Dalitz Plot Analysis of D+->Ks pi+ pi0@BESIII

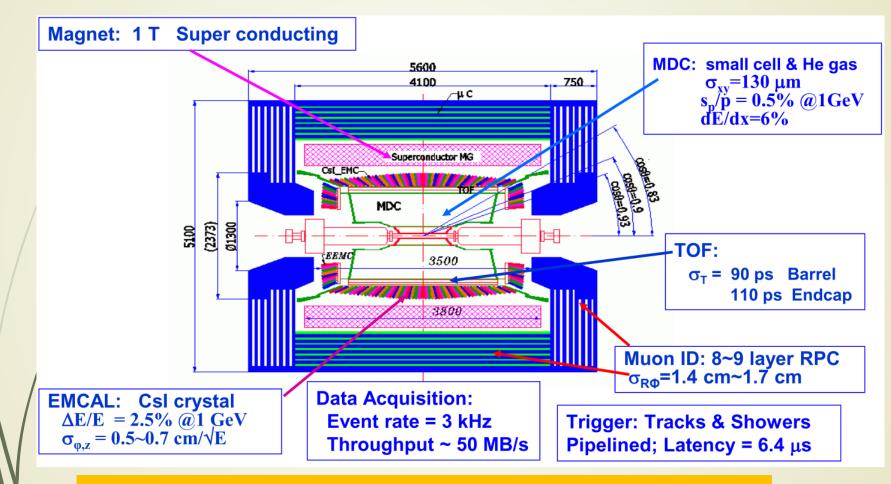
SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration)

The XV International Conference on Hadron Spectroscopy November 4th, 2013, Nara

List of Contents:

- Introduction
- BESIII Data
- Dalitz Technology
- Fit Results
- Summary

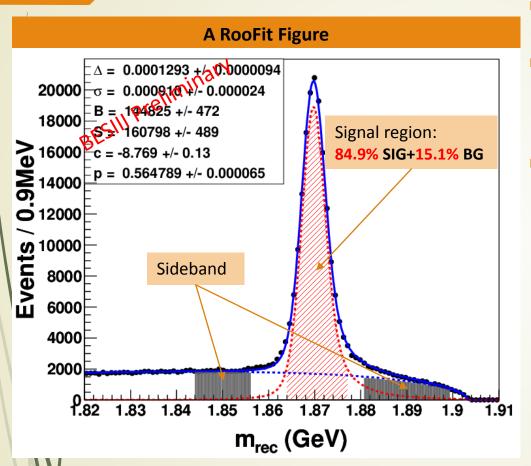
Introduction


2

- In D meson decay, there are many three bodies final states with large branching fraction and including Kπ and ππ two body resonances.
- $K\pi$ is a special and interesting system
 - Kπ S wave
 - numerous K excited states: K*(892), K₀*(1430), K*(1680), etc.
- Kπ S wave and low-mass Kπ scalar resonance κ(800) have been observed significantly in earlier experiments (MARKIII, NA14, E691-791, CLEO) through dalitz plot analysis.
- The D⁺ \rightarrow K_s $\pi^{+}\pi^{0}$ decay as one of gold channels, is needed to obtain more precision structure.

BES has established the Dalitz plot analysis, this analysis is one of the Dalitz plot analysis @BESIII.

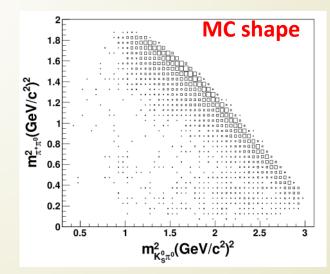
NIM A614, 345(2010)


BESIII Detector and Data

Total about **2.9/fb** ψ (3770) data are taken at BESIII, in 2010 and 2011

SUN Shengsen, DPA of D->Kspipi0@Hadron2013

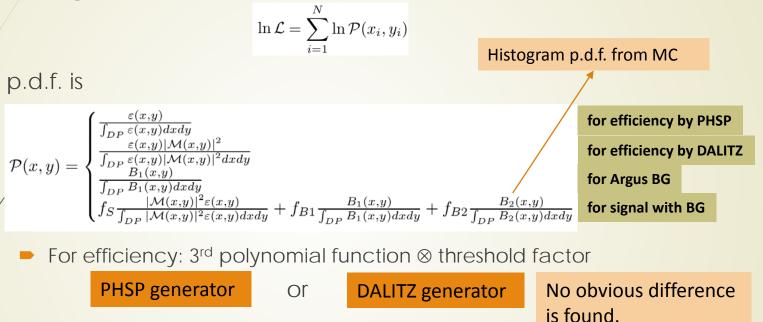
Signal and Sideband


4

~167k events are selected in signal region.

