

Charmonium rare decay

Junhao Yin

(for the BESIII Collaboration)

Institute of high energy physics, cas

outline

Why rare decay is interesting

• The rare decay of charmonium on BESIII

Outlook and summary

Why rare decay is interesting

- The huge J/ψ and $\psi(2S)$ data sample is one possible way for us to approach a precious level where the charmonium rare decay can provide important tests of the SM.
- Rare decays in low energy region may be complementary to high energy colliders.
- A good window for new physics beyond the standard model.

Charmonium rare decays

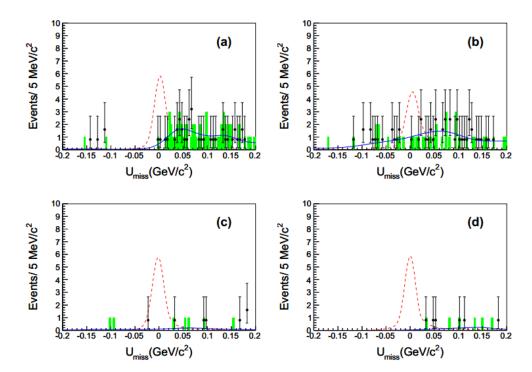
- Flavor changing weak decays
 - Semileptonic decays of charmonium, $J/\psi \to D_s^* e \nu$.
 - Non-leptonic two-body weak decays, $J/\psi \to D_s^- \rho^+/\overline{D}{}^0 \overline{K}^{*0}$
- C/P violation decays
 - $J/\psi \rightarrow \gamma\gamma/\gamma\phi$
 - $\eta_c \to \pi\pi$
- Lepton flavor violated decays
 - $J/\psi \rightarrow e\mu$
- Invisible decays in charmonium
 - $J/\psi \rightarrow \phi \eta^{(\prime)}$, $\eta^{(\prime)} \rightarrow$ invisible

$$\psi(2S) \rightarrow \gamma \eta'$$
 $\psi(2S) \rightarrow \gamma \chi_{c1/2}$
 $\psi(2S) \rightarrow \gamma \eta$ $J/\psi \rightarrow \gamma \eta_c$

LFV, LNV,	BNV			FC	NC	>			VMD	I	Radia	tive	
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	
$J/\psi o e\mu$					J/ψ	$o \to D_S^*e$	ν				$h_c \rightarrow$	γη′	4
											$h_c \rightarrow h_c $	γη	4

Semileptonic decays

- racklet J/ψ can decay to charm meson via weak interaction through virtual intermediate bosons in SM framework. In the SM, the inclusive BF of J/ψ decay to single D or D_s^- are predicted to be 10^{-8} . Using sum rules the BF are predicted to be $^{\sim}10^{-10}$,
- New physics, the BF of $J/\psi \to D(\overline{D})X$ could be enhanced $(10^{-5} \sim 10^{-6})$: Top-color models,
 - Minimal super-symmetric SM with R-parity violation,



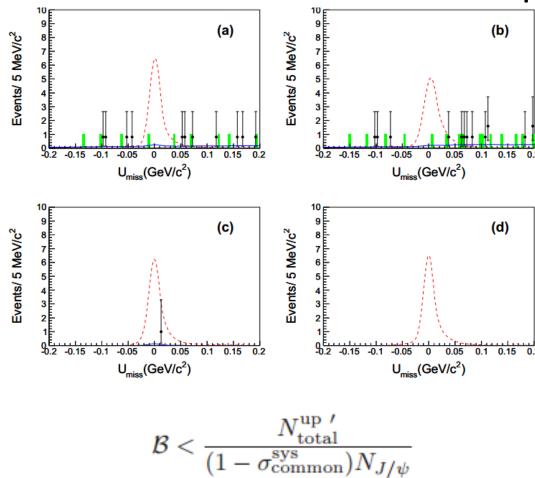
- Ratio between $J/\psi \to D_s^* l \nu$ and $D_s l \nu$ is predicted to be 1.5~3.1.
- With $2.25 \times 10^8 J/\psi$ events collected at BEPCII, 4 hadronic decay channels is used to reconstruct D_s : K_SK , $KK\pi$, $KK\pi\pi^0$, $K_SK\pi\pi$, and D_s^* is reconstructed by $D_s^* \to \gamma D_s$.

