	$1870.2 \begin{array}{c} +2.2 \\ -2.3 \end{array} \begin{array}{c} +2.3 \\ -0.7 \end{array}$
Γ (MeV/ c^2)	$13.0 \begin{array}{c} +7.1 \\ -5.5 \\ -3.8 \end{array}$
DD ($(2, 22, \pm 0.12, \pm 0.42)$ (2, 7)
B.R. (constructive interference)	$(2.03 + 0.12 + 0.43) \times 10^{-7}$

$\log \mathcal{L} = 630540.3$

Significance of X(1870)is larger than 7σX(1920) is not significant

$\eta^{\prime}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ line shape near the $p\overline{p}$ mass threshold

- A significant distortion of the $\eta' \pi^+ \pi^-$ line shape near the $p\overline{p}$ mass threshold is observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - > Simple Breit-Wigner function fails in describing the line shape near the $p\bar{p}$ mass threshold
- Two models have been used
 - \succ MODEL I: threshold structure due to the opening of the pp̄ decay mode
 - Using the Flatté formula
 - Strong X(1835) \rightarrow pp̄ coupling, with significance larger than 7 σ
 - $M_{\text{pole}} = 1909.5 + 15.9 + 9.4 15.9 27.5 \text{ MeV}/c^2$
 - $\Gamma_{\text{pole}} = 273.5 + 21.4 + 6.1 \\ -21.4 64.0 \text{ MeV}/c^2$
 - MODEL II: interference between two resonances
 - Using coherent sum of two Breit-Wigner amplitudes
 - A narrow resonance below the $p\overline{p}$ mass threshold, with significance larger than 7σ
 - M = 1870. 2 $^{+2.2}_{-2.3} + ^{+2.3}_{-0.7}$ MeV/ c^2
 - $\Gamma = 13.0^{+7.1}_{-5.5}^{+2.1}_{-3.8} \text{ MeV}/c^2$
- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to pp, or a narrow state just below the pp mass threshold
 - > Support the existence of a $p\overline{p}$ molecule-like state or bound state

X(1835) in $J/\psi \rightarrow K^0_S K^0_S \eta$ provides a clear environment

BESIII: PRL115,091803

- $K_{S}^{0}K_{S}^{0}\eta$ and $\pi^{0}K_{S}^{0}K_{S}^{0}\eta$ bkgs are forbidden by exchange symmetry and CP conservation
- $1.3 \times 10^9 \text{ J}/\psi$ events
- (a) Structure around 1.85 GeV/ c^2
- (b) Strong enhancement near the $K_{s}^{0}K_{s}^{0}$ threshold interpreted as the $f_0(980)$
- (c) Strong correlation between the $f_0(980)$ and the structure near 1.85 GeV/c^2
- (d) $M(K^0_S K^0_S) < 1.1 \text{ GeV}/c^2 \dot{e}$ the structure near 1.85 GeV/ c^2 became more pronounced

PWA of events with $M(K^{0}_{s}K^{0}_{s}) < 1.1 \text{ GeV}/c^{2} \text{ and}$ $M(K_{S}^{0}K_{S}^{0}\eta) \le 2.8 \text{ GeV/c}^{2}$

June 7, 2016

X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

BESIII: PRL**115**,091803

Final fit results: the data can be best described with three components: $X(1835) \rightarrow f_0(980) \eta$, $X(1560) \rightarrow f_0(980) \eta$, and a non-resonant $f_0(1500) \eta$ component

✓ Mass/Width consistent with the X(1835) in

 $J/ψ \rightarrow \gamma \eta' \pi \pi$

 \checkmark Mass/spin consistent with those of the X($par{p}$)

 \checkmark Width is larger than the width of the X($par{p}$)

 $M = 1844 \pm 9 \text{ (stat)} \pm \frac{16}{25} \text{ (syst) MeV/c}^{2} \qquad \Gamma = 192 \pm \frac{20}{17} \text{(stat)} \pm \frac{62}{43} \text{(syst) MeV} \text{ (>12.9 } \sigma \text{)}$ $BR = (3.3 \pm \frac{0.32}{0.30} \text{(stat)} \pm \frac{1.96}{1.29} \text{ (syst)}) \times 10^{-5}$ June 7, 2016 Sixth FPCapri2016

