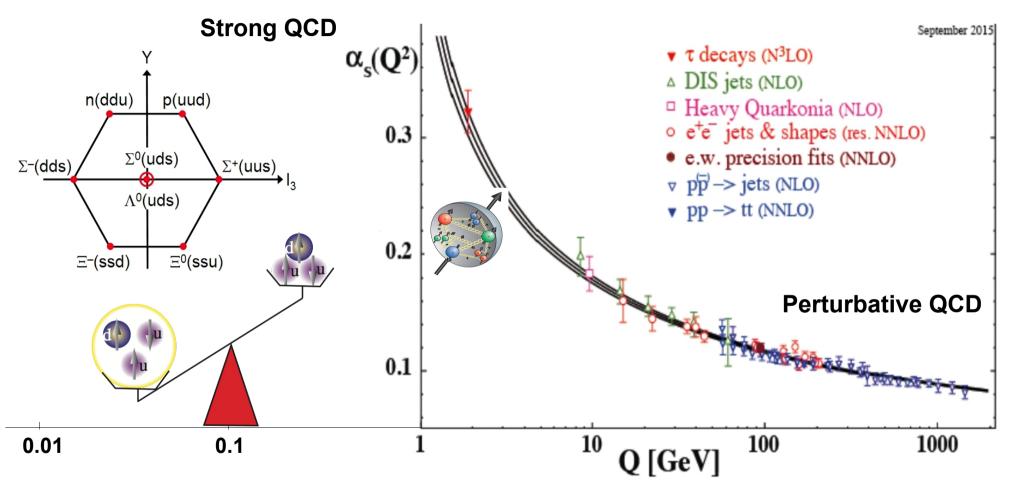


Baryon EM Form Factors in BESIII

Cristina Morales (Helmholtz-Institut Mainz) on behalf of BESIII-Collaboration

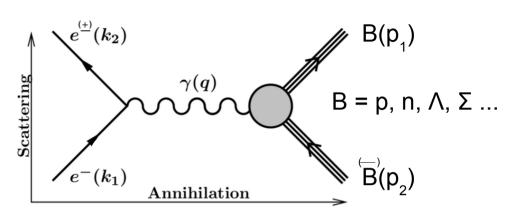
Outline:

- Introduction
- Experiment
- $e^+e^- \rightarrow p\overline{p}$
- $e^+e^- \rightarrow \Lambda \overline{\Lambda}$
- Prospects and Summary


Moriond QCD 2016 La Thuile, March 19th – 26th, 2016

Introduction

Cristina Morales (Helmholtz-Institut Mainz) Moriond QCD 2016

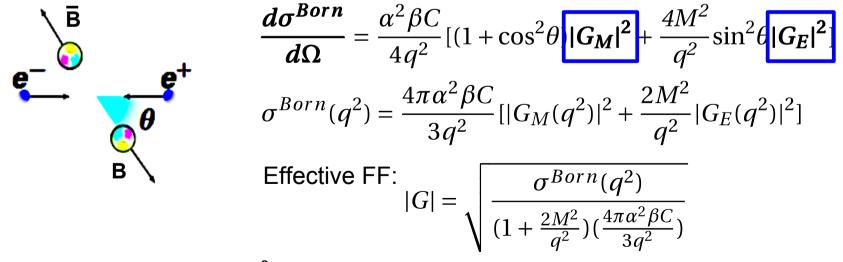

Structure of Baryons

• Baryons: non-perturbative systems composed of confined quaks and gluons

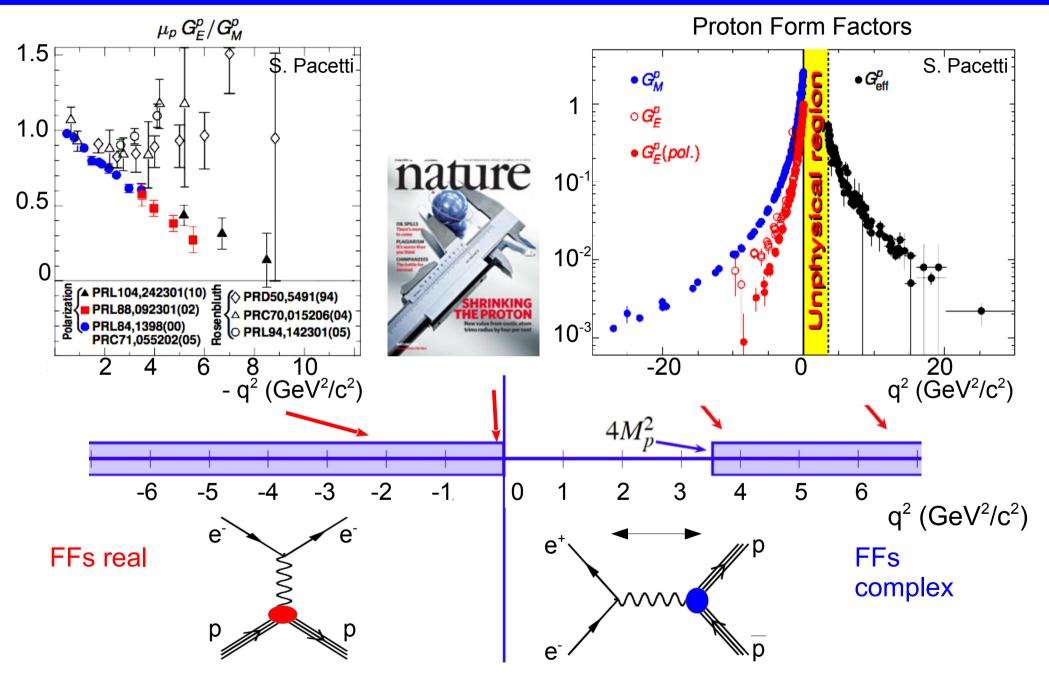
 Interactions in terms of non-perturbative (long-distance) functions: Form Factors, Generalized Parton Distributions, Generalized Distribution Amplitudes, Fragmentation Functions, Parton Distribution Amplitudes, Transverse Momentum Dependence, Transition Distribution Amplitudes...

