Relative strong phase in $D^0 \rightarrow K\pi$ decay and y_{CP} measurement at BESIII

GUAN Yinghui

(E-mail: guanyh@ihep.ac.cn)

Institute of High Energy Physics (IHEP, CAS)

(on behalf of the BESIII collaboration)

List of Contents:

- Introduction
- Relative strong phase in $D^{O} \rightarrow K\pi$ decay
- y_{CP} measurement
- Summary

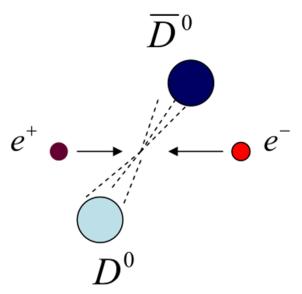
Hadron 2013, Nara, Japan

Introduction

The mixing parameters describes the magnitude of DDbar mixing

$$x = 2 \frac{M_1 - M_2}{\Gamma_1 + \Gamma_2}, \qquad y = \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

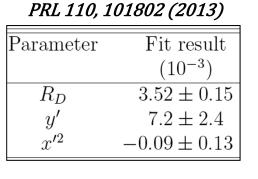
where $M_{1,2}$ and $\Gamma_{1,2}$ are the masses and widths of the neutral D meson mass eigenstates.

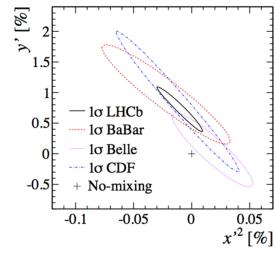

- ✓ DDbar mixing is highly suppressed by the GIM mechanism and by the CKM matrix elements within the Standard Model
- ✓ Observation of DDbar mixing by LHCb
- ✓ Improving the constraints on the charm mixing parameters is important for testing the SM, such as long-distance effect
- ✓ In addition, relative strong phase is an important ingredient for (over-)constraining the CKM unitary triangle, which is crucial for searching for new physics

Production at threshold

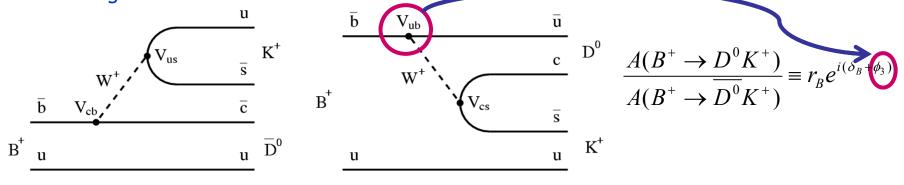
- Threshold production at 3.773 GeV
- **+** Double Tag techniques: (partial-)reconstruct both *D* mesons
- Charm events at threshold are very clean and unique in studying *D* decays
- BESIII: world's largest samples of ψ(3770), aim is to have 20/fb data in the future
- Quantum correlation of two D mesons, time independent method to probe mixing

$$\psi_{-} = \frac{1}{\sqrt{2}} \left(\left| D^{0} \right\rangle \right| \overline{D}^{0} \left\rangle - \left| \overline{D}^{0} \right\rangle \right| D^{0} \right)$$


Lots of systematic uncertainties cancel when applying double tag method

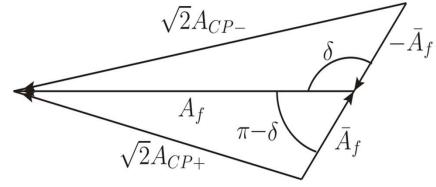


Implications of relative strong phase


 $\begin{aligned} x' &= x_D \cos \delta_{K\pi} + y_D \sin \delta_{K\pi}, \\ y' &= y_D \cos \delta_{K\pi} - x_D \sin \delta_{K\pi}. \end{aligned}$