X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- A structure at 1.84GeV/c² is observed in the mass spectrum 3(π⁺π⁻) with a significance of 7.6σ;
- M=1842.2±4.2^{+7.1}-2.6 MeV/c²;
 Γ=83±14±11 MeV/c²;

 $B(J/\psi \to \gamma X(1840)) \times B(X(1840) \to 3(\pi^+\pi^-)) = (2.44 \pm 0.36^{+0.60}_{-0.74}) \times 10^{-5}$

- ✓ The mass is consistent with that of X(1835), but the width is significantly different from either of them, and much smaller than $\Gamma_{X(1835)} = 190.1 \pm 9.0^{+38} - 36$ MeV/c²;
- ✓ We cannot determine whether X(1840) is a new state a new decay modes of existing X(1835)?

X(1870) in J/ψ→ωηπ⁺π⁻

- First observation of $J/\psi \rightarrow \omega X(1870)$ and $X(1870) \rightarrow a_0 (980) \pm \pi^{\mp}$ with the significance 7.2 σ ;
- M=1877.3 \pm 6.3(stat) \pm ^{3.4}_{7.4}(syst) MeV/c²
- $\Gamma = 57 \pm 12(\text{stat}) \pm \frac{19}{4}(\text{syst}) \text{ MeV/c}^2;$
- f₁(1285) and η(1405) are also observed ^C/₂ with significances >10σ;
 the product branching fractions for ^A/_A
- the product branching fractions for X(1870), f₁(1285) and η(1405) are measured for the first time.

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(10^{-4})$
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$\begin{array}{c} 1.25 \pm 0.10 \substack{+0.19 \\ -0.20} \\ 1.89 \pm 0.21 \substack{+0.21 \\ -0.23} \\ 1.50 \pm 0.26 \substack{+0.72} \end{array}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	
$\chi(1870)$	$1877.3 \pm 6.3^{+3.4}$	$57 \pm 12^{+19}$	

Whether the resonant structure of X(1870) is due to the X(1835), the $\eta_2(1870)$, an interference of both, or a new resonance still needs further study!

X(1810) in PWA of $J/\psi \rightarrow \gamma \omega \phi$

- $J/\psi \rightarrow \gamma \omega \phi$ is Double OZI suppressed;
- The X(1810) is first observed by PWA at BESII [PRL 96, 162002 (2006)];
- Observed and confirmed at BESIII with the significance >30σ,;
- the J^{PC} of the X(1810) is 0⁺⁺;
- The enhancement is not compatible with either the X(1835) or the X(pp) due to the different masses and spin-parity.

Resonance	J^{PC}	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$>30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	20.4σ
$f_0(2020)$	0^{++}	1992	442	715 ± 45	100	2	13.9σ
$\eta(2225)$	0^{-+}	2226	185	70 ± 30	23	2	6.4σ
Coherent nonresonant component	0^+			319 ± 24	45	2	9.1 <i>o</i>

J/ψ→γωφ PRD **87**,032008 >**30**σ

Sixth FPCapri2016

June 7, 2016

36/60

Data 4~4.6GeV for XYZ studies

• The X states

✓ Neutral charmoniu-like/exotic states

 \checkmark J^{PC} is not 1⁻⁻

✓ Searched by photon/hadron transition at BESIII

•X(3872): the 1st observed charmonium-like state

✓ X(3872) discovered in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ process by Belle in 2003, and confirmed by BaBar, CDF and D0

✓ The best established state among the XYZ

✓ The potential model did not expect the X(3872)

✓ M(X(3872)) ~ M($D\overline{D}^*$) candidate for hadronic molecule or tetraquark

Observation of X(3872) at BESIII via $e^+e^- \rightarrow \gamma \pi^+ \pi^- J/\psi$ @ 4.26GeV for the first time