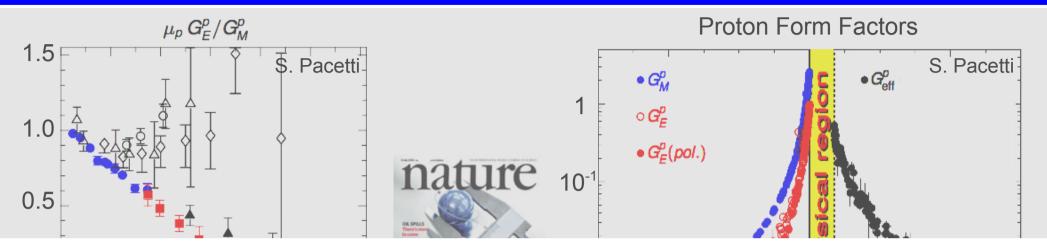
• Assumption: FFs analytic functions of q²

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(q^2)$$

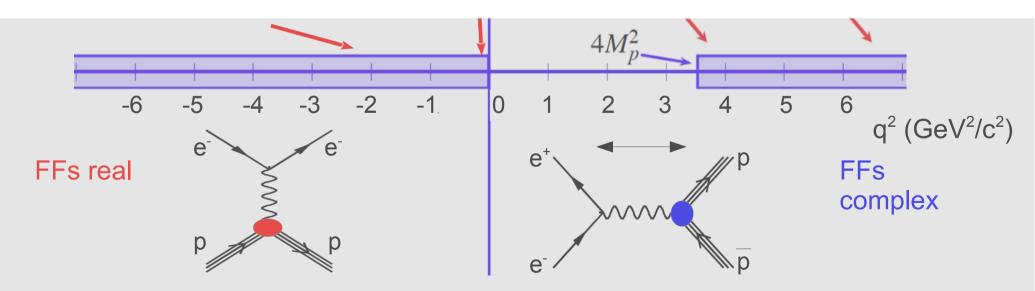

$$F_1(0) = Q; F_2(0) = K$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$


$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4M} F_2(q^2)$$

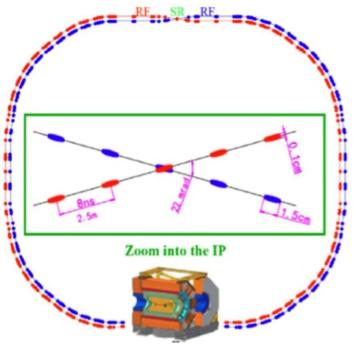

Experimental access: angular analysis
 <u>Direct annihilation</u> (q²> 0):

(1 photon exchange)


Elastic Scattering $(q^2 \le 0)$: Rosenbluth separation, polarization transfer

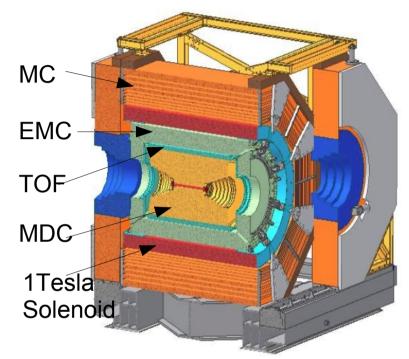
Hot Topics in Form Factor Research:

G_E/G_M, Charge Radius, Unphysical Region, Threshold Behaviour, Radiative Corrections, Two-Photon Exchange, Large Q²)

