Exotic and Charmonium(-like)states at BESIII

Peilian LIU

On behalf of BESIII Collaboration

Institute of High Energy Physics, CAS

APS 2016, Apr. 16 – 19, Salt lake city, UTAH

Outline

- Introduction
 - Charmonia, XYZ states
- Apparatus: BEPCII Collider and BESIII Detector
- XYZ Physics at BESIII
 - BESIII data samples
 - Results on XYZ states
 - I. X(3872), X(3823)
 - II. Structures above 4 GeV
 - III. $Z_c(3900)/Z_c(3885)$, $Z_c(4020)/Z_c(4025)$
- Summary

Hadrons and charmonia

Quark Model

- \blacksquare 2 quarks($q\bar{q}$) -- **meson**
- 3 quarks(qqq) -- baryon

■ QCD predicts the exotic states

- Glueball: $N_{quarks} = 0$ (gg, ggg, ...)
- **Hybrid**: $N_{quarks} >= 2 (q\bar{q}g,qqqg)$
- Molecule: bound state of hadrons
- Multiquark state: $N_{quarks} >= 4$

meson baryon

Charmonium and XYZ states

♦ Below open-charm threshold

✓ Good agreement between observations and theoretical predictions

♦ Above open-charm threshold

- ✓ Many expected states not observed
- ✓ Many unexpected observed: with charmonium in final states, but not conventional charmonium states (charmonium-like or XYZ)

♦ To further verify the QCD

- ✓ New decay modes of known charmonium states
- ✓ New charmonium(-like) states

Beijing Electron Positron Collider (BEPCII)

BESIII Detector

1.0 Tesla super-conducting magnet

 $\sigma_{dE/dx}$: <5% (Bhabha)

Data samples collected by BESIII

- ✓ World's largest samples of direct e⁺e⁻ collisions in the tau-charm region
- \checkmark 1.3B J/ ψ + 0.6B ψ (2S) + 2.9/fb ψ (3770)
- ✓ XYZ physics: 3.8 4.6 GeV
- ✓ Other scan and continuum data below the J/ψ

X states

X(3872): the 1st observed charmonium-like state

- ✓ X(3872) discovered in B[±]→ $K^{\pm}\pi^{+}\pi^{-}J/\psi$ process by Belle in 2003, and confirmed by BaBar, CDF and D0
- ✓ The best established state among the XYZ
- \checkmark The potential model did not expect the X(3872)
- ✓ $M(X(3872)) \sim M(D\bar{D}^*)$ candidate for hadronic molecule or tetraquark

Study of the internal structure of X(3872)

✓ Produced via the radiative transition of $1^{--} \psi/Y$ X(3872): 1^{++}

✓ Search for new decay modes and its partners of X

$Y(4260) \rightarrow \gamma X(3872) \rightarrow \gamma \pi^{+}\pi^{-}J/\psi$

PRL 112, 092001 (2014)

- ✓ 1st observation of e⁺e⁻ $\rightarrow \gamma X(3872) \rightarrow \gamma \pi^{+}\pi^{-}J/\psi$
- ✓ $M = 3871.9 \pm 0.7 \pm 0.2$ MeV, $\Gamma < 2.4$ MeV consistent with Belle's result
- ✓ A new Y(4260) decay mode and new X(3872) production: $Y(4260) \rightarrow \gamma X(3872)$
- $\checkmark \frac{\sigma^B(e^+e^-\to \gamma X(3872))}{\sigma^B(e^+e^-\to \pi^+\pi^-J/\psi)} = 0.1 \ @4.26 \text{GeV} \quad \textbf{Large radiative transition ratio}$
 - \blacktriangleright If $B(X(3872) \to \pi^+\pi^-J/\psi) = 5\%$ (>2.6% in PDG)

$e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^- \gamma \chi_{c1}$

PRL115, 011803 (2015)

Search for the spin-triplet partner of $\psi(3770)$: $1^3D_2(\psi_2)$

✓ Potential model: ψ_2 → $\gamma \chi_{c1}$, $\gamma \chi_{c2}$ with large width.

Enhancement in $M_{recoil}(\pi^+\pi^-)$

✓ $M = 3821.7 \pm 1.3 \pm 0.7 \text{ MeV}, \Gamma < 16 \text{ MeV}$

Good candidate of ψ_2

- ✓ mass of ψ_2 : 3.81~3.84 GeV/c²
- ✓ narrow
- ✓ dominant decay ψ_2 → gc_{c1} : no X(3823) in the $\gamma \chi_{c2}$ mode

Both Y(4360) and $\psi(4415)$ line shape give reasonable description.

