Semi-leptonic D decays

Hailong Ma (IHEP)
(For BESIII Collaboration)

Flavor Physics and CP Violation conference (FPCP 2016), 6-9 June, Caltech in Pasadena, 2016 US

Contents

- BEPCII/BESIII
- Analyses of $D \rightarrow Pl^+v$
- Analyses of $D \rightarrow Vl^+v$
- Other associated topic
- Summary

BEPCII collider

BESIII detector

D⁰ and D⁺ samples used at BESIII

2.93 fb⁻¹ data were taken around 3.773 GeV

 $D^0\overline{D}^0$ and D^+D^- are produced in pair at $\psi(3770)$

Singly tagged \overline{D}^0 and D^- mesons are reconstructed by hadron decays with large branching fraction and less combinatorial backgrounds

At the recoil side of singly tagged \overline{D}^0 and D^- mesons, leptonic and semi-leptonic decays can be studied

$|^2$) and $|V_{cs(d)}|$ from $D^0 \rightarrow K(\pi)^- e^+ v$

D semileptonic decays provide bridge to extract the CKM matrix |V_{cs(d)}|, and measure the q² dependent form-factors $f^+_{K(\pi)}(q^2)$

$$\frac{\Delta\Gamma(D^0 \to K/\pi^- e^+ \upsilon_e)}{dq^2} = X \frac{G_F^2 \mid V_{cs(d)} \mid^2}{24\pi^3} p^3 \left| f_+^2 (q^2) \right|^2$$

- Single pole form

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - \frac{q^{2}}{M_{\text{pole}}^{2}}}$$

- ISGW2 model

$$f_{+}(q^2) = f_{+}(q^2_{ ext{max}}) \left(1 + rac{r^2_{ ext{ISGW2}}}{12} (q^2_{ ext{max}} - q^2)
ight)^{-1}$$

Modified pole model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - \frac{q^{2}}{M_{\text{pole}}^{2}})(1 - \alpha \frac{q^{2}}{M_{\text{pole}}^{2}})}$$

$$- \textbf{ISGW2 model} \\ f_{+}(q^2) = f_{+}(q_{\max}^2) \left(1 + \frac{r_{\text{ISGW2}}^2}{12}(q_{\max}^2 - q^2)\right)^{-2} \\ f_{+}(t) = \frac{1}{P(t)\Phi(t,t_0)} a_0(t_0) \left(1 + \sum_{k=1}^{\infty} r_k(t_0)[z(t,t_0)]^k\right)$$

Recently improved LQCD calculations on $f_{\perp}^{D\to K(\pi)}(0)$ [1.7(4.4)%] provide good chance to precisely measure the CKM matrix element |V_{cs(d)}|, which are important for the unitarity test of the CKM matrix and search for NP beyond the SM

Form factors from $D \rightarrow Ve^+v$

$$\bullet \ \cos(\theta_K) = \frac{\circ \cdot \mathbf{K}_{K^-}}{|\mathbf{K}_{K^-}|}$$

•
$$\cos(\chi) = \hat{\mathbf{c}} \cdot \hat{\mathbf{d}}$$

$$q^2 = (\rho_{e^+} + \rho_{\nu_e})^2$$

•
$$\cos(\theta_e) = -\frac{p \cdot \mathbf{K}_{e^+}}{|\mathbf{K}_{e^+}|}$$

•
$$\sin(\chi) = (\hat{\mathbf{c}} \times \hat{\boldsymbol{\nu}}) \cdot \hat{\mathbf{d}}$$

Decay rate depend on 5 variables and 3 form factors

$$d^{5}\Gamma = \frac{G_F^2|V_{cs}|^2}{(4\pi)^6 m_D^2} X\beta \mathcal{I}(m^2, q^2, \theta_K, \theta_e, \chi) dm^2 dq^2 d\cos(\theta_K) d\cos(\theta_e) d\chi$$