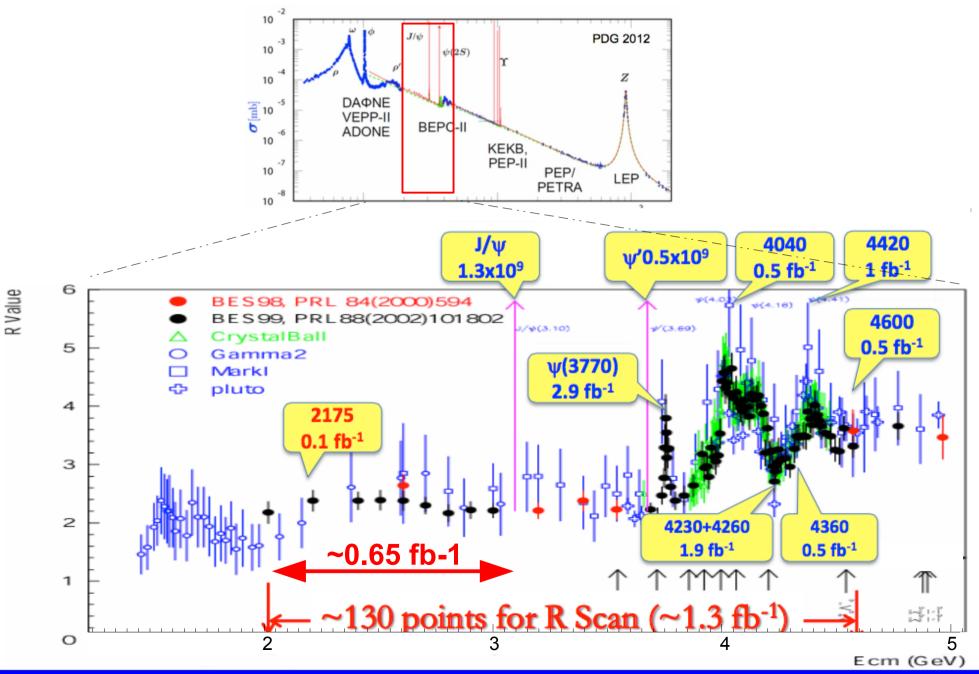


BESIII@BEPCII

Cristina Morales (Helmholtz-Institut Mainz) Moriond QCD 2016


BESIII @ BEPCII

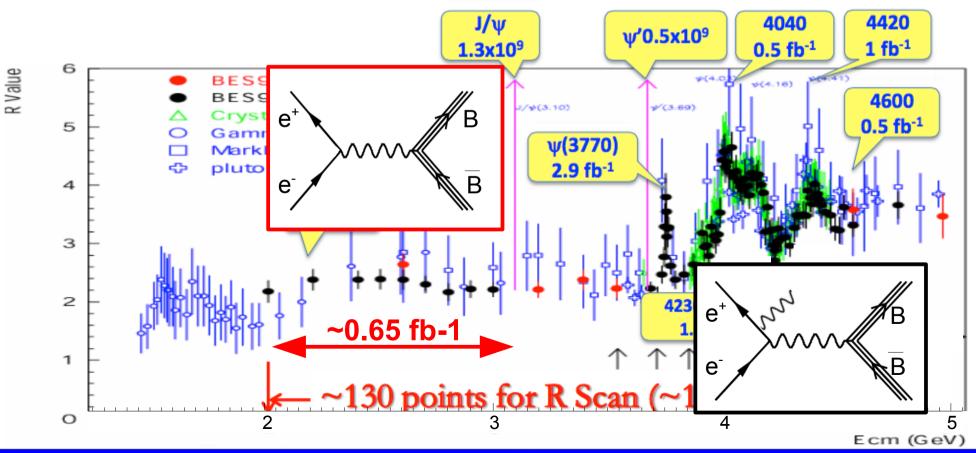
Double ring e+e- collider:


- Beam energy: 1.0 2.3 GeV
- Design luminosity: 10³³ cm⁻² s⁻¹
- Energy spread: 5.16 · 10⁻⁴
- Number of bunches: 93
- Total current: 0.91 A
- Bunch length: 1.5 cm

Multi-purpose detector:

- Main Drift Chamber $\sigma(p)/p < 0.5 \%$ for 1 GeV tracks, $\sigma(dE/dx)/dE/dx < 6\%$, $\sigma(xy) = 130 \mu m$
- Time of Flight $\sigma(t) \sim 90 \text{ ps}$
- EMCalorimeter σ(E)/E < 2.5 %, σ(x) < 6mm for 1 GeV e-
- Muon Counter σ(xy) < 2 cm

BESIII Data Samples


Cristina Morales (Helmholtz-Institut Mainz)

Moriond QCD 2016

BESIII Data Samples for Baryon FFs

In 2015 world largest scan data sample between 2 and 3.08 GeV!!

World largest J/Psi, Psi(2S), Psi(3770, Y(4260)... produced directly in e+e- collisions

Cristina Morales (Helmholtz-Institut Mainz)

Moriond QCD 2016

Baryon FFs Measurements in BESIII

Cristina Morales (Helmholtz-Institut Mainz) Moriond QCD 2016

e⁺e⁻ → pp _{Phys. Rev. D91, 112004 (2015)</sup>}

Based on **157 pb⁻¹** collected in 12 scan points between **2.22 – 3.71 GeV** in 2011/2012

- \circ p and \overline{p} from vertex, in time, back to back, $E_{p\overline{p}} = E_{CM}/2$
- Background negligible or subtracted
- $_{\odot}$ Efficiencies between 60% and 3%
- Radiative corrections up to LO in ISR (ConExc)
- Normalization to $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \gamma\gamma$ (Babayaga 3.5)

From $\sigma^{\text{Born}}(ee \rightarrow pp)$ extract effective form factor:

$$\sigma^{\text{Born}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{L \cdot \epsilon (1 + \delta)} \longrightarrow |G| = \sqrt{\frac{\sigma^{Born}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi\alpha^2\beta C}{3q^2})}} \overline{\Box}$$

Overall uncertainty improved by 30% No steps observed in cross section

- \rightarrow Steep rise at threshold
- \rightarrow Asymptotic behavior in SL and TL regions differ:

$$|G_{M}^{TL}(10 \text{ GeV}^{2})| = 2|G_{M}^{SL}(10 \text{ GeV}^{2})|$$

3.5

З

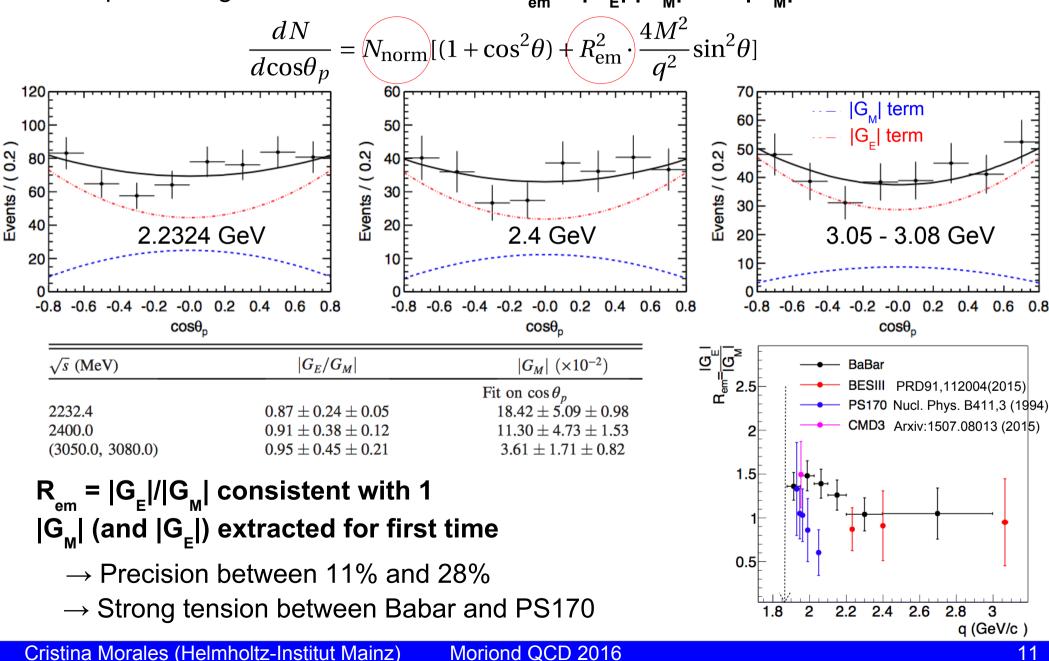
XY View

10⁻¹

 10^{-2}

2

2.5

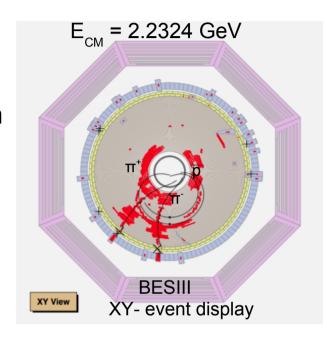

E_{CM} = 2.4 GeV

4.5

q (GeV/c)

e⁺e⁻ → pp _{Phys. Rev. D91, 112004 (2015)</sup>}

From proton angular distribution extract $\mathbf{R}_{em} = |\mathbf{G}_{E}|/|\mathbf{G}_{M}|$ and $|\mathbf{G}_{M}|$:

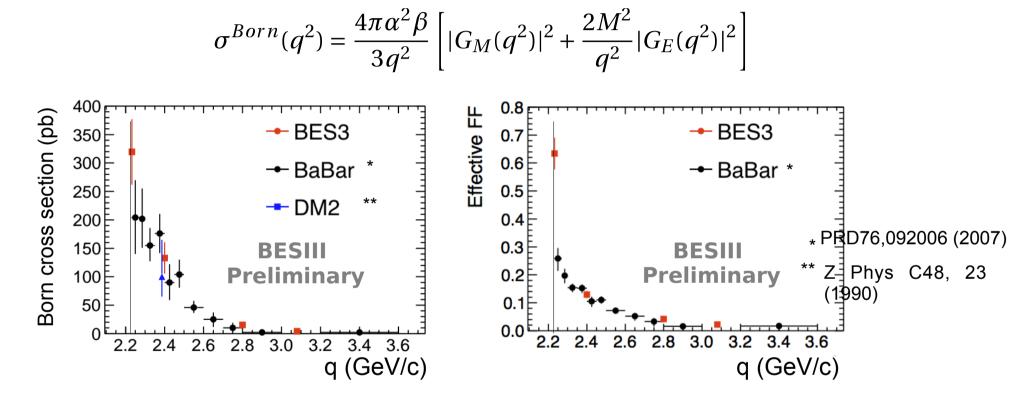


$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ (BESIII Preliminary!!)

Based on 40.5 pb^{-1} collected in 4 scan points between 2.2324 - 3.08 GeV in 2012

• at $E_{_{CM}} = 2.2324 \text{ GeV} (1 \text{ MeV from threshold!!})$ From $\Lambda \rightarrow p\pi^-$ and $\overline{\Lambda} \rightarrow \overline{p}\pi^+ (BR_{_{p\pi}} = 64\%)$ \circ well defined $p_{_{\pi^+}}$ and $p_{_{\pi^-}}$ and possible \overline{p} -annihilation From $\overline{\Lambda} \rightarrow \overline{n}\pi^0 (BR_{_{n\pi^0}} = 36\%)$ $\circ \overline{n}$ -annihilation and well defined $p_{_{\pi^0}}$

• at
$$E_{_{CM}} \ge 2.4 \text{ GeV}$$
, from $\Lambda \rightarrow p\pi^-$ and $\overline{\Lambda} \rightarrow \overline{p}\pi^+$
 $\circ p, \overline{p}, \pi^-$ and π^+ from interaction vertex, in
time, $\Lambda\overline{\Lambda}$ back to back, $E_{_{\Lambda,\overline{\Lambda}}} = E_{_{CM}}/2 \dots$


Results:	$\sqrt{s} \; (\text{GeV})$	Channel	$\sigma^{ m Born}(m pb)$	G (×10 ⁻²)
	2.2324	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$	$325\pm53\pm46$	
		$\overline{\Lambda} ightarrow \overline{n} \pi^0$	$300\pm100\pm40$	
		combined	$318\pm47\pm37$	$63.2 \pm 4.7 \pm 3.7$
	2.4000	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$	$133\pm20\pm19$	$12.9\pm1.0\pm0.9$
	2.8000		$15.3\pm5.4\pm2.0$	$4.2\pm0.7\pm0.3$
	3.0800		$3.9\pm1.1\pm0.5$	$2.21 \pm 0.31 \pm 0.14$

Cristina Morales (Helmholtz-Institut Mainz)

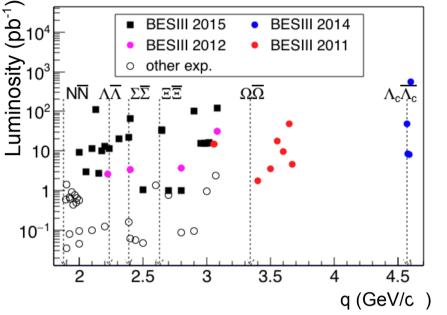
Moriond QCD 2016

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ (BESIII Preliminary!!)