• CKM unitarity triangle γ/ϕ_3 extraction from $B^- \rightarrow D^0 K^-$

Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. D⁰ → K⁺π⁻


Strong phase in $D^{\theta} \rightarrow K\pi$ decay: formalism

The strong phase difference $\delta_{K\pi}$ between the doubly Cabibbosuppressed (DCS) decay $\underline{D}^0 \rightarrow K^-\pi^+$ and the corresponding Cabibbo-favored (CF) $D^0 \rightarrow K^-\pi^+$ is denoted as

$$\frac{\langle K^-\pi^+ | \overline{D}{}^0 \rangle}{\langle K^-\pi^+ | D^0 \rangle} = -r e^{-i\delta_{K\pi}}$$

Omitting the higher orders of the mixing parameters, and assuming *CP* conservation, we have

$$2r\cos\delta_{K\pi} + y = (1 + R_{WS}) \cdot \mathcal{A}_{CP \to K\pi},$$
$$\mathcal{A}_{CP \to K\pi} = \frac{\mathcal{B}_{D_2 \to K^-\pi^+} - \mathcal{B}_{D_1 \to K^-\pi^+}}{\mathcal{B}_{D_2 \to K^-\pi^+} + \mathcal{B}_{D_1 \to K^-\pi^+}}.$$
$$|D_1\rangle \equiv \frac{|D^0\rangle + |\overline{D}^0\rangle}{\sqrt{2}} \ |D_2\rangle \equiv \frac{|D^0\rangle - |\overline{D}^0\rangle}{\sqrt{2}}$$

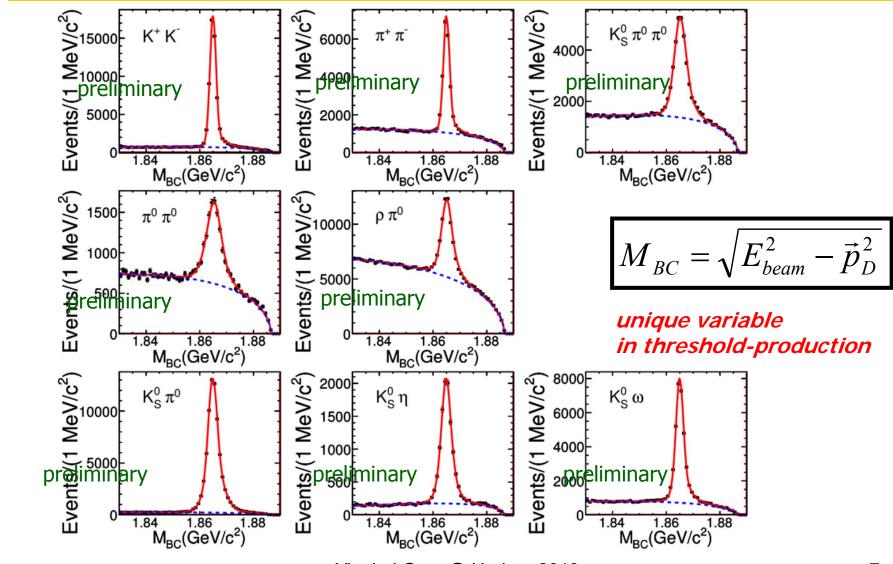
$$A_{f} \equiv \langle f | D^{0} \rangle, \ \overline{A}_{f} \equiv \langle f | \overline{D}^{0} \rangle$$
$$A_{CP+} \equiv \langle f | D_{1} \rangle$$
$$A_{CP-} \equiv \langle f | D_{2} \rangle$$

To determine $\delta_{K\pi}$ in experiment

For the CP-eigenstates, yields of D \rightarrow CP ST events will be $n_{CP\pm} = 2N_{D\overline{D}} \cdot \mathcal{B}_{CP\pm} \cdot \varepsilon_{CP\pm}.$