 $N(X(3872)) = 20.1 \pm 4.5$ **6.3** σ PRL 112, 092001 (2014) $M(X(3872)) = 3871.9 \pm 0.7 \pm 0.2 MeV$ [PDG: 3871.68 $\pm 0.17 MeV$]

$e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^- \gamma \chi_{c1}$ at BESIII

 $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma \chi_{c1}$ at BESIII

- A simultaneous fit of different data sets:
 - ✓ Signal : MC simulated shape
 - ✓ Background: linear function
- M=3821.7±1.3±0.7 MeV, Significance: 6.20
- Mass and narrow width agree with potential model prediction for $\psi(1^3D_2)$

• The Y states

- ✓ New charmonium-like vector states: Y(4260), Y(4360), Y(4660)
- ✓ Not predicted by the potential model
- \checkmark Can be directly produced in e+e- annihilation
- ✓ Can not be seen from the inclusive hadronic cross section (R-scan): measure exclusive hadronic cross sections at BESIII

 $O(ee \rightarrow X + (\pi \pi, \gamma))$

 $\sigma(ee \rightarrow \pi h)$

PRL 111, 242001(2013) PRL 113, 212002 (2014)

- ✓ Improved measurement of σ(π+π-h_c)
 (CLEO studied in 2011)
- ✓ First observation of $\pi^0\pi^0h_c$
- ✓ の(元⁰元⁰h_c)/の(元⁺元⁻h_c)=0.63±0.09

- ✓ $\sigma(\pi+\pi-hc) \sim \sigma(\pi+\pi-J/\psi)$, but different line shape
- ✓ Unlikely originate from Y(4260)
- Hint of a more complicated underlying dynamics

June 7, 2016

 $\sigma(ee \rightarrow \pi^0/\eta/\eta' + J/\psi)$

- ✓ ψ(4160)→η'J/ψ?
- ✓ No evidence for ψ (4415)
- ✓ Much lower than $\sigma(ee \rightarrow \eta J/\psi)$, in contradiction to the calculation in the framework of NRQCD (PRD 89, 074006 (2014))

 $\sigma(ee \rightarrow \omega \chi_{cl})$

• The Z_c family

- ✓ Charged exotic states
- ✓ Observed via π transition at BESIII
- ✓ Z_c^{\pm} could not be a conventional $q\bar{q}$ meson
 - Coupling to charmonium with electric charge
 - $c\bar{c} + q\bar{q}$ (q = u, d, s)
- ✓ Several Zc states are observed in the mass region of Y states
 - Zc (3900)[±] , Zc (3885)[±] , Zc (4020)[±] , Zc (4025)[±]
 - and neutral partners

 $e^+e^- \rightarrow \pi Z_c(3900)^{\pm/0} \rightarrow \pi(\pi J/\psi)$

Search for ee $\rightarrow \pi Z(3900) \rightarrow \pi(\omega \pi)$

 Searching for new decays of Zc(3900) to light hadrons: distinguish a resonance from threshold effects

✓ No significant Zc→ωπ is observed:
 σ(e+e-→Zcπ, Zc→ωπ) < 0.26 pb @ 4.23 GeV
 σ(e+e-→Zcπ, Zc→ωπ) < 0.18 pb @ 4.26 GeV

 $ee \rightarrow \pi Z_{c}(3885)^{\pm/0} \rightarrow \pi (DD^{*})^{\pm/0}$

Z _c (3885)	Mass(MeV)	Width(MeV)	reference
$Z_c(3885)$ [±] (single D-tag)	3883.9±1.5±4.2	24.8±3.3±11.0	PRL 112, 022001(2014)
$Z_c(3885)^{\pm}$ (double D-tag)	3881.7±1.6±2.6	26.6±2.0 ±2.3	PRD 92, 092006 (2015)
$Z_c(3885)^0$ (single D-tag)	3885.7 ^{+4.3} ±8.4	35 ⁺¹¹ ±15	PRL 115, 222002 (2015)

