BESI recent results on hadron states and spectroscopy

7th Workshop on Hadron Physics in China and Opportunities Worldwide Duke Kunshan University, Aug 4 2015

Dayong Wang

The Stage for a τ -c Factory

Rich of resonances, charmonia and charmed mesons.

- **D** Threshold characteristics (pairs of τ , D, D_s, charmed baryons...).
- **Transition** between perturbative and non-perturbative **QCD**.
- The new hadrons:glueballs, hybrids, multi-quark states

From BESII To BESIII

BES III @ BEPC II

	BESII	BESIII
MDC	$\sigma(p)/p = 1.78 \% \cdot \sqrt{1 + p^2}$	$\sigma(p_t)/p_t = 0.32 \% \cdot p_t$
	dE/dx _{reso} = <mark>8</mark> %	dE/dx _{reso} < <mark>6</mark> %
TOF	180 ps (for bhabha)	90 ps (for bhabha)
EMC	$\sigma(E)/E = 22\% \cdot \sqrt{E}$	$\sigma(E)/E = 2.3 \% \cdot \sqrt{E}$
MUC	3 layers for barrel	9 layers for barrel, 8 for endcap

BESIII data samples

~ 0.5 B	$\psi(3686)$ events	~ 24×CLEO-c
~ 1.3 B	J/ψ events	~ 21×BESII
~ 2.9/fb	$\psi(3770)$	~ 3.5×CLEO-c
$\sim 5/fb$	XYZ states above	4 GeV Unique

Hadron States

Dayong Wang

Hadrons:

- 2 quarks(meson) or 3 quarks(baryon)
- Described with quark model(QM) precision spectroscopy

QCD suggests:

- Molecule: bound state of two hadrons
- Multi-quark states:(qqqq, qqqqq, ...)
- Glueball:(gg, ggg, ...)
- Hybrid:(qqg, ...)

Spectroscopy and hadron physics: Highlighted topics from BESIII

- Light meson spectroscopy
- EM Dalitz Decay Studies
- New Physics searches

BESIII with 5x more data

2015/8/4

Understanding the enhancement

Plot from: Kang, Haidenbauer, Meißner, Phys. Rev. D 91, 074003 (2015)

X(1835) confirmed at BESIII

Observation of X(1870)

• A resonance with mass of 1.87 GeV and width of 57 MeV is observed.

•Simple fit shows:

- M = $1877.3 \pm 6.3^{+3.4}_{-7.4}$ MeV
- $\Gamma = 57 \pm 12^{+19}_{-4} \text{ MeV}^{'}$
- Significance: 7.2σ

- A structure is observed in 3(π + π) mass spectrum M=1842.2 \pm 4.2 ^{+7.1}_{-2.6} MeV/c ² Γ =83 \pm 14 \pm 11 MeV/c 2
- Mass is consistent with X(1835) from $J/\Psi \rightarrow \gamma \pi + \pi \eta'$ confirmed by BES-III and CLEO-c, but the width is much smaller
- A new decay mode of X(1835)?

$J/\psi \rightarrow \gamma K_s K_s \eta$:Mass spectra

Crucial to measure the J^{PC} of X(1835) and for new decay modes No background from J/ψ $\rightarrow K_S K_S \eta$ and $J/\psi \rightarrow K_S K_S$ $\eta\pi^0$, due to exchange symmetry and CP conservation The structure around 1.85 GeV/c² in the $K_s K_s \eta$ mass spectrum is strongly correlated with $f_0(980)$ □ To reduce complexities, we perform PWA by requiring $M(K_{\rm s}K_{\rm s}) < 1.1$ GeV/c²

MC Projections of Nominal PWA Fit

$J/\psi \rightarrow \gamma K_s K_s \eta$ Results

- □ The PWA fit requires a contribution from $X(1835) \rightarrow K_S K_S \eta$ with a statistical significance greater than 12.9 σ , where the $K_S K_S$ system is dominantly produced through the $f_0(980)$
- □ The spin-parity of the X(1835) is determined to be 0⁻⁺
- □ The measured mass and width of the X(1835) are consistent with values obtained from the decay $J/\psi \rightarrow \gamma \pi \pi \eta$ ' by BESIII
- □ These results are all first-time measurements and can provide important information to further understand the nature of the X(1835)

State	Jpc	Decay Mode	Mass (MeV/c ²)	Width (MeV)	Product Branching Ratio	Significance
X(1835)*	0-+	K _S K _S η	$1844 \pm 9^{+16}_{-25}$	$192^{+20}_{-17}{}^{+62}_{-43}$	$(3.31^{+0.33}_{-0.30} {}^{+1.96}_{-1.29})*10^{-5}$	> 12.9 <i>σ</i>
X(1835)**		<i>π</i> ⁺π־η′	$1836.5 \pm 3.0^{+5.6}_{-2.1}$	$190 \pm 9^{+38}_{-36}$	$(2.87 \pm 0.09 \substack{+0.49 \\ -0.52})*10^{-4}$	> 20 σ
X(pp)***	0-+	pp	$1832^{+19}_{-5}{}^{+18}_{-17}\pm19$	<76@90%C.L.	$(9.0^{+0.4}_{-1.1} {}^{+1.5}_{-5.0} {\pm} 2.3) {}^{*10^{-5}}$	> 30 σ