Semileptonic decays

The D_S and lepton are fully constructed and the missing U is used to extract the signal.

$$E_{\rm miss} = E_{{\scriptscriptstyle J/\psi}} - E_{{\scriptscriptstyle D_s^-}} - E_{{\scriptscriptstyle e^+}} \qquad \vec{p}_{\rm miss} = \vec{p}_{{\scriptscriptstyle J/\psi}} - \vec{p}_{{\scriptscriptstyle D_s^-}} - \vec{p}_{{\scriptscriptstyle e^+}} \qquad U_{\rm miss} = E_{\rm miss} - |\ \vec{p}_{\rm miss}\ |$$

A simultaneous unbinned likelihood fit is used determined the signal yields.


$$\mathcal{L}_{k} = \prod_{i=1}^{N_{k}} \frac{N_{\text{total}} \mathcal{B}_{k} \epsilon_{k} \mathcal{P}_{i,k}^{\text{sig}} + N_{k}^{\text{bkg}} \mathcal{P}_{i,k}^{\text{bkg}}}{N_{\text{total}} \mathcal{B}_{k} \epsilon_{k} + N_{k}^{\text{bkg}}},$$

The Bayesian method with a uniform prior is used to estimate the upper limits.

$$\frac{\int_0^{N_{\text{total}}^{\text{up}}} \mathcal{L}(N_{\text{total}}) dN_{\text{total}}}{\int_0^\infty \mathcal{L}(N_{\text{total}}) dN_{\text{total}}} = 0.90 ,$$

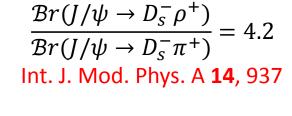
Phys. Rev. D **90**, 112014

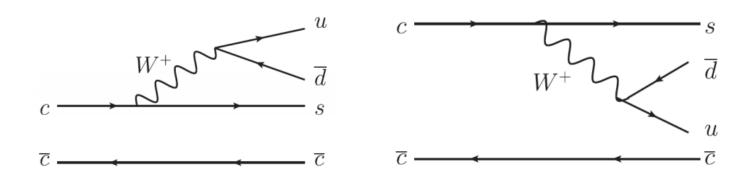
Semileptonic decays

$$D_s^* \to \gamma D_s$$

Phys. Rev. D **90**, 112014

The same method as that in $D_{\mathcal{S}}$ to extract the signal and get the upper limits.

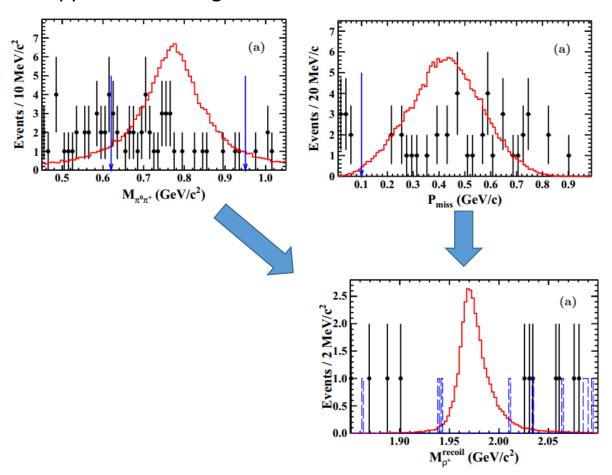

Source	$J/\psi \to D_s^- e^+ \nu_e \ (\%)$	$J/\psi \to D_s^{*-}e^+\nu_e$ (%)
Physics model	0.9	0.8
Resolutions	1.6	1.8
e tracking	2.1	2.1
e PID	1.0	1.0
E/p cut	0.6	1.7
Photon efficiency	-	1.0
$\mathcal{B}(D_s^{*-} \to D_s^- \gamma)$	-	0.7
J/ψ events	1.2	1.2
Trigger	Negligible	Negligible
Total	3.3	3.9