No Coulomb term for neutral baryon pairs \rightarrow cross section should vanish at threshold

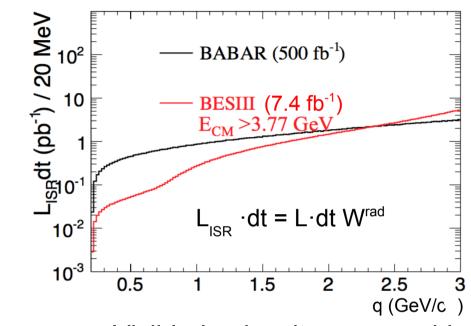
Precision increased by at least 10% for low q² and even more above 2.4 GeV

- \rightarrow Origin of unexpected behavior? Coulomb interaction at quark level?(***)
- \rightarrow Precison measurement forseen by BESIII with 2015 data


*** Eur. Phys. J. A39:315-321(2009)

Prospects and Summary

Cristina Morales (Helmholtz-Institut Mainz) Moriond QCD 2016


Prospects in **BESIII**

From energy scan

- Protons: 9 to 35% accuracy on R^{p} , 3 9% on $|G^{p}_{_{M}}|$
- \bullet Neutrons: unprecedented statistics. Possible measurement of |G| and $\ensuremath{\mathsf{R}}^n$
- Hyperons: full determination of Λ -FFs. 14 – 29% accuracy for R^{Λ}, 6 - 17% for P_{Λ}. Similar for other hyperons
- Λ_c : 13% accuracy for R^{Ac} at threshold

From initial state radiation

- Visible luminosity comparable to BaBar's
- Protons: Tagged and untagged photon analysis possible. Expected accuracies on R^p between 10-40%
- Neutrons: only tagged photon analysis. Extraction of |G| from threshold to 3.0 GeV possible

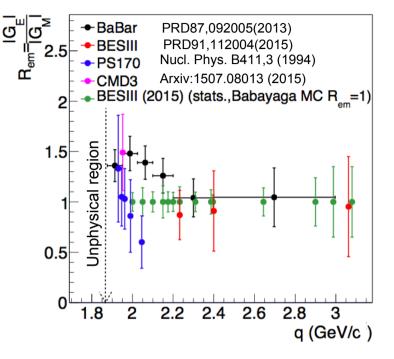
Summary

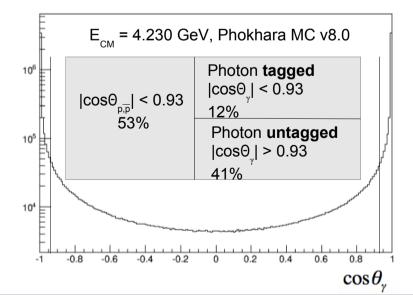
- BESIII excellent laboratory for Baryon form factor measurements: energy scan
 + initial state radiation
- Proton Form Factors have been measured using a fraction of available scan data
- Preliminary results on Λ cross section based on fraction of scan data just released
- High statistics energy scan between 2.0 and 3.08 GeV will significantly improve FFs measurements for protons, neutrons, lambdas and other hyperons
- Very exciting results from ISR on nucleon FFs expected very soon!

Thank you!

Prospects for $e^+e^- \rightarrow p\overline{p}$, $p\overline{p}\gamma_{ISR}$

 $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to p\overline{p}$


BESIII 2015: 21 scan points between 2.0 and 3.08 GeV (552 pb⁻¹)


- Expected statistical accuracies or R_{em}=|G_E|/|G_M|=1 between
 9 % and 35% (similar to space-like region for same q²-region)
- Expected accuracies for |G_M| between 3 to 9%, 9 to 35 % for |G_F|

 $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

Data samples (ECM): $\psi(3770), \psi(4040), 4230, 4260, 4360, 4420, 4600$. Total: 7.4 fb-1

- \bullet Analysis for each $\mathsf{E}_{_{\mathsf{CM}}}$ and q, then combine statistics
- ISR kinematics: photon and pp-system with small opposite polar angles
- Efficiencies: ~20% -γ-untagged, ~6% γ-tagged analysis
- From 2.1 GeV up untagged-photon analysis possible
- Remaining $e^+e^- \rightarrow p\overline{p}\pi^0$ subtracted from data
- Final statistics competitive with BaBar

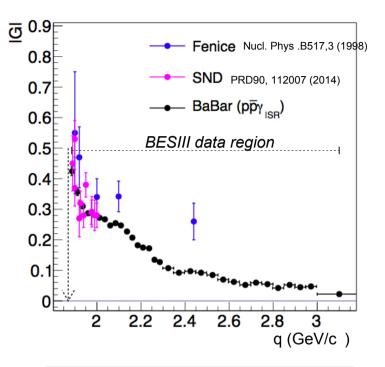
Prospects for $e^+e^- \rightarrow n\overline{n}$, $n\overline{n}\gamma_{ISR}$

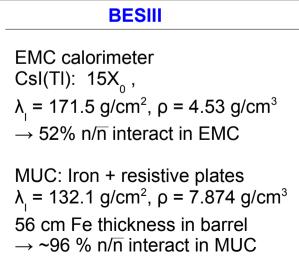
Only two direct measurements of neutron effective FF

BESIII data cover wide range (1.87 - 3.08 GeV) with unprecedented statistics

- \rightarrow measurement of cross section and |G| in wide q²-region
- \rightarrow could provide the first measurement of ${\rm R}_{_{\rm em}}$

Strategy:


- First identification of \overline{n} and γ_{ISR} : EMC shower information
- o neutron identification
- event kinematics (geometry)


$e^+e^- \rightarrow n\overline{n}$

- \overline{n}/n detection efficiencies of ~20/30% (efficiencies up to % level)
- Main background from beam background processes
- Unprecedented statistics above 2.0 GeV (~300 evts at 2.4 GeV)

 $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to n\overline{n}\gamma_{_{ISR}}$