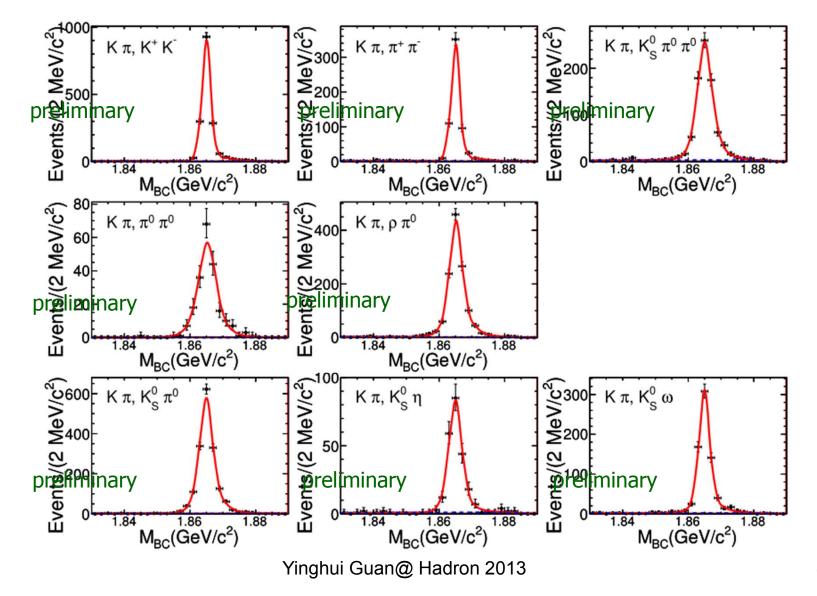
The DT yields with $D \rightarrow CP$ and $D \rightarrow K\pi$ will be

$$n_{K\pi,CP\pm} = 2N_{D\overline{D}} \cdot \mathcal{B}_{CP\pm} \times \mathcal{B}_{D^{CP\mp} \to K\pi} \cdot \varepsilon_{K\pi,CP\pm}$$


Therefore, the branching fraction is

$$\mathcal{B}_{D^{CP\pm}\to K\pi} = \frac{n_{K\pi,CP\pm}}{n_{CP\pm}} \cdot \frac{\varepsilon_{CP\pm}}{\varepsilon_{K\pi,CP\pm}}.$$

Here, $\varepsilon_{CP\pm}/\varepsilon_{K\pi,CP\pm}$ cancels most systematic effects within the $D \rightarrow CP\pm$ decay mode.


Therefore, $A_{CP \to K\pi}$ can be obtained. With external inputs of the other parameters, we can obtain $\delta_{K\pi}$.

Single tags of CP modes

Yinghui Guan@ Hadron 2013

Double tags of (*CP*, $K\pi$) modes

Preliminary numerical results

Mode(CP)	ST Yield	Efficiency(%)
 K ⁺ K ⁻	$56156 \pm 261 \pm 61$	62.99 ± 0.26
$\pi^+\pi^-$	$20222\pm187\pm38$	65.58 ± 0.26
$K^0_S\pi^0\pi^0$	$25156 \pm 235 \pm 81$	16.46 ± 0.07
$\pi^0\pi^0$	$7610\pm156\pm56$	42.77 ± 0.21
$\rho \pi^0$	$41117\pm354\pm68$	36.22 ± 0.21
$K_S^0 \pi^0$	$72710 \pm 291 \pm 34$	41.95 ± 0.21
$K_S^0\eta$	$10046\pm118\pm27$	35.46 ± 0.20
$K^0_S \omega$	$31422 \pm 215 \pm 49$	17.88 ± 0.10

 $\mathcal{A}_{\mathcal{CP}\to\mathcal{K}\pi} = (12.77 \pm 1.31(stat.)^{+0.33}_{-0.31}(sys.))\%$

Preliminary results of $\delta_{K\pi}$

We measure $\mathcal{A}_{CP \to K\pi} = (12.77 \pm 1.31(stat.)^{+0.33}_{-0.31}(sys.))\%$

We have $2r\cos\delta_{K\pi} + y = (1 + R_{WS}) \cdot \mathcal{A}_{CP \to K\pi}$,

With external inputs of the parameters in HFAG2013 and PDG,

 $R_{\rm D} = 3.47 \pm 0.06\%$, $y = 6.6 \pm 0.9\%$ $R_{\rm WS} = 3.80 \pm 0.05\%$

we obtain

 $\cos \delta_{K\pi} = 1.03 \pm 0.12 \pm 0.04 \pm 0.01$

CLEO measurements of strong phase differences and coherence factors done with 0.8 fb⁻¹ at $\psi(3770)$. [CLEO, PRD 86 (2012) 112001]

without external inputs: $\cos \delta = 0.81^{+0.22+0.07}_{-0.18-0.05}$,

with external inputs: $\cos \delta = 1.15^{+0.19+0.00}_{-0.17-0.08}$

BESIII result: the most precise measurement of $\delta_{K\pi}$ and compatible with the world average