- $X = \rho_{K\pi} m_D$, $\rho_{K\pi}$ is the momentum of the $K\pi$ system in the D rest frame
- $\beta=2p^+/m$, p^+ is the breakup momentum of the $K\pi$ system in its rest frame
- ${\mathcal I}$ can be expressed in terms of helicity amplitudes $H_{0,\pm}$:

$$H_0(q^2) = \frac{1}{2m_q} \left[(m_D^2 - m^2 - q^2)(m_D + m)A_1(q^2) - 4 \frac{m_D^2 p_{K\pi}^2}{m_D + m} A_2(q^2) \right]$$

$$H_{\pm}(q^2) = (m_D + m)A_1(q^2) \mp \frac{2m_D p_{K\pi}}{m_D + m} V(q^2)$$

• Vector form factor:
$$V(q^2) = \frac{V(0)}{1-q^2/m_V^2}$$
;

or: FF ratio
$$r_V = V(0)/A_1(0)$$

• Axial-vector form factor:
$$A_1(q^2) = \frac{A_1(0)}{1-q^2/m_A^2}$$
, $A_2(q^2) = \frac{A_2(0)}{1-q^2/m_A^2}$; or: FF ratio $r_2 = A_2(0)/A_1(0)$

or: FF ratio
$$r_2 = A_2(0)/A_1(0)$$

Previous measurements of $f_{+}^{D \to K(\pi)}(0) |V_{cs(d)}|$

During the past 26 years, studies of D \rightarrow K(π)I+v are made by MARKIII, E691, CLEO, CLEOII, BESII, FOCUS, BELLE, Babar and CLEO-c

■ BELLE, 282 fb⁻¹ at 10.58 GeV

Before 2010, the LQCD calculated $f_{+}^{D\to K(\pi)}(0)$ precision is at 10% level, thus limiting $|V_{cs(d)}|$ measurement

Previous analyses of D-Vl+v

The most precise amplitude analyses of $D \rightarrow \overline{K}^{*0}I^{+v}$ and ρe^{+v} have been made by CLEOII, FOCUS, Babar and CLEO-c

■ D⁺ \rightarrow K⁻ π ⁺I⁺v, CLEO-c, 818 pb⁻¹ at ψ "

PRD81(2010)112001

■ D $\rightarrow \rho e^+ v$, CLEO-c, 818 pb⁻¹ at ψ "

■ D+→K⁻π⁺e+v, Babar, 347.5 fb⁻¹@Y(4S)

PRD83(2011)072001

Previously, no amplitude analysis was performed for $D^+ \rightarrow \omega e^+ v$ and the one for $D^0 \rightarrow K^*-e^+ v$ is still limited due to low statistics

Previous studies of $D_s^+ \rightarrow (P,V)l^+v$

Recent studies of $D_s^+\rightarrow (P,V)I^+v$ are made by Babar and CLEO-c

Compared to D⁰⁽⁺⁾ decays, D_s⁺ SL decay studies are limited

CLEO-c[1], 310 fb⁻¹ at 4.17 GeV

■ D+→K+K-e+v, Babar, 214 fb-1@Y(4S)

CLEO-c[2], 600 fb⁻¹ at 4.17 GeV

PRD91(2015)052022

Signal mode	BABAR (%)	CLEO-c[1] (%)	CLEO-c[2] (%)
$D_s o \phi e \nu$	$2.61 \pm 0.03 \pm 0.08 \pm 0.15$	$2.36 \pm 0.23 \pm 0.13$	$2.14 \pm 0.17 \pm 0.08$
$D_s o \eta e \nu$	• • •	$2.48 \pm 0.29 \pm 0.13$	$2.28 \pm 0.14 \pm 0.19$
$D_s o \eta' e \nu$	• • •	$0.91 \pm 0.33 \pm 0.05$	$0.68 \pm 0.15 \pm 0.06$
$D_s \to f_0 e \nu, f_0 \to \pi \pi$	Seen	$0.20 \pm 0.03 \pm 0.01$	$0.13 \pm 0.03 \pm 0.01$
$D_s o K_S e u$	• • •	$0.19 \pm 0.05 \pm 0.01$	$0.20 \pm 0.04 \pm 0.01$
$D_s \to K^* e \nu$	• • •	$0.18 \pm 0.07 \pm 0.01$	$0.18 \pm 0.04 \pm 0.01$

Absolute BFs of B[D $^0\rightarrow$ K(π) $^-e^+v$]