 Shape of Argus background on Dalitz plot is estimated by combination of two sidebands (left & right).

A peaking background is very small (~0.6% of signal) is estimated by MC shape:


• $\pi^+(Ks) \leftrightarrow \pi^+(D)$

Maximum Likelihood Fit

The log-likelihood function is defined as

5

- For Argus BG: resonances ρ^+ , K^{*0}, K^{*+}
- For signal with background, the efficiency and the backgrounds are fixed as parameterized shapes.

$$f_S + f_{B1} + f_{B2} \equiv 1$$

2013/11/4

Isobar Model and Fit Fraction

Decay matrix element

6

Angle distribution

$$\mathcal{M} = \sum_{L=0}^{L_{max}} Z_L F_D^L A_L$$

$$A_L = \sum_R \mathcal{W}_R^L = \sum_R c_R W_R^L F_R^L$$

Form factor

c_R is complex parameter to fit

W_R is dynamical function, generally, a Breit-Wigner function.

$$W_R(m_{ab}) = \frac{1}{m_R^2 - m_{ab}^2 - im_R \Gamma(m_{ab})}$$

For special resonance, such as $\kappa(800)$

$$W_R(m_{ab}) = \frac{1}{s_R - m_{ab}^2}$$

For any intermediate resonance, its fraction is calculated by $c_R Z_L F_D^L F_R^L W_R$

$$FF_i = \frac{\int |\mathcal{A}_i(x,y)|^2 dx dy}{\int |\mathcal{M}(x,y)|^2 dx dy}$$

For combined fraction,

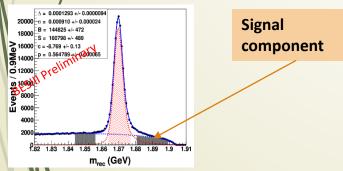
$$FF_C = \frac{\int |\sum_C \mathcal{A}_k(x, y)|^2 dx dy}{\int |\mathcal{M}(x, y)|^2 dx dy}$$

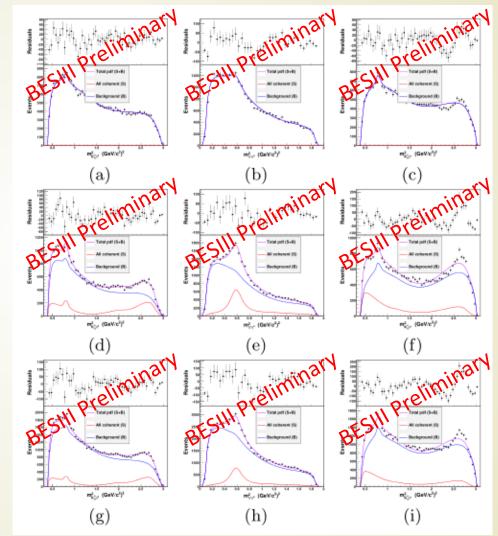
Kπ S wave is a sum of $\kappa(800)$, K*0bar(1430) and non-resonant.

SUN Shengsen, DPA of D->Kspipi0@Hadron2013

2013/11/4

Shape Approximation for Argus BG


- In order to approximate background shape, two sidebands are used to parameterize background
- In the right sideband, there are obvious signal components, because of ISR
 - Parameterized by background + signal
 - Signal/is initialized by left sideband
 - Iterate to approach the real amplitude of signal more and more


Left (a)(b)(c);

7

right: (d)(e)(f);

combined: (g)(h)(i)

Fit to Data using Isobar Model

 Model with K*bar and ρ cannot describe our data well, more intermediate resonances are considered.