Determination of the mixing parameter y_{CP}

For any final states of CP eigenstates, the decay rate is:

$$R_{CP^{\pm}} \propto |A_{CP^{\pm}}|^2 (1 \mp y_{CP})$$

where

$$y_{CP} = \frac{1}{2} \left[y \cos\phi(|\frac{q}{p}| + |\frac{p}{q}|) - x \sin\phi(|\frac{q}{p}| - |\frac{p}{q}|) \right]$$

Considering the process in which one *D* decays into CP eigenstates and the other D decays semileptonically, the decay rate is:

$$R_{l,CP^{\pm}} \propto |A_l|^2 |A_{CP^{\pm}}|^2$$

Neglecting terms to order y^2 or higher, we can derive

$$y_{CP} \approx \frac{1}{4} \left(\frac{R_{l;CP+}R_{CP-}}{R_{l;CP-}R_{CP+}} - \frac{R_{l;CP-}R_{CP+}}{R_{l;CP+}R_{CP-}} \right)$$

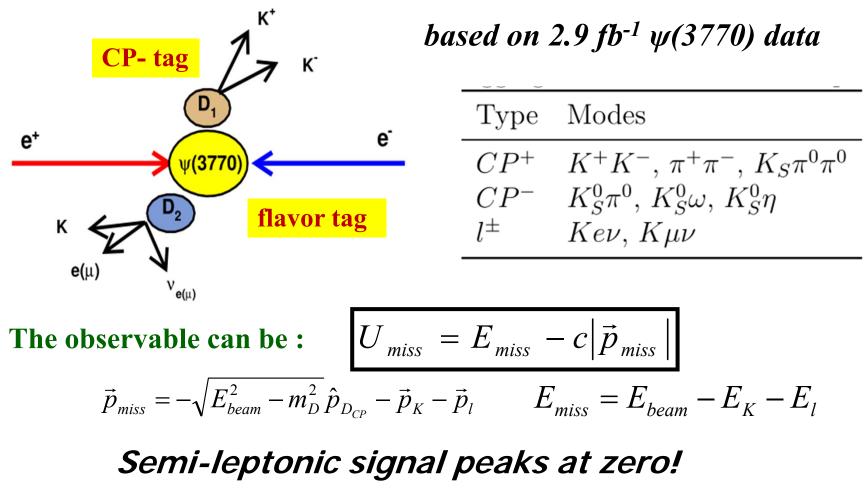
In the limit of no CPV,

$$y_{CP}=y_{L}$$

Measurement of y_{CP}: formalism