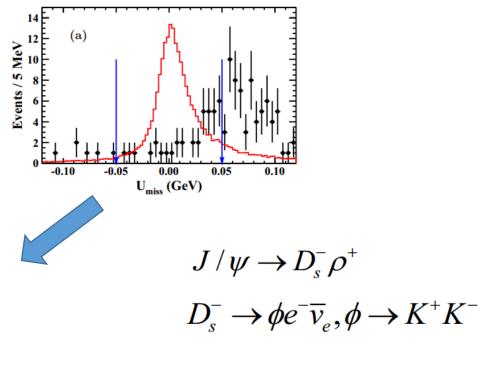

	$J/\psi \to D_s^- e^+ \nu_e$	$J/\psi \to D_s^{*-}e^+\nu_e$
$ar{N}_{ ext{total}}^{ ext{up}}$	244	335
$\sigma_{ m total}$	31	43
$N_{ m total}^{ m up}$ '	275	378
$\sigma_{ m common}^{ m sys}$	3.3%	3.9%
$N_{J/\psi}$	2.25	$\times 10^8$
$\mathcal{B}(90\%\text{C.L.})$	$< 1.3 \times 10^{-6}$	$< 1.8 \times 10^{-6}$

Best results ever: $<3.5 \times 10^{-5}$.

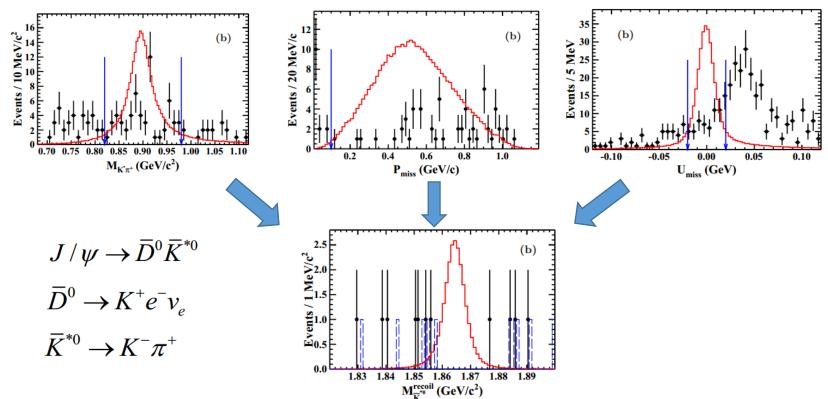
Two-body hadronic weak decays

- ightharpoonup Use $2.25 imes 10^8 J/\psi$ events collected at BEPCII to search the decay $J/\psi o D_s^- \rho^+$ and $\overline{D}{}^0 \overline{K}{}^{*0}$.
- The D_s and D^0 mesons are identified by their semileptonic decays: $D_s \to \phi e \nu$, $D^0 \to K e \nu$.





Two-body hadronic weak decays

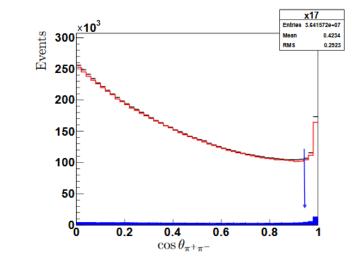

- \triangleright Select candidates of ρ and K^{*0} , use the recoiling side of ρ and K^{*0} .
- ➤ Use the electrons to tag the events and the missing momentum to suppress the backgrounds.

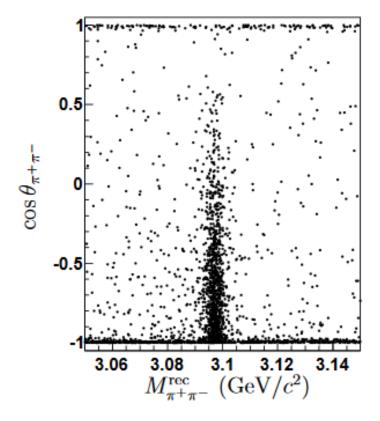
Phys. Rev. D **89**, 071101

Two-body hadronic weak decays

Phys. Rev. D **89**, 071101

Sources	$J/\psi \to D_s^- \rho^+$	$J/\psi \to \overline{D}{}^0 \overline{K}^{*0}$
MDC tracking	4.0	4.0
Photon detection	2.0	2.0
Particle ID	4.0	4.0
π^0 kinematic fit	0.2	1.0
ϕ mass window	1.0	_
ρ^+ mass window	1.0	_
\overline{K}^{*0} mass window	_	0.5
U_{miss} window	1.0	4.0
Intermediate decays	5.7	1.1
MC statistics	0.5	0.3
Number of J/ψ events	1.2	1.2
Total	8.6	7.5

