Charmonia and exotics from BESIII CHARM 2015

Wayne State, University 18 – 22 May, 2015

Mihajlo Kornicer University of Hawaii On behalf of BESIII Collaboration

Outline

- Introduction:
 - expected and unexpected, charmonium-like states
- Exotics @ BESIII: X, Y, Z
 - emerging connections
- Conclusions & Outlook

and a strength of the strength

QCD bound states

Charmonium Laboratory

Potential models, and L-QCD, very successful in describing

Kornicer

XYZ: charmonium-like

- Most note-worthy: X(3872), $Y(4260) \& Z_c(3900) \dots$
- XYZ: not predicted by potential models
- XYZ: do not fit into qq
 q
 scheme
- Challenge for theory and experiment(s)
- > 20 new states, including $b\overline{b}$ sector!

QWG report, Bodwin et al, arXiv: 1307.7424

Experiments

What can BESIII do?

Kornicer

18 May 2015 :: CHARM 2015

- Over 50 institutions, ~400 members scattered in 11 countries
- τ charm physics with very rich program:
- **Charmonium** spectroscopy transitions and decays, dedicated to explore XYZ region (up to 4.6 GeV) ...
- Light hadron program: XY_sZ_s, exotic mesons ...
- Charm physics: precision phase ...
- τ physics: most precise τ-mass measurement
- ... and many more, several talks @ CHARM 2015!

Beijing Electron Positron Collider II

Kornicer

Energy range @ BEPCII

2~4.6 GeV

Kornicer

Data collected over time

Kornicer

Data for XYZ study (5/fb)

2015: running energy scan between 2 - 3 GeV

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Compare running at **Belle and BaBar,** with one month at **BESIII !**

BESIII: $\sigma^{B} = 62.9 \pm 1.9 \pm 3.7 \text{ pb}$

PRL 110, 252001 (2013)

★ Charged charmonium-like structure: $e^+e^- → \pi^+(\pi^\pm J/\psi)$ manifestly exotic:

The first Z_c confirmed

by data from three experiments!

	<i>m /</i> MeV	Γ / MeV	
BESIII Belle CLEOc	$\begin{array}{c} 3899.0 \pm 3.6 \pm 4.9 \\ 3894.5 \pm 6.6 \pm 4.5 \\ 3885 \pm 5 \pm 1 \end{array}$	$46 \pm 10 \pm 20$ $63 \pm 24 \pm 26$ $34 \pm 12 \pm 4$	

Belle: $e^+e^- \rightarrow \gamma_{ISR} J/\psi \pi^+\pi^-$, in Y(4260) region CLEOc data: $\sqrt{s} = 4.170 \,\text{GeV}$

Kornicer

Neutral partner!

Studying the $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ process at different \sqrt{s}

$\mathcal{L}_{c}(3900)$: close to D^{*}D threshold

$$\begin{array}{c} & \longrightarrow & K^{-}\pi^{+} \\ e^{+}e^{-} \rightarrow & \pi^{+}D^{0}D^{*-} + c.c. \\ e^{+}e^{-} \rightarrow & \pi^{+}D^{-}D^{*0} + c.c. \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

 $\sqrt{s} = 4.26 \ GeV$

Single D-tag: reconstruct π^+ and $D^0 \rightarrow K^-\pi^+$ and require that missing mass is consistent with D^* ; (do the same for $\pi^+D^-D^{*0}$)

Enhancement in both $D\overline{D^*}$ modes, labeled $Z_c(3883)$

PRL 112, 022001 (2014)

0⁻, π in P-wave: $dN/d \cos\theta_{\pi} \propto 1 - \cos^2\theta_{\pi}$ 1⁻, π in P-wave: $dN/d \cos\theta_{\pi} \propto 1 - \cos^2\theta_{\pi}$ 1⁺, π in S-wave : $dN/d \cos\theta_{\pi} \propto$ flat (assuming D-wave small near threshold) 0⁺: excluded by parity conservation

Data clearly favor $J^{PC} = 1^+$

If $Z_c(3900)$ and $Z_c(3883)$ are the same:

$$\frac{\mathcal{B}(Z_c \to D^* \bar{D})}{\mathcal{B}(Z_c \to J/\psi \pi)} = 6.2 \pm 1.1 \pm 2.7$$

Compare to:

$$\frac{\mathcal{B}(\psi(4040) \to D^{(*)}D^{(*)})}{\mathcal{B}(\psi(4040) \to J/\psi\,\eta)} = 192 \pm 27$$

Open charm decays clearly suppressed: different dynamics in Y(4260) – Z_c(3900) system!