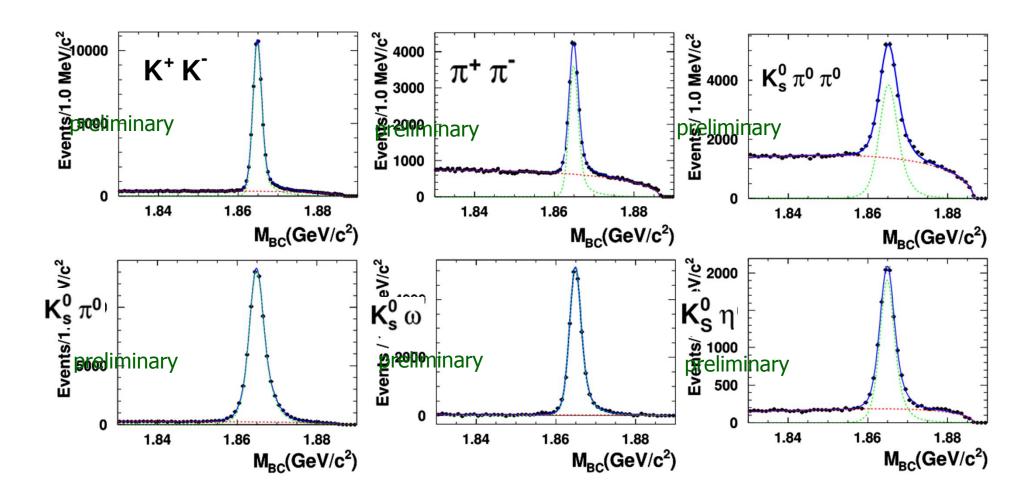
On experiments. we have

$$y_{CP} \approx \frac{1}{4} \left[\frac{\sum_{k,j} C_{CP+;l}^{k,j} \sum_{i} C_{CP-}^{i}}{\sum_{i,j} C_{CP-;l}^{i,j} \sum_{k} C_{CP+}^{k}} - \frac{\sum_{i,j} C_{CP-;l}^{i,j} \sum_{k} C_{CP+}^{k}}{\sum_{k,j} C_{CP+;l}^{k,j} \sum_{i} C_{CP-}^{i}} \right]$$

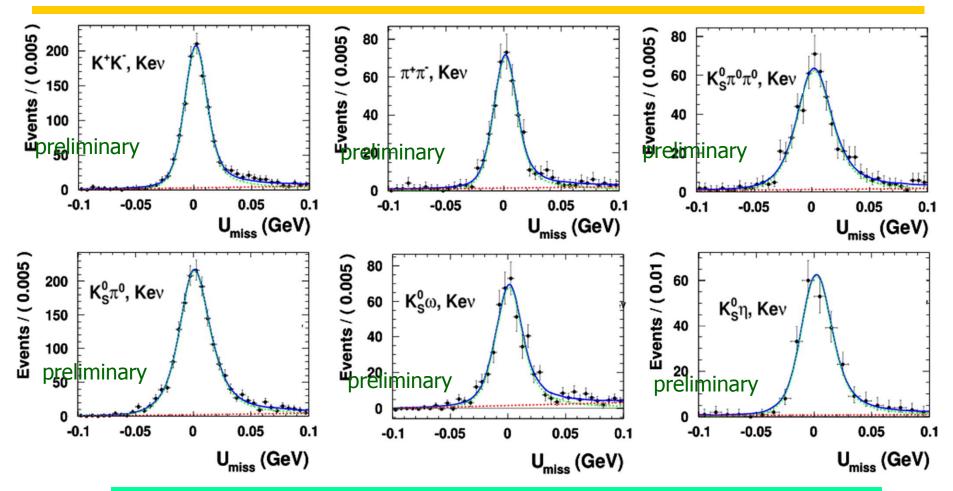

where the efficiency-corrected yields are denoted to be

$$C_{CP\pm}^{i} = \frac{N_{CP\pm}^{i}}{\epsilon_{CP\pm}^{i}}, \qquad C_{CP\pm;l}^{i,j} = \frac{N_{CP\pm;l}^{i,j}}{\epsilon_{CP\pm;l}^{ij}}$$

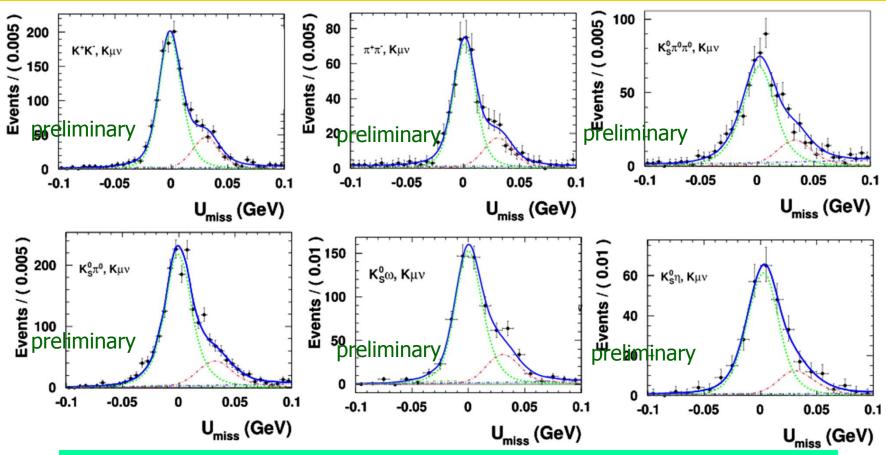
We define the ratio $B_{+} \equiv \frac{C_{CP+;l}}{C_{CP+}}$ and $B_{-} \equiv \frac{C_{CP-;l}}{C_{CP-}}$
then $y_{CP} = \frac{1}{4} [\frac{\tilde{B}_{+}}{\tilde{B}_{-}} - \frac{\tilde{B}_{-}}{\tilde{B}_{+}}]$


