Radiative J/ψ Decays at BESIII

Tianjue Min

mintj@mail.ihep.ac.cn Institute of High Energy Physics

For BESIII Collaboration

XV International Conference on Hadron Spectroscopy Nara, November 4-8, 2013

Outline

- Introduction
- $p\overline{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\overline{p}$
- X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$
- Study of $J/\psi \rightarrow \gamma 3\pi$
- Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta \eta$
- $\omega \phi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega \phi$
- Summary & Perspective

Introduction

- Constituent Quark Model(CQM) has two types of hadrons:
 - Mesons: qq
 - Baryons: qqq
- QCD allows hadrons of other types:
 - Multi-quark states: (more than 3 quarks)
 - Hybrids: qqqg
 - Glueballs: gg, ggg, ...
 - ...
- Up to now, none of the non-qq or non-qqq states is established experimentally.

Introduction

- Radiative J/ψ decays provide ideal lab for search of new hadrons.
 - Relative large radiative decays width compared to hadron decays width.
 - Large production of new hadrons.
 - Continuum mass spectrum.
- Perturbative QCD is not suitable in low energy region.
- Lattice QCD predicts glueballs in low energy region.
- BESIII has collected the largest J/ψ data sample in the world.
 - 225 million J/ψ events at 2009.
 - Another J/ψ sample with ~1 billion events is collected at 2012.
- Over the past few years, many new particles have been found or confirmed at BESIII.

Radiative J/ Decays at BESIII

• X(pp̄), X(1810), X(1835), X(1840), X(1870), X(2120), X(2370), ...

Phys. Rev. D 73, 014516 (2006)

$p\overline{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\overline{p}$

- A pp threshold enhancement structure was first observed at BESII.
 - M=1859⁺³-10⁺⁵-25 MeV/c².
 - Γ<30 MeV/c² (90% C.L.).
 - Spin 0?
- Confirmed at CLEO-c and BESIII in $\psi' \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \gamma p \overline{p}$.
 - CLEO-c: M=1861⁺¹⁶₋₆ MeV/c², Γ=0⁺³²₋₀ MeV/c².
 - BESIII: M=1861⁺⁶₋₁₃⁺⁷₋₂₆ MeV/c², Γ<38 MeV/c²(90% C.L.).
- Interpretations.
 - Pure FSI effect?
 - Enhancement not seen in $J/\psi \rightarrow \omega/\pi^0 p \overline{p}$.
 - Normal meson?
 - pp bound state?
 - Multi-quark state?
 - Glueball?

Phys. Rev. Lett. 91, 022001 (2003)

Chinese Phys. C 34 421(2010)

$p\overline{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\overline{p}$

- PWA of J/ψ→γpp
 - Solution includes X(pp̄), $f_2(1910)$, $f_0(2100)$ and a 0⁻⁺ PHSP.
 - Fit using a BW resonance together with S-wave FSI(I=0) factor describes the structure above threshold well.
 - And it's much better than fit without FSI included.
 - $\Delta \ln L = 51 \rightarrow 7.1\sigma$
 - J^{PC} of X(pp̄): 0⁻⁺.
 - Significance of X(pp̄) is much larger than 30σ.
 - $M = 1832^{+10} \cdot 5^{+18} \cdot 17^{+19} \cdot 19 MeV/c^2$.
 - $\Gamma = 13^{+39}_{-39}^{+10}_{-13}^{+4}_{-4} \text{ MeV/c}^2; \Gamma < 76 \text{ MeV/c}^2 (@90\% \text{ C.L.})$
 - $Br(J/\psi \rightarrow \gamma X) \cdot Br(X \rightarrow p\overline{p}) = (9.0^{+0.4} 1.1^{+1.5} 5.0^{+2.3} 2.3) \times 10^{-5}.$

Phys. Rev. Lett. 108, 112003 (2012)

$p\overline{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\overline{p}$

- PWA of $\psi' \rightarrow \gamma p \overline{p}$ (based on 106 million ψ' data collected at BESIII)
 - Parameters of $X(p\overline{p})$ are fixed to results of $J/\psi \rightarrow \gamma p\overline{p}$.
 - Significance of X(pp̄) is 6.9σ.
 - $Br(\psi' \rightarrow \gamma X) \cdot Br(X \rightarrow p\overline{p}) = (4.57^{+0.36} 0.36^{+1.23} 4.07^{+1.28}) \times 10^{-6}.$
 - $R = \frac{Br(\psi' \to \gamma X(p\bar{p}))}{Br(J/\psi \to \gamma X(p\bar{p}))} = (5.08^{+0.71} 0.45^{+0.67} 3.58^{+0.12} 0.12)\%.$
 - Suppressed compare with the well known 12% rule.

Phys. Rev. Lett. 108, 112003 (2012)

X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- X(1835) is likely to have similar properties as η_c .
 - 3(π⁺π⁻) is a relatively large decay mode of η_c, also for X(1835)?
- A distinct enhancement can be clearly seen on mass spectrum of $3(\pi^+\pi^-)$ around 1.84 GeV/c².
 - Not from background process such as $J/\psi \rightarrow \pi^0 3(\pi^+\pi^-)$.
 - $M=1842^{+4.2}_{-4.2}^{+7.1}_{-2.6} \text{ MeV/c}^2$, $\Gamma=83^{+14}_{-14}^{+11}_{-11} \text{ MeV/c}^2$.
 - $Br(J/\psi \rightarrow \gamma X(1840)) \cdot Br(X(1840) \rightarrow 3(\pi^{+}\pi^{-})) = (2.44^{+0.36} + 0.60)^{+0.60} 0.74) \times 10^{-5}$.