\mathcal{L} $Z_c(3883)$: double tag D*D analysis

Reconstruct π^+ and D⁰, D⁻, in 4 or 6 decay modes, plus require π in missing D* mass:

Mass [MeV/c²]: 3884.3±1.2±1.5 Width [MeV]: 23.8±2.1±2.6

(new)

Compatible with single D-tag result, but much more precise!

Kornicer

18 May 2015 :: CHARM 2015

 $h_c \rightarrow \gamma \eta_c; \eta_c$ in 16 decay channels @ 13 different energies! **Cross section line shape consistent** with CLEO, but not trivial! $\pi^{\pm}h_{c}$ structure observed: $M = 4022.9 \pm 0.8 \pm 2.7 MeV/c^2$ $\Gamma = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$ Yet another charmonium-like state, charged: $Z_c(4020)$ Note: a weak evidence for $Z_c(3090) \rightarrow \pi^{\pm} h_c$

PRL 111, 242001 (2013)

Neutral partner !

 $e^-e^+ \rightarrow \pi^0 \pi^0 h_c(1P)$

$\pi^{0}h_{c}$ structure observed:

M = 4023.9 ± 2.2 ± 3.8 MeV/c²

 $\Gamma \$ - **fixed** to be the same as for its charged partner.

Another isospin triplet

established!

PRL 113, 212002 (2014)

Note: cross sections for $e^+e^- \rightarrow \pi^+\pi^- h_c$ and $e^+e^- \rightarrow \pi^0\pi^0 h_c$

consistent with isospin conservation!

Z_c(4020) close to D*D* threshold

$e^+e^- \rightarrow \pi^- (D^*\overline{D^*})^+ + c.c.$ at $\sqrt{s} = 4.26 \ GeV$

Tag a D* and `bachelor` π^- : look for recoil mass against $\pi^$ after reconstructing π^0 to suppress the background.

 $D^*\overline{D^*}$ structure observed Z_c(4025): M = 4026.3 ± 2.6 ± 3.7 MeV/c² Γ = 24.8 ± 5.6 ± 7.7 MeV

PRL 112, 132001 (2014)

If $Z_c(4020)$ and $Z_c(4025)$ are the same, coupling to $D^*\overline{D^*}$ much stronger compared to πh_c : $\sigma[e^+e^- \rightarrow (D^*\overline{D^*})^{\pm}\pi^{\mp}] = 137 \pm 9 \pm 15$ pb at 4.26 GeV

$$\frac{\sigma[e^+e^- \to \pi^\pm Z_c(4025)^\mp \to (D^*\bar{D^*})^\pm \pi^\mp]}{\sigma[e^+e^- \to (D^*\bar{D^*})^\pm \pi^\mp]} = 0.65 \pm 0.09 \pm 0.06$$

π^0 recoiling mass

Note: consistency between charged and neutral modes!

Kornicer

Comparison between $Z_c(4025)^0$ and $Z_c(4025)^+$

Kornicer

What do we know so far!

State	Mass(MeV)	Width(MeV)	Decay mode	Process
Z _c (3900)±	$3899.0 \pm 3.6 \pm 4.9$	$46 \pm 10 \pm 20$	$\pi^{\pm}J/\psi$	$e^+e^- \rightarrow \pi^+\pi^- J^{\prime}\psi$
$Z_{c}(3900)^{0}$	3894.8±2.3±2.7	$29.6 \pm 8.2 \pm 8.2$	$\pi^0 J/\psi$	$e^+e^- \rightarrow \pi^0 \pi^0 J' \psi$
Z _c (3885)±	3883.9±1.5±4.2 [single D tag] 3884.3±1.2±1.5 [double D tag]	24.8±3.3±11.0 [single D tag] 23.8±2.1±2.6 [double D tag]	D ⁰ D*- D-D* ⁰	$e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ $e^+e^- \rightarrow \pi^+ D^- D^{*0}$
$Z_{c}(4020)^{\pm}$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_{c}$	$e^+e^- \rightarrow \pi^+\pi^-h_c$
$Z_{c}(4020)^{0}$	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^0 h_c$	$e^+e^- \rightarrow \pi^0 \pi^0 h_c$
$Z_c(4025)^{\pm}$	4026.3±2.6±3.7	24.8±5.6±7.7	D * ⁰ D *-	$e^+e^- \rightarrow \pi^+ (D^* D^*)^-$
$Z_{c}(4025)^{0}$	4025. $5^{+2,0}_{-4.7}\pm3.1$	$23.0\pm6.0\pm1.0$	$(D*D*)^0$	$e^+e^- \rightarrow \pi^0 (D^*D^*)^0$

Kornicer

What do we know so far!

venbal0.005 GeNk

events / (25 MeV/c²) 8 & 8

4.230 GeV

BESIII preliminary

4.0

 $M(\pi^0 J/\psi)$ (GeV/c²)

Events / 0.01 Gel/10

Vents / 4 MeV

+100

3.8 3.9 4 M_{max}(π⁺J/ψ) (GeV/σ²)

B€SIII

soon ...