History of $1^3D_2(\psi_2)$

- ✓ 1994, E705 reported a candidate for ψ_2 (2.8 σ)
 - $M = 3836 \pm 13 \text{ MeV/c}^2$
 - Decaying to $\pi\pi J/\psi$
- ✓ 2013, Belle reported evidence for $X(3823) \rightarrow \gamma \chi_{c1}$ in $B \rightarrow K \gamma \chi_{c1}(3.8\sigma)$
 - $M = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV/c}^2$

Y states

New charmonium-like vector states: Y(4260), Y(4360), Y(4660)

- ✓ Not predicted by the potential model
- ✓ A surprisingly large coupling to final states w/o open-charm mesons
- ✓ Lack of observation in the inclusive hadronic cross section

To understand the Y states

- **✓** Search for new decay modes and measurement of the line shapes of cross sections
- **✓** Study hadronic transitions

$$-\mathbf{Y} \rightarrow \eta/\pi^0/\pi\pi + \mathbf{J/\psi}$$

$e^+e^- \rightarrow \pi\pi J/\psi(h_c)$

BESIII PRL 115, 112003(2015) $(\pi^0\pi^0J/\psi)$ PRL 111, 242001 (2013) $(\pi^+\pi^-h_c)$ PRL 113, 212002 (2014) $(\pi^0\pi^0h_c)$

- $e^+e^- \rightarrow \pi^+\pi^-h_c$
- ✓ This process has been studied by CLEO in 2011
- **✓ BESIII provides an improved measurement**
 - $\sigma(\pi^+\pi^-h_c) \sim \sigma(\pi^+\pi^-J/\psi)$, but different line shape
 - -- Unlikely originate from Y(4260)
 - -- Hint of a more complicated underlying dynamics
 - A possible structure near 4.23 GeV for $\sigma(\pi^+\pi^-h_c)$

■ The 1st measurement of $\sigma(e^+e^- \to \pi^0\pi^0J/\psi)$

■ The 1st observation of $e^+e^- \rightarrow \pi^0\pi^0h_c$

Observation of $e^+e^- \rightarrow \omega \chi_{c0}$

PRL 114, 092003 (2015)

- ✓ The 1st observation of $e^+e^- \rightarrow \omega \chi_{c0}$
 - \bullet $\chi_{c0} \rightarrow KK/\pi\pi$; $\omega \rightarrow \pi^+\pi^-\pi^0$
 - No obvious signals for $\omega \chi_{c1/c2}$
- ✓ Cross section peak near 4.23 GeV
 - ♦ Fit with BW + phase space
 - $M = 4230 \pm 8 \pm 6 \text{ MeV}; \Gamma = 38 \pm 12 \pm 2 \text{ MeV}$
 - **♦** Not from Y(4260)
 - The statistical significance of this resonance $> 9 \sigma$

Observation of e⁺e[−]→ηJ/ψ

PRD 91, 112005 (2015)

- ✓ Production of ηJ/ψ and $ωχ_{c0}$ maybe the same
 - **♦** Similar line shape

$$\frac{\sigma^{4.26}(e^{+}e^{-} \to \eta J/\psi)}{\sigma^{4.23}(e^{+}e^{-} \to \eta J/\psi)} = 0.33 \pm 0.04$$

$$\frac{\sigma^{4.26}(e^{+}e^{-} \to \omega \chi_{c0})}{\sigma^{4.23}(e^{+}e^{-} \to \omega \chi_{c0})} = 0.43 \pm 0.13$$

- ✓ Agree with previous results with improved precision
 - -- η is reconstructed with $\gamma\gamma$
- ✓ Production of ηJ/ψ differs from $\pi\pi$ J/ψ
 - -- existence of a rich spectrum of Y states?
 - -- different coupling strength to the various decay modes

Observation of e⁺e[−]→η′J/ψ

- \checkmark η ' is reconstructed with two modes
- ✓ First observation at \sqrt{s} = 4.23 & 4.26 GeV
 - $\sigma = 3.7 \pm 0.7 \pm 0.3 \text{ pb } @4.23 \text{ GeV}$
 - $\sigma = 3.9 \pm 0.8 \pm 0.3 \text{ pb } @4.26 \text{ GeV}$