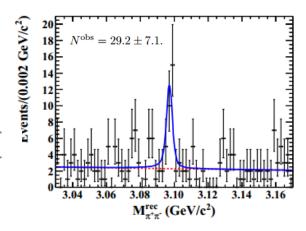

Given for the first time.

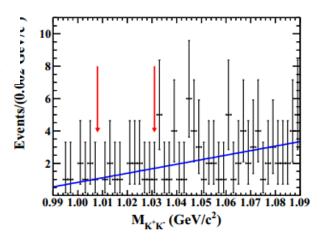

Decay mode	Intermediate decay	ε	\mathcal{B}_{inter}	σ^{sys}	N_{UL}	B (90% C.L.)
$J/\psi \to D_s^- \rho^+$	$D_s^- \to \phi e^- \overline{\nu}_e, \ \phi \to K^+ K^-,$ $\rho^+ \to \pi^+ \pi^0, \ \pi^0 \to \gamma \gamma$	7.79%	1.20%	8.6%	2.5	$<1.3\times10^{-5}$
$J/\psi \to \overline{D}{}^0 \overline{K}{}^{*0}$	$\overline{D}{}^0 \to K^+ e^- \overline{\nu}_e, \ \overline{K}{}^{*0} \to K^- \pi^+$	21.83%	2.37%	7.5%	2.7	$<2.5\times10^{-6}$

• $J/\psi \rightarrow \gamma\gamma/\gamma\phi$

Phys. Rev. D **90**, 092002

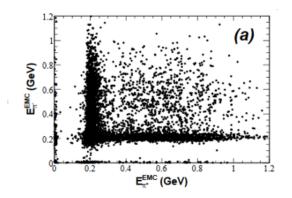
- > In SM, C invariance is held in strong and EM interactions.
- ➤ Evidence for C violation in the EM sector would immediately indicate physics beyond the SM.
- \blacktriangleright Use 1.06 × 10⁸ ψ (2S) data and via ψ (2S) → $\pi^+\pi^-J/\psi$ to study the decay $J/\psi \rightarrow \gamma\gamma/\gamma\phi$.
- Require $|cos_{\pi^+\pi^-}| < 0.95$ exactly two photons for $\gamma\gamma$ channel. $cos_{\pi^+\pi^-} < 0.95$ and $E_{\gamma} > 1.0$ GeV for $\gamma\phi$ channel.

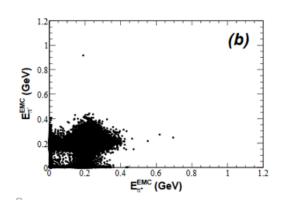

• $J/\psi \rightarrow \gamma\gamma/\gamma\phi$


- The peak in $J/\psi \to \gamma\gamma$ is dominated by background with similar final states .
- ightharpoonup MC study for $J/\psi \to \gamma \phi$ shows that there are no peaking background.