8

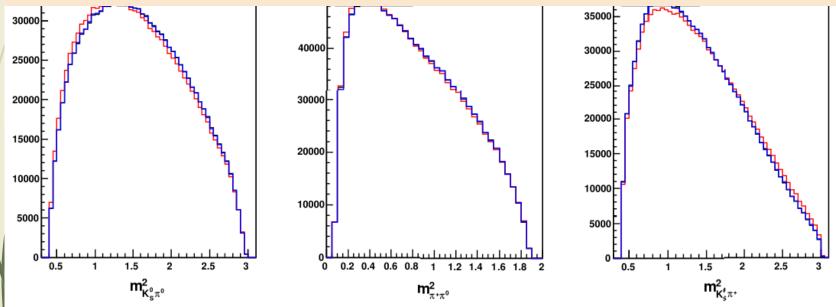
Float parameters of K*0bar(1430) and κ (800)

Cabbil	oo flavor	Doubly Cabbibo suppress		
$K_S^0 X^+$	$X^0\pi^+$	$X^+\pi^0$		
$K_{S}^{0}\rho(770)^{+}$	$\overline{K}^{*}(892)^{0}\pi^{+}$	$\overline{K}^{*}(892)^{+}\pi^{0}$		
$K_{S}^{0}\rho(1450)^{+}$	$\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$	$\overline{K}_{0}^{*}(1430)^{+}\pi^{0}$		
	$\overline{K}^{*}(1680)^{0}\pi^{+}$	$\overline{K}^{*}(1680)^{+}\pi^{0}$		
	$\overline{\kappa}(800)^0\pi^+$	$\overline{\kappa}(800)^+\pi^0$		
$K_{S}^{0}\rho(1700)^{+}$	$\overline{K}^{*}(1410)^{0}\pi^{+}$	$\overline{K}^{*}(1410)^{+}\pi^{0}$		
	$\overline{K}_{2}^{*}(1430)^{0}\pi^{+}$	$\overline{K}_{2}^{*}(1430)^{+}\pi^{0}$		
	$\overline{K}_{3}^{*}(1780)^{0}\pi^{+}$	$\overline{K}_{3}^{*}(1780)^{+}\pi^{0}$		

No evidences for DCS channels

i	D M I								
	Decay Mode	Favor		NVD κ		w/o NR		Final Res.	
		FF(%)	Phase	FF(%)	Phase	FF(%)	Phase	FF(%)	Phase
ſ	Non-resonant	4.5 ± 0.7	269 ± 6	$18.3 {\pm} 0.6$	232.7 ± 1.3			6.1 ± 0.9	276 ± 6
	$K_{S}^{0}\rho(770)^{+}$	$84.6 {\pm} 1.8$	O(Fixed)	$82.0{\pm}1.3$	0(fixed)	86.7 ± 1.1	0(fixed)	82.2 ± 2.2	0(fixed)
	$K_{S}^{0}\rho(1450)^{+}$		1.98 ± 4		$167.1{\pm}2.1$	$0.63 {\pm} 0.12$	186 ± 8	$2.65{\pm}0.28$	$183.7{\pm}2.6$
	$\overline{K}^{*}(892)^{0}\pi^{+}$	3.22 ± 1.4	294.7 ± 1.3	$2.99{\pm}0.10$	$279.3{\pm}1.2$	$3.30{\pm}0.10$	$292.3{\pm}1.5$	$3.38{\pm}0.16$	$292.2{\pm}1.3$
1	$\overline{K}^{*}(1410)^{0}\pi^{+}$	$0.12{\pm}0.05$	228 ± 9	$0.18{\pm}0.05$	$301{\pm}10$	$0.12{\pm}0.05$	243 ± 12		
	$\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$	$4.5 {\pm} 0.6$	319 ± 5	10.5 ± 1.3	$306.2{\pm}2.0$	$3.6 {\pm} 0.5$	317 ± 4	$3.7{\pm}0.6$	339 ± 5
l	$\overline{K}_{2}^{*}(14.0)^{0}\lambda^{+}$	$0.118 {\pm} 0.018$	273 ± 7	$0.086 {\pm} 0.014$	265 ± 9	$0.111 {\pm} 0.015$	267 ± 7		
	$\overline{K}^{*}(1680)^{o}\pi^{+}$	$0.21{\pm}0.06$	243 ± 6	$0.58{\pm}0.08$	284 ± 4	$0.43{\pm}0.10$	234 ± 5	$1.05{\pm}0.09$	$255.3{\pm}2.0$
	$\overline{K}_{3}^{*}(1780)^{0}\pi^{+}$	$0.034{\pm}0.008$	$130{\pm}12$	$0.055 {\pm} 0.008$	113 ± 9	$0.037 {\pm} 0.008$	131 ± 11		
l	$\kappa^0 \pi^+$	$6.8 {\pm} 0.7$	92 ± 6			$18.8 {\pm} 0.5$	$11.6{\pm}1.9$	$6.4{\pm}1.0$	92 ± 7
	$K_S^0 \pi^0$ S wave	18.1 ± 1.4		$18.3 {\pm} 0.6$		$18.8 {\pm} 0.5$		19.2 ± 1.8	
	w/o $\overline{K}_{0}(1430)$								
ľ	$\Sigma FF(\%)$	106		121		114		105	
	χ^2/n	1672/1209		2497/1209		1777/1209		2068/1209	
l	\mathcal{L}	239415		240284		239521		239807	