B€SⅢ

3.8

Events / (0.01

 $e^+e^- \rightarrow \pi^-\pi^+ J/\psi$ $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$

4,05

4,19

 $e^+e^- \rightarrow \pi^-\pi^+h_c$

comb. BKG

4.04 4.06 RM(π⁻) (GeV/c²)

4.15 4.20 4.2 M. (GeV/C²)

+ data

lolal fit

Z_(4025)

4.08

PHSP signal

Indicates that $C\overline{C}$ annihilation **is suppressed!**

No significant $\mathbf{Z}_{c}(3900) \rightarrow \pi \omega$ signal! $\Gamma(\mathbf{Z}_{c}(3900) \rightarrow \pi \omega) < 0.2 \% \Gamma_{tot}(\mathbf{Z}_{c}(3900))$

$\underbrace{\{S\}}_{\text{What is the nature of these } Z_c?$

- At least 4 quarks, not a conventional mesor
- Tetraquark state?-

Phys. Rev. D87,125018(2013); Phys. Rev. D88, 074506(2013); Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); etc

• D^(*) $\overline{D}^{(*)}$ molecule state?

Phys. Rev. Lett. 111, 132003 (2013); Phys. Rev. D 89, 094026 (2014) Phys. Rev. D 89, 074029 (2014); Phys. Rev. D 88, 074506 (2013); etc

• Threshold-effects?

Rescattering near threshold due to interactions between two outgoing mesons, both $Z_c(3900)$ & $Z_c(4020)$ suspiciously close to $D^{(*)}D^{(*)}$ thresholds!

X & Y @ BESIII

preliminary arXiv:1503.08203

X(3823) candidate consistent with $\psi(1^{3}D_{2}) \rightarrow \gamma \chi_{c}$

Reconstruct $\chi_c \rightarrow \gamma J/\psi \rightarrow \gamma I^+I^-$

 $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma\chi_c$

 $e^+e^-
ightarrow \gamma \pi^+\pi^- J/\psi$

Strong evidence for $X(3872) \rightarrow \pi\pi J/\psi$

 $M = 3871.9 \pm 0.7 \pm 0.2 MeV/c^2$

PRL 112, 092001 (2014) Suggestive of $Y(4260) \rightarrow \gamma X(3872)$

New mode of production of X(3872) and Y(4260) decay?

Emerging connections?

X(3872)

Kornicer

18 May 2015 :: CHARM 2015

- Structures from $\pi^+\pi^-h_c$ Phys. Rev. Lett. 111, 242001
- Cross sections of $e^+e^- \rightarrow \omega \chi_{c0}$ is measured. No signal of $\omega \chi_{c1}$ or $\omega \chi_{c2}$ found. Disfavor Y(4260) is a $\omega \chi_{c1}$ molecule.
- Cross section of $e^+e^- \rightarrow \eta J/\psi$ [preliminary]
- Cross section of $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$ [preliminary]
- Cross section of $e^+e^- \rightarrow J/\psi\eta\pi^0$, no observation, only upper limit report. [preliminary]
- Cross section of $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma\chi_{c1}$ [preliminary]
- Cross section of $e^+e^-
 ightarrow \eta' J/\psi$ [preliminary]
- $e^+e^- \rightarrow \gamma \phi J/\psi$, No significant Y(4140) signal. [preliminary]
- Cross section of $e^+e^- \rightarrow \gamma \chi_{cJ}$, no observation, only upper limit report. [preliminary]

XYZ @ BESIII summary

- Quark model works well for charmonium (*cc̄*) states below DD threshold
- Several Z_c structures appear unexpected, pointing to nonconventional (exotic) mesons
- A number of transitions between different exotic states observed, starting to make connections!
- A model that can explain all new features needed!
- Expect more data from BESIII and watch for more BESIII talks!

Kornicer

Thank you

18 May 2015 :: CHARM 2015

Cannul

Kornicer