→Κ⁻e+ν1

Extracted Parameters of Form Factors

PRD92(2015)072012

		D ⁰ →K⁻e⁺v		D ⁰ →π ⁻ e+v
Simple Pole	f _K +(0) V _{cs}	0.7209±0.0022±0.0033	$f_{\pi^+}(0) V_{cd} $	0.1475±0.0014±0.0005
	M _{pole}	1.9207±0.0103±0.0069	M _{pole}	1.9114±0.0118±0.0038
Mod. Pole	f _K +(0) V _{cs}	0.7163±0.0024±0.0034	$f_{\pi}^+(0) V_{cd} $	0.1437±0.0017±0.0008
	α	0.3088±0.0195±0.0129	α	0.2794±0.0345±0.0113
Series.2.Par	f _K +(0) V _{cs}	0.7172±0.0025±0.0035	$f_{\pi}^+(0) V_{cd} $	0.1435±0.0018±0.0009
	r ₁	-2.2278±0.0864±0.0575	r ₁	-2.0365±0.0807±0.0260
Series.3.Par	f _K +(0) V _{cs}	0.7196±0.0035±0.0041	$f_{\pi^+}(0) V_{cd} $	0.1420±0.0024±0.0010
	r ₁	-2.3331±0.1587±0.0804	r ₁	-1.8434±0.2212±0.0690
	r ₂	3.4223±3.9090±2.4092	r ₂	-1.3871±1.4615±0.4677

Analysis of D⁺ $\rightarrow \bar{K}^0e^+v$ and π^0e^+v

Extracted Parameters of Form Factors

$Single \ pole \ model$				
Decay mode	$f_{+}(0) V_{cq} $	$m_{ m pole}~({ m GeV}/c^2)$		
$D^+ o ar K^0 e^+ u_e$	$0.7094 \pm 0.0035 \pm 0.0111$	$1.935 \pm 0.017 \pm 0.006$		
$D^+ o \pi^0 e^+ u_e$	$0.1429 \pm 0.0020 \pm 0.0009$	$1.898 \pm 0.020 \pm 0.003$		
Modified pole model				
Decay mode	$f_{+}(0) V_{cq} $	α		
$D^+ o ar K^0 e^+ u_e$	$0.7052 \pm 0.0038 \pm 0.0112$	$0.294 \pm 0.031 \pm 0.010$		
$D^+ o \pi^0 e^+ u_e$	$0.1400 \pm 0.0024 \pm 0.0010$	$0.285 \pm 0.057 \pm 0.010$		
$ISGW2\ model$				
Decay mode	$f_{+}(0) V_{cq} $	$r~({ m GeV^{-1}})$		
$D^+ o ar K^0 e^+ u_e$	$0.7039 \pm 0.0037 \pm 0.0111$	$1.587 \pm 0.023 \pm 0.007$		
$D^+ o \pi^0 e^+ u_e$	$0.1381 \pm 0.6023 \pm 0.0007$			
Two-parameter series expansion				
Decay mode	$f_{+}(0) V_{cq} $	r_1		
$D^+ o ar K^0 e^+ u_e$	$0.7053 \pm 0.0040 \pm 0.0112$	$-2.18 \pm 0.14 \pm 0.05$		
$D^+ o \pi^0 e^+ u_e$	$0.1400 \pm 0.0026 \pm 0.0007$	$-2.01 \pm 0.13 \pm 0.02$		
Three-parameter series expansion				
Decay mode	$f_{+}(0) V_{cq} $	r_1	r_2	
$D^+ o ar K^0 e^+ u_e$	$0.6983 \pm 0.0056 \pm 0.0112$	$-1.76 \pm 0.25 \pm 0.06$	$-13.4 \pm 6.3 \pm 1.4$	
$D^+ \to \pi^0 e^+ \nu_e$	$0.1413 \pm 0.0035 \pm 0.0012$	$-2.23 \pm 0.42 \pm 0.06$	$1.4\pm2.5\pm0.4$	

Comparisons of BFs and FFs

Analysis of $D^+ \rightarrow K^0_L e^+ v$

- \triangleright Regardless of long flight distance, K_L^0 interact with EMC and deposit part of energy, thus giving position information
- ➤ After reconstructing all other particles, K_L^0 can be inferred with position information and constrain $U_{miss} \rightarrow 0$

 $B(D^+ \rightarrow \overline{K}^0_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$

 $A_{CP}^{D+\rightarrow KLe+v} = (-0.59\pm0.60\pm1.50)\%$

Simultaneous fit to event density $I(q^2)$ with 2-par. series Form Factor

D+→K⁰_Le+v is measured for the first time

PRD92(2015)112008

Absolute BF for $D^+ \rightarrow \overline{K}^0 \mu^+ v$

Simultaneous fits

arxiV:1605.00068

Taking $B[D^0 \rightarrow K^-\mu^+ v]$ and $B[D^+ \rightarrow \overline{K}^0 e^+ v]$ from the PDG as input

$$\frac{\Gamma[D^0 \to K^- \mu^+ \nu]}{\overline{\Gamma}[D^+ \to \overline{K}^0 \mu^+ \nu]} = 0.963 \pm 0.044$$

$$\frac{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]}{\Gamma[D^+ \to \overline{K}^0 e^+ \nu]} = 0.988 \pm 0.033$$