Momentum-dependent Correction for Efficiency


- The differences of efficiency between MC and data are momentum dependent, for Ks/ π 0 reconstruction and π tracking/PID.
- At different position on Dalitz plot, the distributions of momentum are different.

These two cause that efficiency correcting factor should be different at different position (x,y). Therefore, a momentum-dependent correction is perform.

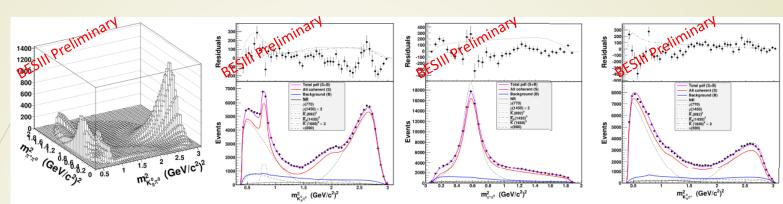
A MC study for efficiency correction:

9

black for real, red for uncorrected, blue (matched with black) for corrected.

Corrected Results and Errors

- Resolution and integration are estimated to be ignored.
- For modeling errors


10

- Shape: angle distribution, form factor and resonance shape
- Add: additional resonances

Parameters	Value	Stat	Experimental Errors			Modeling Errors		
			Bkg	Eff	Total	Shape	Add	Total
NR $FF(\%)$	4.63	0.67	3.45	0.96	3.59	+2.89 -1.50	$^{+2.65}_{-3.24}$	$+3.93 \\ -3.57$
NR Phase	278.62	5.36	4.32	14.27	14.91	+5.96 -24.40	+21.61 -11.54	$+22.42 \\ -26.99$
$\rho(770)^+ \text{ FF}(\%)$	83.41	2.19	2.66	0.62	2.74	+1.02 -1.87	$+6.33 \\ -1.05$	$+6.42 \\ -2.15$
$\rho(1450)^+$ FF(%)	2.13	0.22	0.87	0.82	1.20	+0.62	$+0.73 \\ -1.48$	$+0.96 \\ -1.48$
$\rho(1450)^+$ Phase	187.02	2.56	3.03	3.69	4.78	$^{+0.02}_{-14.53}$	+25.67 -4.63	+27.09 -15.25
$\frac{1}{K}^{*}(892)^{0}$ FF(%)	3.58	0.17	0.12	0.11	716	+0.31	+0.16	+0.35
$\overline{K}^*(892)^0$ Phase	293.22	1.25	0.73		1.63	$^{-0.18}_{+1.12}$	$^{-0.28}_{+5.67}$	$^{-0.34}_{+5.78}$
$\overline{K}_{0}^{*}(1430)^{0}$ FF(%)	3.66	0.57		1.45 0.42	0.71	$^{-6.52}_{+0.34}$	$^{-1.17}_{+0.66}$	$^{-6.63}_{+0.75}$
			0.57			$^{-0.29}_{+0.33}$	-0.74 + 2.04	$^{-0.80}_{+2.07}$
$\overline{K}_{0}^{*}(1430)^{0}$ Phase	334.36	4.73	7.38	3.63	8.23	-9.53	-27.43	-29.04
$\overline{K}^{*}(1680)^{0} \text{ FF}(\%)$	1.27	0.11	0.60	0.16	0.63	$^{+0.51}_{-0.07}$	$^{+0.01}_{-1.07}$	$^{+0.52}_{-1.08}$
$\overline{K}^{*}(1680)^{0}$ Phase	251.82	1.90	8.45	5.60	10.14	$^{+5.70}_{-1.21}$	$^{+6.92}_{-27.87}$	$+8.97 \\ -27.90$
κ^0 FF(%)	7.73	1.19	2.43	3.09	3.94	$^{+1.93}_{-2.64}$	$+4.70 \\ -0.10$	$+5.09 \\ -2.65$
κ^0 Phase	92.89	6.23	24.24	13.55	27.77	+13.17 -6.56	$^{+15.72}_{-21.52}$	+20.51 -22.50
$NR + \kappa^0 FF(\%)$	18.59	1.69	1.08	0.95	1.44	$^{+1.54}_{-3.70}$	+0.50 -2.21	$^{+1.62}_{-4.31}$
$K_S^0 \pi^0$ S wave	17.29	1.34	2.01	0.49	2.07	$+0.63 \\ -3.75$	$+2.58 \\ -0.59$	+2.66 -3.80