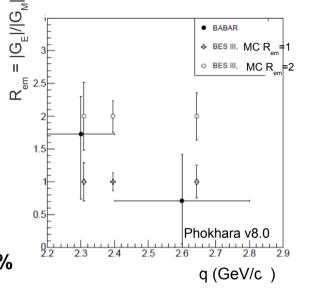
- Only tagged analysis possible (efficiencies at per mille level)
- Increase detection efficiency using TOF, MUC
- Main background from $e^+e^- \rightarrow nn\pi^0$ and $e^+e^- \rightarrow \gamma\gamma(\gamma)$ (Neural Network)

Prospects for $e^+e^- \rightarrow$ Hyperons

• Imaginary part of FFs leads to polarization observables:

Parity violating decay: $\Lambda \rightarrow p\pi$

and polarization axis in A-CM

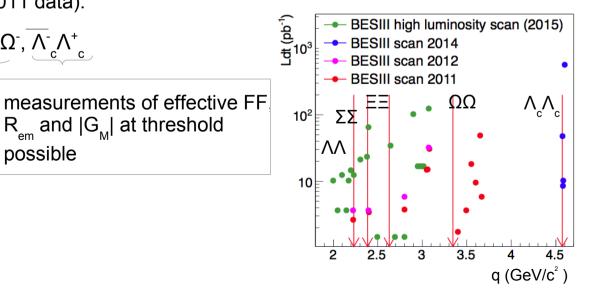

$$\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p \quad \text{and} \quad P_n = -\frac{\sin 2\theta \sin \Delta\phi / \tau}{R\sin^2\theta / \tau + (1 + \cos^2\theta) / R} = \frac{3}{\alpha_{\Lambda}} \langle \cos\theta_p \rangle$$

 $\boldsymbol{\Phi}$: relative phase between G₂ and G₄

possible

Expected statistical accuracies for P_n between 6 and 17%

Expected statistical accuracies for $R_{em} = |G_{F}|/|G_{M}| = 1$ between 14 and 29%



Also available from threshold (2015, 2014, 2011 data):

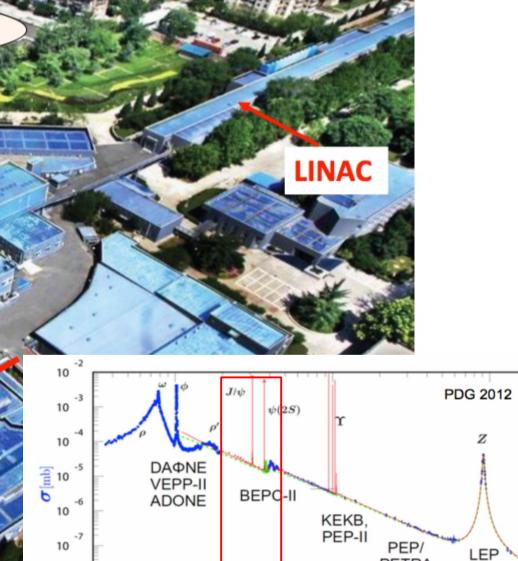
$$ee \to \Lambda \overline{\Sigma^{0}}, \overline{\Sigma^{0}} \Sigma^{0}, \overline{\Sigma^{-}} \Sigma^{+}, \overline{\Sigma^{+}} \Sigma^{-}, \overline{\Xi^{0}} \Xi^{0}, \overline{\Xi^{+}} \Xi^{-}, \overline{\Omega^{+}} \Omega^{-}, \overline{\Lambda^{-}}_{c} \Lambda^{+}_{c}$$

measurements of effective FF and R_{em} and P_{n} at single energy points possible

 $ee \rightarrow \Lambda \overline{\Sigma^0}$, $\Sigma^{\overline{0}} \overline{\Sigma^0}$ previously measured by BaBar, no R_{em} extraction possible

BEPCII Collider

Symmetric e⁺e⁻-collider Beam Energy: 1.0 – 2.3 GeV Design Luminosity 10³³ cm⁻² s⁻¹ Achieved Luminosity 80%@Ψ(3770)