 \tilde{B}_{\pm} is the average ratio over different *CP* modes by minimizing $\chi^2 = \sum \frac{(\tilde{B}_{\pm} - B_{\pm}^{\alpha})^2}{(\sigma_{\pm}^{\alpha})^2}$

Measurement of y_{CP}: CP tag and flavor tag


We measure the y_{CP} using CP-tagged semi-leptonic D decays

Single tags of CP modes

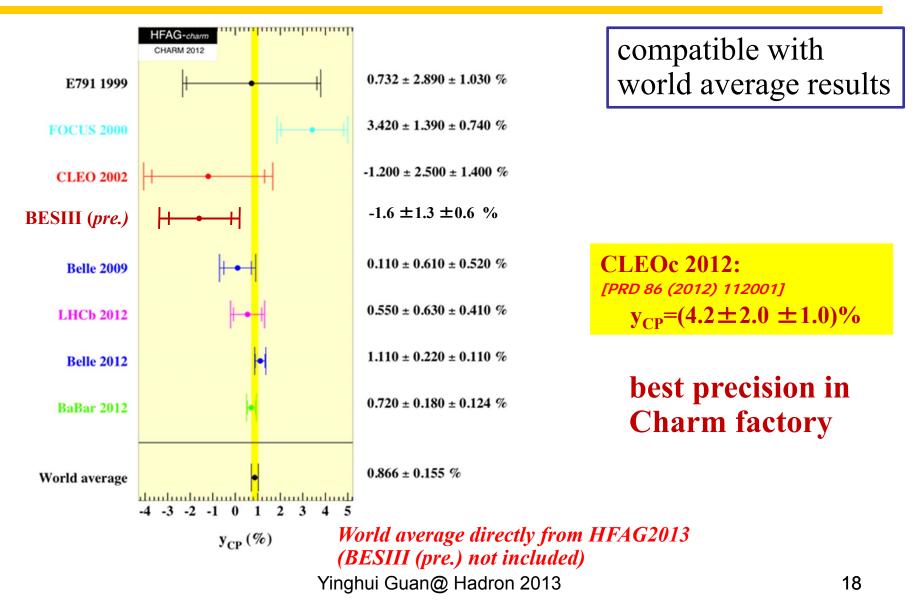


Double tags of Kev modes

- signal: MC shape convoluted with an asymmetric Gaussian
- background: a 1st-order polynomial function

Double tags of *Kµv* modes

- signal: MC shape convoluted with an asymmetric Gaussian
- backgrounds:
 - ✓ $K\pi\pi^0$: use control sample of $D \rightarrow K\pi\pi^0$ in data
 - \checkmark *Kev*: fixed to MC shape and size
 - \checkmark others: a 1st-order polynomial function


Preliminary numerical results

	Modes	N_{tag}	$N_{tag,Ke\nu}$	$N_{tag,K\mu\nu}$			
	K^+K^-	54307 ± 252	1216 ± 40	1093 ± 37			
	$\pi^+\pi^-$	19996 ± 177	427 ± 23	400 ± 23			
	$K^0_S \pi^0 \pi^0$	19996 ± 177 24369 ± 235 71410 ± 026	560 ± 28	558 ± 28			
	$K_S^{ m 0}\pi^0$	71419 ± 286	1699 ± 47	1475 ± 43			
	$K^0_S \omega$	21249 ± 157	473 ± 25	501 ± 26			
	$K^0_S\eta$	9843 ± 117	242 ± 17	$237 \pm \ 18$			
preliminary result:							
$y_{CP} = -1.6\% \pm 1.3\%$ (stat.) $\pm 0.6\%$ (syst.)							
 result is statistically limited 							