- ✓ The signals of $\eta'I/\psi$ comes from $\psi(4160)$ decays
- ✓ The contribution of $\psi(4415)$ is not evident~2.6 σ
- \checkmark σ(η'J/ψ) is much lower than σ(ηJ/ψ), in contradiction to the calculation in the framework of NRQCD (PRD 89, 074006 (2014)).
 - $\sigma(e^+e^-\to \eta' J/\psi)$ is investigated at order of $O(\alpha_s^4)$; higher order correction might need to be considered
 - Gluonium component contributions may affect the results

Z_c States

Charged Z_c provides convincing evidence of multi-quark states

It is difficult to distinguish neutral charmonium-like states from the conventional charmonium states

Z_c^{\pm} could not be a conventional $q\overline{q}$ meson

- ✓ Coupling to charmonium with electric charge
- $\checkmark c\bar{c} + q\bar{q} (q = u, d, s)$

Several Z_c states are observed in the mass region of Y states

- \checkmark $Z_c(3900)^{\pm}$, $Z_c(3885)^{\pm}$, $Z_c(4020)^{\pm}$, $Z_c(4025)^{\pm}$
- **✓** and neutral partners

$e^+e^- \rightarrow \pi Z_c(3900)^{\pm/0} \rightarrow \pi \pi^{\pm/0} J/\psi$

PRL 110, 252001(2013)
PRL 115, 112003(2015)

- ✓ $Z_c(3900)^{\pm}$ observed by BESIII in 2013, well confirmed by Belle and CLEO-c.
- ✓ $Z_c(3900)^0$ evidence with 3.7 σ by CLEO-c, observed with >10 σ by BESIII.

Z _c (3900)	Mass(MeV)	Width(MeV)	
$Z_{c}(3900)^{\pm}$	3899.0±3.6±4.9	46±10±20	
$Z_{c}(3900)^{0}$	$3894.8 \pm 2.3 \pm 2.7$	29.6±8.2±8.2	

$e^+e^- \rightarrow \pi Z_c (3885)^{\pm/0} \rightarrow \pi (D\overline{D}^*)^{\pm/0}$

Width(MeV)

24.8 + 3.3 + 11.0

 $35^{+11}_{-12}\pm15$

PRL 112, 022001 (2014)

PRL 115, 222002 (2015)

Mass(MeV)

 $3883.9 \pm 1.5 \pm 4.2$

3885.7^{+4.3}-5.7±8.4

 $Z_c(3885)$ $Z_c(3885)^{\pm}$

 $Z_c(3885)^0$

- ✓ $Z_c(3900)$ close to M(DD*) ~ 3875 MeV
- ✓ Search of $Z_c \rightarrow DD^*$
 - Observed $Z_c(3885)^{\pm/0}$
 - Mass and width close to $Z_c(3900)$

$$\frac{\sigma(e^+e^- \to Z_c(3885)^0\pi^0 \to (D\overline{D}^*)^0\pi^0 + c.c.)}{\sigma(e^+e^- \to Z_c(3885)^+\pi^- \to (D\overline{D}^*)^+\pi^- + c.c.)} \approx 0.5$$

- ✓ Coupling to DD* is larger than to $\pi J/\psi$
- $\checkmark\quad \text{If } Z_c(3900) \text{ and } Z_c(3885) \text{ are the same states}$

$$\frac{\Gamma(Z_c(3885) \to D\overline{D}^*)}{\Gamma(Z_c(3900) \to \pi I/\psi)} = 6.2 \pm 1.1 \pm 2.7$$

16

$e^+e^- \rightarrow \pi Z_c(3900)^{\pm} \rightarrow \pi\omega\pi^{\pm}$

- \checkmark Searching for new decays of $Z_c(3900)$ to light hadrons
 - -- distinguishing a resonance from threshold effects
- ✓ No significant $Z_c \rightarrow \omega \pi$ is observed
 - $-\sigma(e^+e^-\rightarrow Z_c\pi, Z_c\rightarrow\omega\pi) < 0.26 \text{ pb } @ 4.23 \text{ GeV}$
 - $-\sigma(e^+e^-\rightarrow Z_c\pi, Z_c\rightarrow\omega\pi) < 0.18 \text{ pb } @ 4.26 \text{ GeV}$
- $\checkmark \quad \sigma(e^+e^- \rightarrow Z_c\pi, Z_c \rightarrow \omega\pi)/\sigma(e^+e^- \rightarrow Z_c\pi, Z_c \rightarrow J/\psi\pi) = (1.3\pm 0.5)\%$
 - -- By assigning $\sigma(e^+e^- \rightarrow Z_c \pi, Z_c \rightarrow \omega \pi)$ to be 0.18 pb
 - $-\sigma(e^+e^- \rightarrow Z_c\pi, Z_c \rightarrow J/\psi\pi) = 13.5 \pm 5.2 \text{ pb}$