Support isospin conservation in these two decays within errors

Consistent with theory prediction 0.97 within error ¹

Absolute BF for D⁺ $\rightarrow \bar{K}^0 e^+ v$ via $\bar{K}^0 \rightarrow \pi^0 \pi^0$

8.95 \pm 1.59 \pm 0.67 $\mathbb{R}^{0} \rightarrow \pi^{+}\pi^{-}$ BES [31 8.83 $\pm 0.10\pm 0.20$ $\mathbb{R}^0 \rightarrow \pi^+\pi^-$ CLEO [4] 8.83 ± 0.22 PDG[1] $8.96\pm0.05\pm0.21$ $\overline{K}^{\circ}\rightarrow K_{\star}^{\circ}$ BESIII[6] $8.59\pm0.14\pm0.21$ $\overline{\mathsf{K}}^{\scriptscriptstyle 0} \rightarrow \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0}$ This work 11 $B(D^{+} \rightarrow \overline{K}^{0} e^{+} V_{e})$ (%)

Taking \underline{t}_{D^+} , t_{D0} , $B[D^0 \rightarrow K^-e^+v]$ and $B[D^+ \rightarrow \overline{K}^0 e^+ v]$ from the PDG as input

Supporting isospin conservation in these two decays within 1.2σ

PWA analysis of D⁺ \rightarrow K⁻ π ⁺e⁺v

arxiV:1512.08627

■ Fractions with >5σ significance

$$f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$$

 $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

Properties of different Kπ (non-) resonant amplitudes

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$

 $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$
 $r_{BW} = (3.07 \pm 0.26 \pm 0.11) (\text{GeV}/c)^{-1}$

■ q² dependent form factors in D⁺→ K̄^{*0}(892)e⁺v

Model independent S-wave phase measurement

$$V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}, \quad A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1 - q^2/m_A^2}$$

$M_{V/A}$ is expected to $M_{D^*(1-/+)}$

$$m_V = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^2$$

 $m_A = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^2$
 $A_1 (0) = 0.573 \pm 0.011 \pm 0.020$
 $r_V = V(0)/A_1 (0) = 1.411 \pm 0.058 \pm 0.007$
 $r_2 = A_2(0)/A_1 (0) = 0.788 \pm 0.042 \pm 0.008$

Model independent form factors

Study of $D^+ \rightarrow \omega e^+ v$ and search for $D^+ \rightarrow \phi e^+ v$

PRD92(2015)071101R

 $B[D^+\rightarrow \omega e^+ v] = (1.63\pm0.11\pm0.08)\times10^{-3}$

 $B[D^+\to \phi e^+ v] < 1.3 \times 10^{-5} \text{ at } 90\% \text{ C.L.}$

Better precision or sensitivity

Amplitude analysis of D+→ωe+v is performed for the first time

cosθ₂

 $r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$

 $r_2=A_2(0)/A_1(0)=1.06\pm0.15\pm0.05$

Status of $D_{(s)}^+ \rightarrow l^+ v$ studies

$D_{(s)}^{+}$ leptonic decays open a window to access the CKM matrix $|V_{cs(d)}|$, and the $D_{(s)}^{+}$ decay constants

$$\Gamma(D_{(s)}^+ o \ell^+
u_\ell) = rac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} | extbf{V}_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - rac{m_\ell^2}{m_{D_{(s)}^+}^2}
ight)^2$$

	Experiments	Femilab Lattice+MILC (2014)		HPQCD (2012)	
	Averaged	Expected	Δ	Expected	Δ
f _{D+} (MeV)	203.9±4.7	212.6±0.4 ^{+1.0} _{-1.2}	1.8σ	208.3±3.4	0.8σ
f _{Ds+} (MeV)	256.9±4.4	249.0±0.3 ^{+1.1} _{-1.5}	1.7σ	246.0±3.6	1.4σ
f _{D+} :f _{Ds+}	1.260±0.036	1.1712±0.0010 ^{+0.0029} _{-0.0032}	2.5σ	1.187±0.013	1.9 σ

■ Precisions of the LQCD calculations of f_{D+} , f_{Ds+} , f_{D+} : f_{Ds} reach 0.5%, 0.5% and 0.3%, which are challenging the experiments

■ The experimentally measured and the theoretical expected f_{D+} , f_{Ds+} , f_{D+} : f_{Ds+} differ by about 2σ