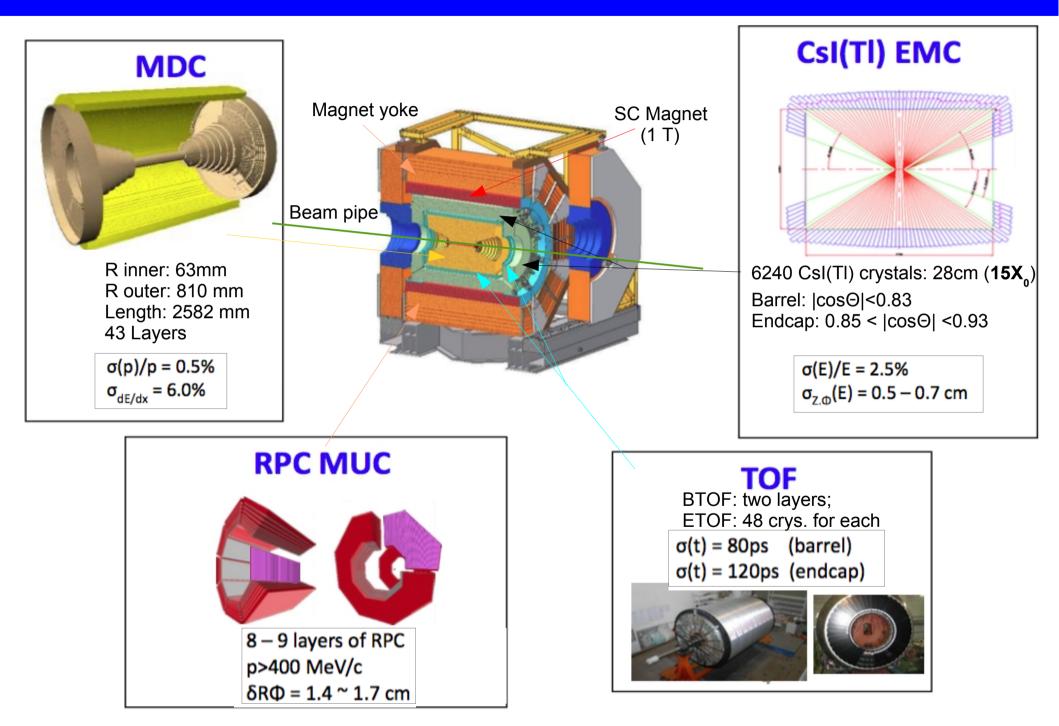


Zoom into the IP

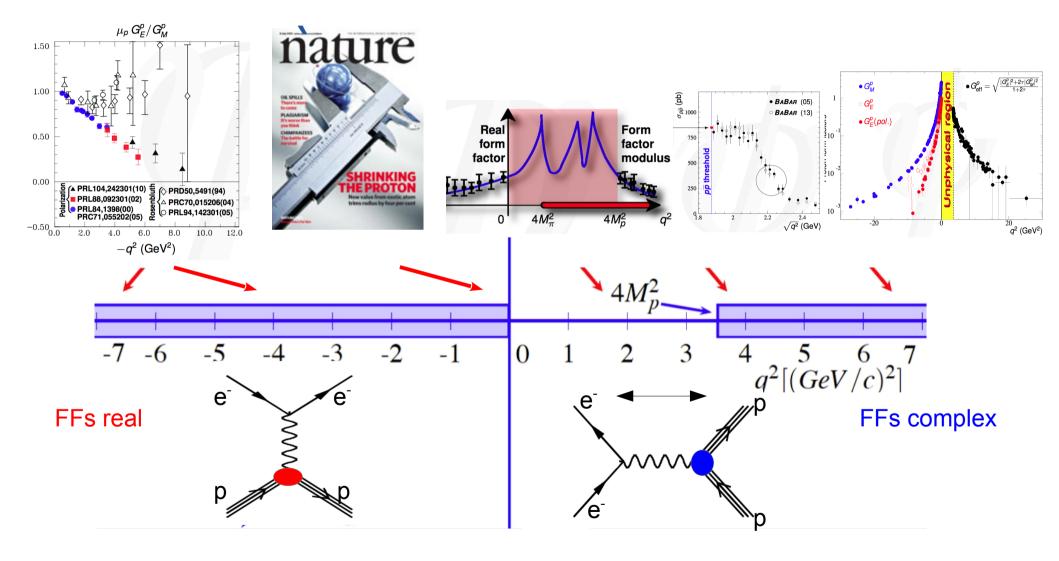
10 -8

1

BESIII detector

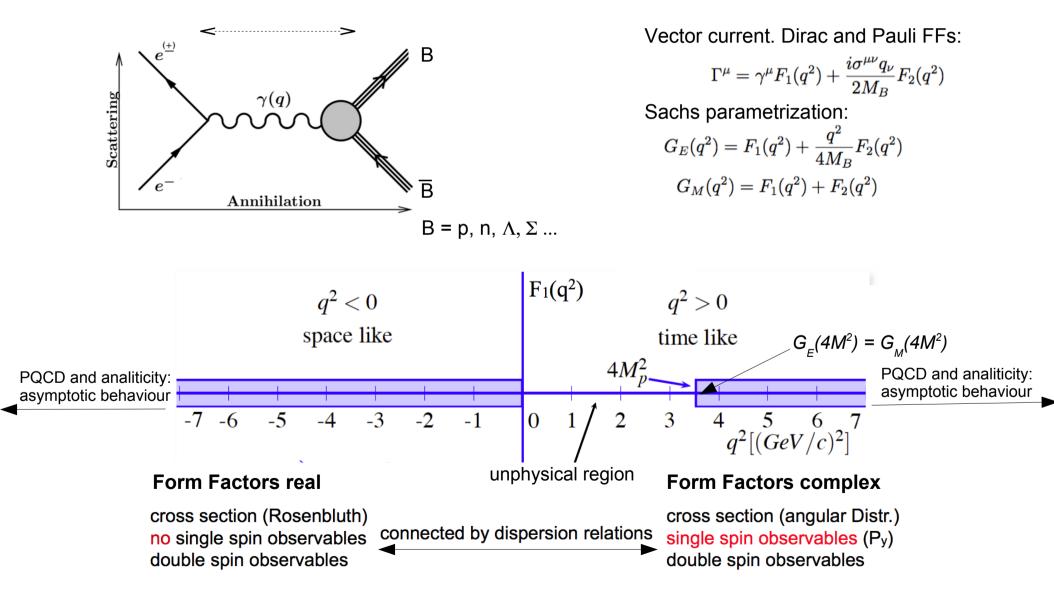

PETRA

10


10 2

GeV

BESIII Detector



EM processes: all hadronic structure and strong interactions in FFs but subject to QED

Hadron Form Factors

All hadronic structure and strong interactions in form factors but subject to QED corrections Hadronic vector current: (2s+1) form factors. For spin 1/2-baryons 2 electromagnetic FFs:

$e^+e^- \rightarrow \pi^+\pi^-\gamma_{\rm ISR}$ arXiv:1507.08188 (submitted to PLB)

• Goal: hadronic vacuum polarization contribution to $a_{\mu} = \frac{(g_{\mu}-2)}{2}$

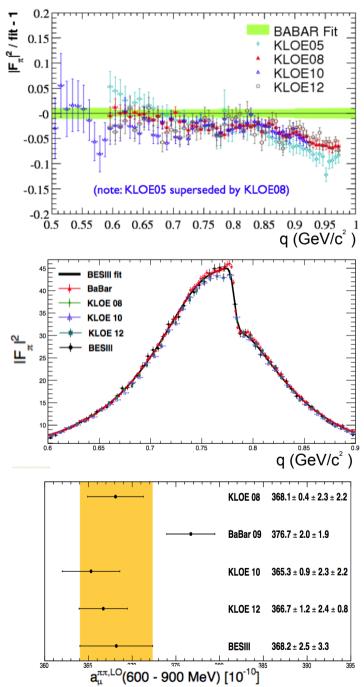
$$\alpha_{\mu}^{SM} = \alpha_{\mu}^{QED} + \alpha_{\mu}^{weak} + \alpha_{\mu}^{hadr}$$