Final Results

The size of sample is close to CLEO-c's D⁺ \rightarrow K⁻ $\pi^+\pi^+$, and D⁺ \rightarrow Ks $\pi^+\pi^0$ is a complementary channel for some intermediate channels, such as K*bar(892) π , K*0bar(1430) π , etc.

$$r = \frac{Br(Ks\pi\pi0)}{Br(K\pi\pi)} \times 2 \times 2$$

PDG2012: 3.06±0.14

Statistical error only

Mode	BESIII	CLEO-c	r
K*bar(892)π+	3.58±0.17	11.2±0.2	3.13±0.16
K*0bar(1430)π+	3.7±0.6	10.4±0.6	2.8±0.5

The results are consistent with CLEO-c.

Resonance Parameter

ĺ	Resonance	Parameter		BES-III	E791	CLEO-c		
		(MeV)		inary	Model C	Model C	Model I2	
ſ	$\overline{K}_{0}^{*}(1430)$	BW Mass		$1464 \pm 0 \pm 9^{+9}_{-28}$	1459 ± 14	$1463.0 \pm 0.7 \pm 2.4$	$1466.6 \pm 0.7 \pm 3.4$	
		Width		$490 \pm 7 \pm 11^{+6}_{-26}$	175 ± 17	$163.8 \pm 2.7 \pm 3.1$	$174.2 \pm 1.9 \pm 3.2$	
	PDG	Flatt	Mass	1482 ± 10		1462.5 ± 3.9	1471.2 ± 0.8	
	1425 ± 50	$g_{K\pi}$		585 ± 14		532.9 ± 8.5	546.8 ± 4.2	
	270 ± 80	$g_{K\eta}$		0		0	0	
			$g_{K\eta\prime}$	452 ± 85		197 ± 106	230 ± 32	
ſ	κ	BW	Mass	860 ± 11	797 ± 47	809 ± 14	888 ± 2	
		Width		446 ± 23	410 ± 97	470 ± 18	550 ± 12	
		Pole Re		$752 \pm 15 \pm 69^{+55}_{-73}$		769.9 ± 6.3	$706.0 \pm 1.8 \pm 22.8$	
			Im	$-229 \pm 21 \pm 44^{+40}_{-55}$		-221.2 ± 8.4	$-319.4 \pm 2.2 \pm 20.2$	

PRL 89, 121801(2002)

PRD 78, 052001(2008)

The mass and width of K*0(1430) are consistent with E791 and CLEO-c from D⁺ \rightarrow K⁻ π ⁺ π ⁺.