$B[D^+\rightarrow \mu^+ v]$, f_{D^+} and $|V_{cd}|$ at 3.773 GeV

2.93 fb⁻¹ data

PRD89(2014)051104R

 $= (170.31 \pm 0.34) \times 10^4$

 $B[D^+\rightarrow \mu^+\nu]=(3.71\pm0.19\pm0.06)\times10^{-4}$

Input t_{D+} , m_{D+} , m_{u+} on PDG and |V_{cd}| of CKM-Fitter

Input t_{D+} , m_{D+} , m_{u+} on PDG and LQCD calculated f_{D+}=207±4 MeV[PRL100(2008)062002]

 $f_{D_{+}}=(203.2\pm5.3\pm1.8) \text{ MeV}$

10+0.0058±0.0047

$B[D_s^+ \rightarrow l^+ v]$ and f_{Ds+} at 4.009 GeV

482 pb⁻¹ data

$15127 \pm 312 D_s$ events in total

Mode	$N_{ m tag}$
(a) $\overline{K_S^0K^-}$	1065 ± 39
(b) $K^+K^-\pi^-$	5172 ± 114
(c) $K^+K^-\pi^-\pi^0$	1900 ± 140
(d) $K_S^0 K^+ \pi^- \pi^-$	576 ± 48
(e) $\pi^{+}\pi^{-}\pi^{-}$	1606 ± 139
(f) $\pi^-\eta$	814 ± 52
(g) $\pi^-\pi^0\eta$	2172 ± 150
(h) $\pi^- \eta' (\eta' \to \pi^+ \pi^- \eta)$	440 ± 39
$(i) \underline{\pi^- \eta' (\eta' \to \pi^+ \pi^- \gamma)}$	1383 ± 143

 M_{BC} signal: (1.962, 1.982) GeV M_{BC} sideband: (1.946, 1.956) and (1.986, 2.000) GeV

f_{Ds+} based on SM-constrained fits

$$R \equiv \frac{\Gamma(D_s^+ \to \tau^+ \nu_{\tau})}{\Gamma(D_s^+ \to \mu^+ \nu_{\mu})} = \frac{m_{\tau^+}^2 \left(1 - \frac{m_{\tau^+}^2}{m_{D_s^+}^2}\right)^2}{m_{\mu^+}^2 \left(1 - \frac{m_{\mu^+}^2}{m_{D_s^+}^2}\right)^2} = 9.76$$

Constrained fits give $69.3\pm9.3 D_s^+ \rightarrow \mu^+ v$ signals or $32.5\pm4.3 D_s^+ \rightarrow \tau^+ v$ signals

$$B[D_s^+ \rightarrow \mu^+ \nu] = (0.495 \pm 0.067 \pm 0.026)\%$$

after considering 1% γμ+ν final state

$$B[D_s^+ \rightarrow \tau^+ \nu] = (4.83 \pm 0.65 \pm 0.26)\%$$

These are consistent with results without SM-constrained fit

Taking G_F , m_{μ} , m_{Ds+} and $|V_{cs}| = |V_{ud}|$ and B as input, we determine decay constant

$$f_{Ds+}$$
=(241.0±16.3±6.6) MeV

Precise measurements of $|V_{cs}|$ and f_{Ds+} are hopefully to be done with 3 fb⁻¹ data at 4.18 GeV in the near future.

Comparisons of $|V_{cs(d)}|$

■ Method 1

 $B[D_{(s)}^{+} \rightarrow l^{+}\nu]$

Input t_{D+} , m_{D+} , $m_{\mu+}$ on PDG and LQCD calculated $f_{D(s)+}$

Method 2

 $f^{D\rightarrow K(\pi)}_{+}(0)|V_{cs(d)}|$

Input $f^{D\to K(\pi)}_{+}(0)$ of LQCD $V_{cs(d)}$

Method 2 suffers larger theoretical uncertainty in $f_{+}^{D\to K(\pi)}(0)$ [1.7(4.4)%]

Summary

- ► Precise measurements of D semi-leptonic decay branching fractions, form factors and $|V_{cs(d)}|$ have been extracted recently based on 2.93 fb⁻¹ data at $\psi(3770)$ by BESIII
- \gt 3 fb⁻¹ data at 4.18 GeV is almost in hand, more results on D_s^+ leptonic and semi-leptonic decays are expected in the near future
- > Further improved calculations on FFs of $D\rightarrow K(\pi)l^+v$ will helpful to improve $|V_{cs(d)}|$ measurements

Thank you!