 \rightarrow most relevant contribution to a_{μ}^{hadr} below 1 GeV: $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

$$|F_{\pi}|^2(q^2) = rac{3q^2}{\pi lpha^2 eta^3} \sigma^{dressed}_{\pi^+\pi^-}(q^2)$$

Disagreement between existing measurements limits knowledge of a

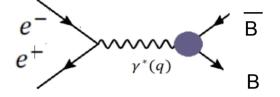
• Features of BESIII analysis:


o 2.9 fb-1 from Ψ(3770)

- studied range between 600 900 MeV
- only tagged analysis possible below 1 GeV
- main background from $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$ prefectly understood (<1‰)
- \circ luminosity from BhaBha events \rightarrow 0.5% accuracy (Babayaga NLO)
- FF fit function: Gounaris-Sakurai parametrization
- radiative corrections from Phokhara v8.0

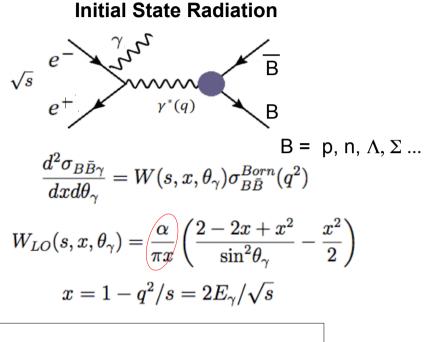
Syst. uncertainty in cross section 0.9%

Compatible with prev. measurements (1σ)


More than 3σ deviation wrt (g_µ-2)sM prediction confirmed Data from untagged analysis and above Ψ(3770) will be used Analysis will be extended below 600 MeV and above 900 MeV

Baryon EM FFs in BESIII

• BESIII @ BEPCII: e+e- -annihilation: access to time-like form factors from


Direct annihilation

$$\sigma^{Born}_{Bar{B}}(q^2) = rac{4\pilpha^2eta C}{3q^2}\left[|G_M(q^2)|^2 + rac{1}{2 au}|G_E(q^2)|
ight]$$

Coulomb correction factor:

$$C = \frac{\pi \alpha}{\beta (1 - exp(\pi \alpha / \beta))} \quad \text{(if } q_{_{\rm B}} \neq 0\text{), } C = 1 \text{ (if } q_{_{\rm B}} = 0\text{)}$$

Effective form factor (assume $|G_{F}| = |G_{M}|$):

$$|G(q^2)| = \sqrt{rac{\sigma_{B\bar{B}}^{Born}(q^2)}{(1+rac{1}{2 au})(rac{4\pilpha^2eta C}{3q^2})}}$$

Separation of $|G_{F}|$ and $|G_{M}|$ through angular analysis:

$$\begin{split} \frac{d\sigma_{B\bar{B}}^{Born}}{d\Omega_{CM}} &= \frac{\alpha^2\beta C}{4q^2} \left[(1+\cos^2\theta_B^{CM})|G_M|^2 + \frac{1}{\tau}|G_E|^2 \sin^2\theta_B^{CM} \right] \\ \text{with} \ \tau &= \frac{q^2}{4M_B^2}, \beta = \sqrt{1-1/\tau} \end{split}$$

Prospects for $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

10⁴ dt (bb⁻¹/100 MeV) 10³ BABAR 469 fb⁻¹ Available data samples (E_{CM}): $\psi'', \psi(4040), Y(4230), Y(4260),$ BABAR pp visible Y(4360), Y(4420), Y(4600). Total: 7.4 fb-1 BESIII E_{CM} ≥ 3.773 GeV (7.4 fb⁻¹) BESIII E_{CM} ≥ 3.773 GeV pp visible dN(ppy)/dq Efficiencies, background, radiative 10 factor, (functions dependent on g) MC simulations Add all corrected data from different $E_{_{CM}}$ for each q-bin Strategy: 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 q (GeV/c²) for each $E_{_{CM}}$ Normalize with L tagged and E_{CM} = 4.230 GeV, MC simulation untagged analysis Photon tagged 10⁶ Born cross section, $|\cos \Theta| < 0.93$ $|\cos\Theta_{p,p}| < 0.93$ Effective form factor 12% 53% Photon untagged 10⁵ |cosΘ| > 0.93 Angular analysis: Extraction of R 41% and |G_{E,M}| 104 0.8 $\cos\theta_{u}$

For q > 2.1 GeV: Large efficiencies (~20%) from untagged photon analysis provide large statistics and better $|G_{F}|/|G_{M}|$ accuracies

For q < 2.1 GeV: Only tagged measurement possible for $E_{CM} \ge 3.773$ GeV.

Low efficiencies (~6%), lower statistics than BaBar. Perhaps untagged analysis of J/ ψ and ψ (3686) possible ?!

Electromagnetic Form Factors

Dispersion relations connect space and time-like regions

Perturbative QCD constrains the asymptotic behaviour

$$F_i(q^2) \rightarrow (-q^2)^{-(i+1)} \left[\ln \left(\frac{-q^2}{\Lambda_{QCD}^2} \right) \right]^{-2.173_5}$$

$$|G_{E,M}(-\infty)| = |G_{E,M}(+\infty)|$$

(analiticty)

Why time-like (TL) form factors (FFs)?

- To test theory relations beween space-like and time-like processes
- Precise knowledge of FFs needed by many experiments and phenomenological models
- To test pQCD expanding the Q² kinematical domain up to soft-hard transition region (10
 15 (GeV/c)²)