Another fit to model without $\kappa(800)$ gives m(K*0(1430))=1444±4 MeV, $\Gamma(K*0(1430))=283\pm11$ MeV, consistent with the value of PDG2012.

The pole of $\kappa(800)$ is consistent with the model C of CLEO-c.

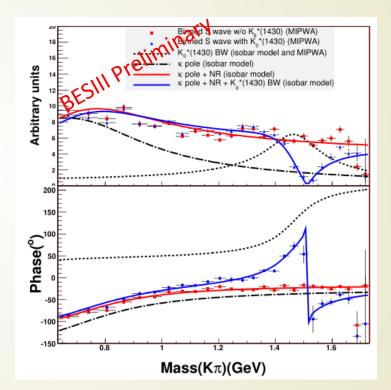
SUN Shengsen, DPA of D->Kspipi0@Hadron2013

12

13

Cross-check with Model-Independent PWA

 For some interested resonances, a binned amplitude is used. Other resonances are kept same as isobar model.


$$\mathcal{W}_{L,binned}(s) = a_L(s)e^{i\phi_L(s)}$$

First by E791

PRD 73,032004(2006)

The K*0bar(1430) is destructive interfered with $\kappa(800)$ and non-resonant, which can explain the fraction of K π S wave smaller than the combine of $\kappa(800)$ and nonresonant.

The phase shift can be described by $NR+\kappa(800)$ well.

Summary

14

- Based on Dalitz analysis technology at BESIII, a Dalitz analysis of the D⁺ \rightarrow K_S $\pi^{+}\pi^{0}$ decay is performed using ~167k events with a background of about 15% at BESIII. We fit distribution of data to a coherent sum of six intermediate resonances (including a low mass scalar resonance κ) plus a non-resonant component.
- The fit fractions multiplied by the world average $D^+ \rightarrow K_s \pi^+ \pi^0$ branching ratio of (6.99±0.27)%, yield the partial branching fractions, which is consistent with E791 and CLEO-c at the D⁺ $\rightarrow K_s \pi^+ \pi^0$ decay.

Mode	Partial Branching Fraction (%)	PDG 2012:
$B(D^+ \to K_S^0 \pi^+ \pi^0)$ Non Resonant	$0.32 \pm 0.05 \pm 0.25^{+0.21}_{-0.25}$	0.9 ±0.7
$B(D^+ \to \rho^+ K_S^0) \times B(\Lambda^+ \to \pi^+ \pi^0)$	$5.83 \pm 0.16 \pm 0.30 \substack{+0.08 \\ -0.15}$	4.7±1.0
$B(D^+ \to \rho(14500^+ M_S^0) \times B(\rho(1450)^+ \to \pi^+ \pi^0)$	$0.15 \pm 0.02 \pm 0.09 \substack{+0.05 \\ -0.11}$	
$B(D^+ \to \overline{K}^*(892)^0 \pi^+) \times B(\overline{K}^*(892)^0 \to K_S^0 \pi^0)$	$0.250 \pm 0.012 \pm 0.015^{+0.022}_{-0.024}$	1.3±0.6
$B(D^+ \to K_0^*(1430)^0 \pi^+) \times B(\overline{K}_0^*(1430)^0 \to K_S^0 \pi^0)$	$0.26 \pm 0.04 \pm 0.05 ^{+0.03}_{-0.06}$	
$B(D \longrightarrow \overline{K}^*(1680)^0 \pi^+) \times B(\overline{K}^*(1680)^0 \to K^0_S \pi^0)$	$0.09 \pm 0.01 \pm 0.05 \substack{+0.04 \\ -0.08}$	
$B(D^+ \to \overline{\kappa}{}^0 \pi^+) \times B(\overline{\kappa}{}^0 \to K^0_S \pi^0)$	$0.54 \pm 0.09 \pm 0.28 \substack{+0.14 \\ -0.19}$	
$NR + \overline{\kappa}^0 \pi^+$	$1.30 \pm 0.12 \pm 0.12^{+0.11}_{-0.30}$	
$K_S^0 \pi^0$ S wave	$1.21 \pm 0.10 \pm 0.16 ^{+0.05}_{-0.27}$	

Thank you for your attention!

15

2013/11/4