Signal yields of the full data set

systematic uncertainty is relatively small

Comparison with world measurement

Toward global fit at BESIII

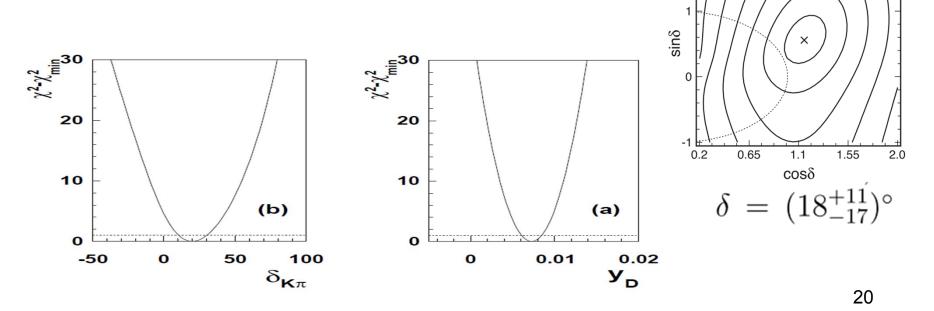
- least squares fitter: used for extracting expected physics parameters from the correlated experimental data
 Monte Carlo validation of the fitter
- seven external inputs in the test: R_{WS}, r², δ_{Kπ}, x_D, y_D, x^{'2} and y'
- their uncertainties are assumed to be uncorrelated

$$\begin{split} R_{WS} &= r^2 + ry_D \cos(\delta_{K\pi}) \\ &- rx_D \sin(\delta_{K\pi}) + \frac{(x_D^2 + y_D^2)}{2}, \\ x' &= x_D \cos \delta_{K\pi} + y_D \sin \delta_{K\pi}, \\ y' &= y_D \cos \delta_{K\pi} - x_D \sin \delta_{K\pi}. \end{split}$$

D decay mode	f^{cor}			
$K^{-}\pi^{+}$	$1 + R_{WS}$			
K^+K^-	2			
$K_S \pi^0$	2			
$K^{-}\pi^{+}, K^{+}\pi^{-} (1 + R_{WS})^{2} - 4r\cos\delta_{K\pi}(r\cos\delta_{K\pi} + y_{D})$				
$K^-\pi^+, K^+K^-$	$1 + R_{WS} + 2r\cos\delta_{K\pi} + y_D$			
$K^-\pi^+, K_S\pi^0$	$1+R_{WS}-2r\cos\delta_{K\pi}-y_D$			
$K^-\pi^+, K^+e^-\bar{\nu}_e$	$1 - ry_D \cos \delta_{K\pi} - rx_D \sin \delta_{K\pi}$			
$K^+K^-, K_S\pi^0$	4			
$K^+K^-, Ke\nu_e$	$2(1+y_D)$			
$K_S \pi^0, Ke \nu_e$	$2(1 - y_D)$			

arXiv:1304.6170

CL/EO 201


Sensitivity of the global fit at BESIII

MC study corresponds to 3.0 / fb data
input of the central values of the world average in 2012:
with the external constrains of :

$$\delta_{K\pi} = 22.1^{+9.7}_{-11.1}(^{\circ}), \ y_D = 0.75 \pm 0.12(\%)$$

D output:

 $\delta_{K\pi}: \pm 8.3(^{o}), y_{D}: \pm 0.10(\%)$

Summary

- Quantum-correlated D⁰-<u>D⁰</u> production on threshold provide an unique way to measure the charm mixing parameters
- BESIII collected 2.9 /fb e⁺e⁻ collision data at 3.773 GeV *the world-largest on-threshold data in charm factory*
- Strong phase difference in $D^0 \rightarrow K\pi$ decays is measured with the best accuracy *help to improve the world measurement of the mixing parameters x and y*
- The mixing parameter y_{CP} is determined, which is compatible with the world average *still statistically limited*
- More charm data will be collected at BESIII; work on global fit is ongoing

Thank you! 谢谢大家!

BACKUP