$e^+e^- \to \pi Z_c(4020)^{\pm/0} \to \pi \pi^{\pm/0} h_c$

PRL 111, 242001 (2013)

PRL 113, 212002 (2014)

- \checkmark $Z_c(4020)^{\pm/0}$ observed
- ✓ A weak evidence for $Z_c(3900) \rightarrow \pi^{\pm}h_c$

Another isospin triplet is established

Z _c (4020)	Mass(MeV)	Width(MeV)	
$Z_{c}(4020)^{\pm}$	4022.9±0.8±2.7	7.9±2.7±2.6	
$Z_{c}(3900)^{0}$	$4023.8 \pm 2.2 \pm 3.8$	Fixed (7.9)	

$e^+e^- \rightarrow \pi Z_c(4025)^{\pm/0} \rightarrow \pi (D^*\overline{D}^*)^{\pm/0}$

PRL 112, 132001 (2013)

arXiv:1507.02404

- \checkmark $Z_c(4025)^{\pm/0}$ observed.
- The resonance parameters of $Z_c(4020)$ and $Z_c(4025)$ are consistent within 1.5 σ .

Z _c (4025)	Mass(MeV)	Width(MeV)	
$Z_{c}(4025)^{\pm}$	4022.9±0.8±2.7	24.8±5.6±7.7	
$Z_c(4025)^0$	4025.5 ^{+2.0} _{-4.7} ± 3.1	23.0±6.0±1.0	

 $Z_{c}(4025)^{0}$ (a) 7.4 (a) (a) (a) 7.4 (a) (a)

- $\checkmark \quad \text{If $Z_c(4025)$ and $Z_c(4020)$ are the same states } \frac{\Gamma(Z_c(4020) \to D^* \overline{D}^*)}{\Gamma(Z_c(4020) \to \pi h_c)} = 12 \pm 5$
 - **Coupling to D*D*** is much larger than to πh_c

Summary of Z_c states at BESIII

Summary

- Significant progress in XYZ studies at BESIII
- Issues
 - √ The nature of them is mysterious
 - ✓ The relations between XYZ states are unclear

A number of transitions between different charmonium-like states are observed, starting to make connections

✓ Some expected states and decay modes are missing

Future

- ✓ More results will come up soon with some analysis are on going
- ✓ BESIII will collect more data for XYZ study
 - -- Exploring XYZ states and their transitions

Thanks!

BACKUP

Summary of Z_c states at BESIII

State	Mass(MeV)	Width(MeV)	Decay mode	Process
$Z_{c}(3900)^{\pm}$	3899.0±3.6 ±4.9	46±10 ±20	$\pi^{\pm}J/\psi$	$e^+e^-{\longrightarrow}\pi^+\pi^-J^/\psi$
$Z_c(3900)^0$	$3894.8 \pm 2.3 \pm 2.7$	$29.6 \pm 8.2 \pm 8.2$	$\pi^0 J/\psi$	$e^+e^-{\longrightarrow}\pi^0\pi^0J^/\psi$
$Z_{c}(3885)^{\pm}$	3883.9±1.5±4.2 [single D tag] 3884.3±1.2±1.5 [double D tag]	24.8±3.3±11.0 [single D tag] 23.8±2.1±2.6 [double D tag]	D ⁰ D*- D-D* ⁰	$e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ $e^+e^- \rightarrow \pi^+ D^- D^{*0}$
$Z_{c}(4020)^{\pm}$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_{c}$	$e^+e^- \rightarrow \pi^+\pi^-h_e$
$Z_c(4020)^0$	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^0 h_c$	$e^+e^-{\longrightarrow}\pi^0\pi^0h_c$
$Z_{c}(4025)^{\pm}$	4026.3±2.6±3.7	24.8±5.6±7.7	D*0D*-	$e^+e^-{\longrightarrow}\pi^+(D^*\stackrel{-}{D}^*)^-$

Nature of Z_c States

- ✓ At least 4 quarks, not a conventional meson
- ✓ Tetraquark state?

Phys. Rev. D87,125018(2013); Phys. Rev. D88, 074506(2013);

Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); etc

\checkmark D^(*) \bar{D} ^(*) molecule state?

Phys. Rev. Lett. 111, 132003 (2013); Phys. Rev. D 89, 094026 (2014)

Phys. Rev. D 89, 074029 (2014); Phys. Rev. D 88, 074506 (2013); etc

- ✓ Final States Interactions?
- **✓** ...