Background channel	Expected counts (N^{bkg})
$J/\psi \to \gamma \pi^0, \pi^0 \to 2\gamma$	18.5 ± 1.9
$J/\psi \to \gamma \eta, \eta \to 2 \gamma$	24.6 ± 1.6
$J/\psi \to \gamma \eta_c, \eta_c \to 2\gamma$	1.3 ± 0.3
$J/\psi \to 3\gamma$	0.9 ± 0.3
Total	45.3 ± 2.5

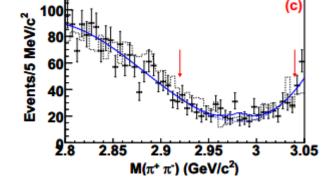
	$\gamma\gamma$	$\gamma\phi$
N^{obs}	29.2 ± 7.1	0.0 ± 4.6
$N^{ m bkg}$	46.5 ± 2.5	negligible
$N_{\rm sig}^{\rm up}(90\% \ {\rm C.L.})$	2.8	6.9
ϵ (%)	30.72 ± 0.07	30.89 ± 0.07
$\mathcal{B}(J/\psi \to)$ (this work)	$<2.7\times10^{-7}$	$<1.4\times10^{-6}$
$\mathcal{B}(J/\psi \to) \text{ (PDG [1])}$	$< 50 \times 10^{-7}$	-

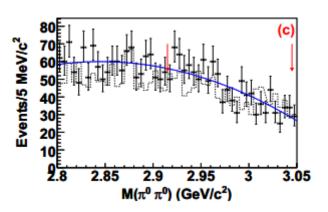

The upper limits of $J/\psi \to \gamma \gamma$ is one order of the magnitude more stringent than the previous one.



• $\eta_c \to \pi\pi$

- The decay $\eta_c \to \pi^+\pi^-/\pi^0\pi^0$ violate both P and CP invariance and provide an excellent laboratory for testing the validity of symmetries. BF~10⁻²⁷.
- ightharpoonup Higher branching fractions are possible by introducing a CP violating term in the QCD lagrangian (BF $^{\sim}10^{-17}$) or allowing CP vilation in the extended Higgs sector (BF $^{\sim}10^{-15}$). Phys. Scripta T **99**, 104
- \blacktriangleright Based on $2.25 \times 10^8 J/\psi$ events, via $J/\psi \to \gamma \eta_c$. For $\eta_c \to \pi^+ \pi^-$:
 - \triangleright Paring the photons in an event and reject the background of $J/\psi \to \pi^+\pi^-\pi^0$.
 - > 0.4 GeV < E_{π}^{EMC} < 1.2 GeV to suppress the $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$ background. For $\eta_c \rightarrow \pi^0\pi^0$:
 - The photon pairs with minimized $\chi=\sqrt{(M(\gamma\gamma)_1-M_{\pi^0})^2+(M(\gamma\gamma)_2-M_{\pi^0})^2}$ is chosen.
 - Fivents satisfied $0.72 < M(\gamma\pi^0) < 0.82~{\rm GeV}/c^2$ is rejected to reduce the $J/\psi \to \omega\pi^0$ background.

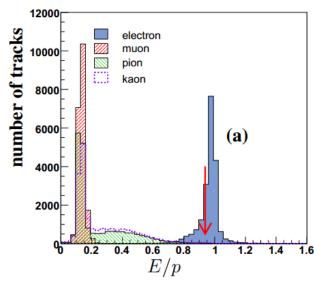


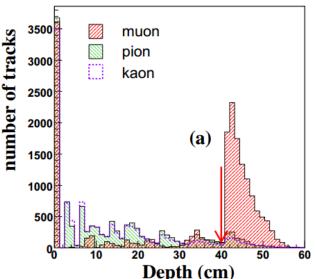

• $\eta_c \to \pi\pi$

Phys. Rev. D 84, 032006

Process	$N_{ m sig}^{ m UP}$	ε (%)	$\sigma_{ m sys}(\%)$	S	$\mathcal{B}^{ ext{UP}}$	$\mathcal{B}^{ ext{UP}}_{PDG}$
$\eta_c \to \pi^+\pi^-$	92	25.27	27	1.5σ	1.3×10^{-4}	6×10^{-4}
$\eta_c \to \pi^0 \pi^0$	40	35.70	28	0.1σ	4.2×10^{-5}	4×10^{-4}

- \blacktriangleright The systematic error mainly come from the BF of $J/\psi \to \gamma \eta_c$.
- Our results is smaller compared to the upper limits provided in PDG.
- \triangleright Provide experimental limits for theoretical models predicting how much CP and P violation there may be in η_c meson decays.