No significant signal for $Z_c(3900)^{\pm} \rightarrow \pi^{\pm}h_c$

Z _c (4020)	Mass(MeV)	Width(MeV)
Z _c (4020)±	4022.9±0.8±2.7	7.9±2.7±2.6
Z _c (4020) ⁰	4023.8±2.2±3.8	Fixed (7.9)
	~m(D*D*)	

Discussion of the Z_c family

Z _c	Mass (MeV/c²)	Width (MeV)	Decay mode (X _i)	JP
Z _c (3900)+	3899.0±3.6±4.9	46±10±20	π+J/ ψ	$1^+ \rightarrow \frac{\text{Preliminary result}}{\text{from PWA}}$
Z _c (3900) ⁰	3894.8±2.3±2.7	29.6±8.2±8.2	π⁰J/ ψ	
Z _c (3885)+	3882.3±1.1± 1.9#	26.5±1.7±2.3#	(DD*)+	$1^+ \rightarrow$ From angular
Z _c (3885) ⁰	3885.7 ^{+4.3} - _{5.7} ±8.4	35 ⁺¹¹ -12±15	(DD*) ⁰	distribution
Z _c (4020)+	4022.9±0.8±2.7	7.9±2.7±2.6	元+h _c	# combined results
Z _c (4020) ⁰	4023.8±2.2±3.8	Fixed to 7.9	π ⁰ h _c	of single and
Z _c (4025)+	4026.3±2.6±3.7	24.8±5.6±7.7	(D*D*)+	double D-tag
Z _c (4025) ⁰	4025.5 ^{+2.0} -4.7 [±] 3.1	23.0±6.0±1.0	(D*D*) ⁰	

- > Charged Z_c decays into $\pi J/\psi(\pi h_c ...)$
 - => at least has four quark components
- Production of charged and neutral Z_c is consistent with isospin relationship => Isospin triplet?
- Are the Z_c(3900) and Z_c(3885) (Z_c(4020) and Z_c(4025) are the same state/structure? Masses and widths are consistent each other within 20 Favor the same J^P

Absolute hadronic BFs of \Lambda_{\rm C}^+ baryon

Events/2.0 MeV/c2

Absolute hadronic BFs of Λ_c^+ baryon

The first absolute measurement of the Λ_c^+ BFs at the $\Lambda_c^+\overline{\Lambda}_c^-$ production threshold

Mode	This work (%)	PDG (%)	BELLE B
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	0.000
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

PRL116, 052001 (2016)

- \checkmark The precisions are improved by factors of 3~6
- \checkmark The golden mode $\Lambda_c^+ \rightarrow pK^-\pi^+$
 - ➤ Our measurement is consistent with the PDG value, but lower than Belle's with 2σ significance
 - > Improved absolute BF of $pK^-\pi^+$ together with Belle's result are key to calibrate other decays

 $ee \rightarrow \pi Z_c (4025)^{\pm/0} \rightarrow \pi (D^*D^*)^{\pm/0}$

Z _c (4025)	Mass(MeV)	Width(MeV)
Z _c (4025) [±]	4026.3±2.6±3.7	24.8±5.6±7.7
Z _c (4025) ⁰	$4025.5^{+2.0}_{-4.7} \pm 3.1$	23.0±6.0±1.0

Open Charm Physics

Observation of $D^+ \rightarrow \omega \pi^+$ **and Evidence for** $D^0 \rightarrow \omega \pi^0$

Observation of $D^+ \rightarrow \omega \pi^+$ **and Evidence for** $D^0 \rightarrow \omega \pi^0$

Summary

BESIII started data taking for physics since 2009

- World largest data samples at J/ ψ , ψ ', ψ (3770), ψ (4040), Y(4260) already collected, more data in future coming soon
- BESIII is in her golden age, more results will appear: charm meson, form factors, tau physics, two-photon, rare processes ...
- BESIII is playing leading role on hadron spectroscopy
- Expect more results from BESIII in the future !

Thanks!