Study of $J/\psi \rightarrow \gamma 3\pi$

- First observation of an isospin-violate process: $\eta(1405) \rightarrow f_0(980)\pi^0$.
 - $\operatorname{Br}(\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0) = (1.50^{+0.11} + 0.11^{+0.11} + 0.11) \times 10^{-5}.$
 - $\operatorname{Br}(\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^0 \pi^0 \pi^0) = (7.10^{+0.82} 0.82^{+0.72} 0.72) \times 10^{-6}.$
 - $=\frac{\mathrm{Br}(\eta(1405)\to f_0(980)\pi^0\to\pi^+\pi^-\pi^0)}{\mathrm{Br}(\eta(1405)\to a_0^0~(980)\pi^0\to\eta\pi^0\pi^0)}=(17.9^{+4.2}_{-4.2})\%.$
 - Much bigger than a₀-f₀ mixing rate(<1%)!</p>
 - Phys. Rev. D 83, 032003 (2011)
- Narrow f₀(980).
 - Charged channel: Γ=9.5^{+1.1}_{-1.1} MeV/c².
 - Neutral channel: Γ=4.6^{+5.1}-5.1 MeV/c².
 - Much smaller than PDG value: 40~100MeV/c²!
- Theoretical explanation: Triangle Singularity?
 - Phys. Rev. Lett. 108, 081803 (2012)

Phys. Rev. Lett. 108, 182001 (2012)

Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta \eta$

- Lattice QCD predicts the lowest lying 0⁺⁺ glueball occurs in 1.5 to 1.7 GeV/c², and the lightest 2⁺⁺ glueball has mass around 2.2GeV/c².
- ηη system:
 - Even⁺⁺ states(mainly 0⁺⁺ and 2⁺⁺): ideal place for search of scalar and tensor glueballs.
 - Crystal Ball observed $f_0(1710)$ in $J/\psi \rightarrow \gamma \eta \eta$.
 - Crystal Barrel observed $f_0(1500)$ in $p\bar{p} \rightarrow \pi^0 \eta \eta$.
 - Avail comparison to $\pi\pi$, $K\overline{K}$, $\eta\eta'$ system.
- J/ψ→γηη at BESIII.
 - High statistics.
 - EMC: CsI(T1) crystals, high performance.
 - Low background.

Phys. Rev. Lett. 48, 458 (1982)

Phys. Rev. D 87, 092009 (2013)

Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta \eta$

Scalar contributions

- $f_0(1500), f_0(1710), f_0(2100); f_0(1370), f_0(1790).$
- Production rate of $f_0(1500)$ is approximately one order smaller than that of $f_0(1710)$ and $f_0(2100)$.
- Production rate of $f_0(1710)$ in radiative J/ ψ decays is compatible with LQCD's prediction on that of a pure gauge scalar glueball. Large overlap between $f_0(1710)$ and a glueball? 200 WeV/c² 180 160 120 140 120 100 100 100

^hf_(1500

Tensor contributions

• $f_2'(1525), f_2(1810), f_2(2340); f_{\overline{t}}(2220).$

Phys. Rev. D 87, 092009 (2013)

ωφ threshold enhancement in J/ψ \rightarrow γωφ

- An enhancement on ωφ threshold in J/ψ→γωφ was first observed at BESII and named X(1810):
 - J^{PC} favors 0⁺⁺.
 - $M=1812^{+19}_{-26}^{+18}_{-18} \text{ MeV/c}^2$, $\Gamma=105^{+20}_{-20}^{+28}_{-28} \text{ MeV/c}^2$.
 - $Br(J/\psi \rightarrow \gamma X(1810)) \cdot Br(X(1810) \rightarrow \omega \phi) = (2.61^{+0.27} + 0.65) \times 10^{-4}.$
- BESIII confirmed X(1810) with much higher statistics.

ωφ threshold enhancement in J/ψ \rightarrow γωφ

- Partial Wave Analysis(PWA) of $J/\psi \rightarrow \gamma \omega \phi$
 - Solution; X(1810), $f_2(1950)$, $f_0(2020)$, $\eta(2025)$ and a 0⁻⁺ PHSP.
 - J^{PC} of X(1810): 0⁺⁺.
 - $M = 1795^{+7} 7^{+13} 15^{+19} 19$ MeV/c², $\Gamma = 95^{+10} 10^{+21} 34^{+75} 75$ MeV/c².
 - Br(J/ $\psi \rightarrow \gamma X(1810)$)·Br(X(1810) $\rightarrow \omega \phi$)=(2.00^{+0.08}_{-0.08}^{+0.45}_{-1.00}^{+1.3}_{-1.3})×10⁻⁴.
- $J/\psi \rightarrow \gamma \omega \phi$ is a DOZI process, but has a similar branch ratio compared to that of $J/\psi \rightarrow \gamma \phi \phi$, an OZI process.
 - Dynamical effect arising from intermediate meson re-scattering.
 - A manifestation of f₀(1710).
 - Hadrons of new types: tetraquark, hybrid, glueball, ...

Phys. Rev. D 87, 032008 (2013)

Summary & Perspective

- Over the past few years, BESIII has got many interesting physics results from radiative J/ψ decays:
 - $X(p\overline{p})$ is confirmed as a pseudoscalar particle, with mass and width measured.
 - X(1840) is observed.
 - First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$.
 - Study of ηη system.
 - X(1810) is confirmed.
- Last year in a new run period, BESIII has collected more than 1 billion J/ψ events, which is approximately 5 times as large as previous sample. With such high statistics, it's excited to expect more and more interesting discoveries from radiative J/ψ decays at BESIII in the future.

THANK YOU!