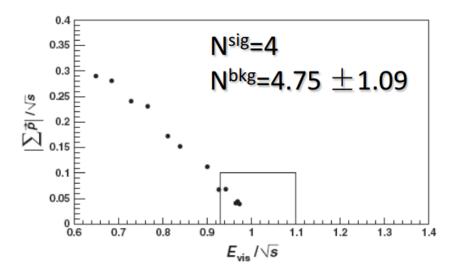

Lepton flavor violated decays


• $J/\psi \rightarrow e\mu$

- With finite neutrino masses included, the SM allows for LFV, yet which is beyond current experimental sensitivity.
- ➤ Theoretical models enhance LFV: SUSY, include SUSY-based grand unified theories, SUSY with a right-handed neutrino, gauge-mediated SYSY breaking, SUSY with vector-like leptons, SUSY with R-parity violation, models with a Z' and models violating Lorentz invariance.

We present our results here with $2.25 \times 10^8 J/\psi$ events for $J/\psi \rightarrow e\mu$.

4500 4000 3500 2500 1500 1000 500 0.1 0.2 0.3 0.4 0.5 0.6 Energy (GeV)


Lepton flavor violated decays

- ➤ The reconstructed total momentum and energy is used to extract the signal.
- The selection criteria is optimized using a blind fashion with a sensitive FOM:

$$FOM = \frac{\epsilon}{\sum_{N_{obs}=0}^{\infty} P(N_{obs}|N_{exp}) \cdot UL(N_{obs}|N_{exp})}$$

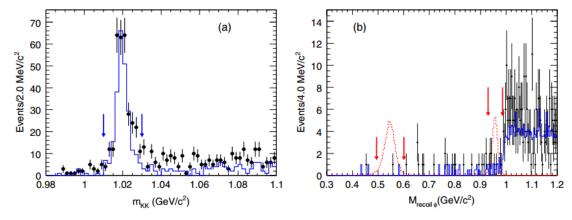
➤ The background is studied using an inclusive MC with four times the size of data.

Sources	Error
e^{\pm} tracking	1.00
μ^\pm tracking	1.00
e^{\pm} ID	0.62
μ^{\pm} ID	0.04
Acollinearity, acoplanarity	2.83
Photon veto	1.19
$N_{J/\psi}$	1.24
Total	3.65

Phys. Rev. D **87**, 112007

$$\mathcal{B}r(J/\psi \to e\mu) < 1.5 \times 10^{-7}$$

Most stringent limit obtained.


$$<1.1\times10^{-6}$$

(best results before)

Invisible decays in charmonium

• $J/\psi \rightarrow \eta \phi, \eta \rightarrow invisible$

- \blacktriangleright The invisible decays of J/ψ and other mesons provide a good filed to search for new physics beyond the SM.
- \triangleright Could be light dark matter constituents according to $q\bar{q} \rightarrow (\gamma)\chi\chi$.
- Based on $2.25 \times 10^8 J/\psi$ events. No good charged tracks allowed besides the K^+K^- and no good photons inside a cone of 1.0 rad around the recoil direction against the ϕ candidate and $|cos\theta_{recoil}| < 0.7$.
- The $N_{\eta}^{up}=3.34$ and $N_{\eta\prime}^{up}=10.1$. And give the upper limits of the ratio to the $\mathcal{B}r(\eta(\eta')\to\gamma\gamma)$ to cancel the common systematic error.

$$\frac{\mathcal{B}r(\eta(\eta') \to invisible)}{\mathcal{B}r(\eta(\eta') \to \gamma\gamma)} < 2.6(2.4) \times 10^{-4(2)}$$

Phys. Rev. D **87**, 012009

Summary and outlook

- BESIII collaboration has performed dedicated studies on charmonium rare decays and the best upper limits branching fractions of the world obtained with 225 M J/ψ and 106 M $\psi(2S)$. By now the results are still consistent with the SM.
- 1.3 B J/ψ and 0.45 B $\psi(2S)$ events has been collected and more searches of charmonium rare decays with better precision can be obtained.
- The invisible decays of J/ψ or other particles can be searched with the largest J/ψ and $\psi(2S)$ samples in the world.