*This result ** PRL 106, 072002 (2011), the angular distribution consists with 0⁻⁺ hypothesis *** PRL 108, 112003 (2012)

 Another 0⁻⁺ state X(1560) is also observed with a statistical significance greater than 8.9σ and interfere with the X(1835). η(1405)/η(1475)?
 X(18XX): more to come, stay tuned! 2015/8/4 Dayong Wang

 $J/\psi \rightarrow \eta \phi \pi \pi$

- 1. Observation of the Y(2175) resonance (called also $\phi(2170)$)
 - s-quark counterpart of the Y(4260)?
 - ss-gluon hybrid? Or excited ϕ state? Tetraquark state? $\Lambda\bar{\Lambda}$ bound state? Ordinary $\phi f_0(980)$ resonance produced by interactions between the final state particles?
- 2. Investigate the properties of $f_1(1285)$, the $\eta(1295)$, and the $\eta(1405)/\eta(1475)$ resonances
- 3. Search for X(1835) and X(1870) states

 $M(\pi\pi)$ and M(KK) after event and track selection:

- Clear $f_0(980)$ signal
- Non-η bkg in the f₀(980) mass region is small and can be neglected
- non-f₀(980) and non-φ events used to estimate background contribution: 2D-sidebands

2015/8/4

$J/\psi \rightarrow \eta \phi \pi \pi$

Unbinned maximum likelihood fit is performed to the $\phi f_0(980)$ invariant mass distribution

- No interference between Y(2175) and direct three-body decay of $J/\psi \rightarrow \eta \phi f_0(980)$
- Y(2175) resonance observed with a significance greater than 10σ

 $M{=}2200 \pm 6 \pm 5 \ MeV/c^2 \ \ \Gamma{=}104 \pm 15 \pm 15 \ MeV$

 $\eta\pi\pi$ mass spectrum recoiling against the ϕ :

- Fit includes contributions from the $f_1(1285)$ and $\eta(1405)$ signals, the J/ $\psi \rightarrow \eta \phi \pi \pi$ decay, and backgrounds from non- η and non- ϕ processes
- No evidence of X(1835) and X(1870) states

 $B(J/\psi \rightarrow \phi f_1 \rightarrow \phi \eta \pi \pi) = (1.20 \pm 0.06 \pm 0.14) \times 10^{-4}$ B(J/\psi \rightarrow \phi \eta(1405) \rightarrow \phi \eta \pi \pi) = (2.01 \pm 0.58 \pm 0.82) \times 10^{-5}

PWA of J/\psi $\rightarrow\gamma\eta\eta$ and $\gamma\pi^0\pi^0$

- **Δ** J/ $\psi \rightarrow \gamma \eta \eta$ was only studied in 1982 by Crystal Ball with very low statistics.
- Study of J/ψ decays to P(η, π) could provide information in intermediate states, important for glueball hunting
- Neutral channels at BESIII has special advantage

PW	'A in J/ψ→γ	ηη	s. Rev. D. 87. 092009 (201)	3)
°5200 99150 0.005 0100 8	$\chi^2/N_{bin}=2.14$ 180 160 140 \$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ &$	 f₀(1710) and f₀(210 dominant scalars 	0) are
БО 0 1.5	2.0 2.5 3.0 -1.0	0 -0.5 0.0 0.5 1.0 (b) 2020	• f _o (1500) exists (8.20	כ)
900 800 700 600	$\chi^2/N_{bin}=0.69$		 f₂'(1525) is the don tensor 	ninant
300 200 100		$\chi^2/N_{bin}=0.68$	• f ₂ (1810) and f ₂ (234 (6.4 and 7.6 0)	0) exist
-1.0 -0.5 (c)	ບ.ບ ບ.ວ 1.ບ - ເວຣອ _ຖ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6σ
2015/8/4		Dayong Wang		19

MIPWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

$\eta' \rightarrow \gamma e^+ e^-$: Motivation

✓ Investigate the inner structure of the meson

 Transition form factor to better understand the anomalous muon magnetic moment

VMD multipole FF: $F(q^2) = N \sum_{V} \frac{g_{\eta'\gamma V}}{2g_{V\gamma}} \cdot \frac{m_V^2}{m_V^2 - q^2 - i\Gamma_V m_V}$

$$\begin{array}{c} \mathbf{P}^{\bullet} \\ \mathbf{P$$

First observation of $\eta' \rightarrow \gamma e^+ e^-$

Dayong Wang

$\eta' \rightarrow \gamma e^+ e^-$: Transition Form Factor $b = \frac{dF}{dq^2}\Big|_{q^2=0} = \Lambda^{-2}$ $|F(q^2)|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - q^2)^2 + \Lambda^2\gamma^2}$

• In agreement with the results of n' $\rightarrow \gamma \mu + \mu$ - from CELLO $b_{\eta'} = (1.7 \pm 0.4) \ {\rm GeV^{-2}}$

Theoretical predictions:

$$b_{\eta'} = 1.45 \text{ GeV}^{-2}$$
 VMD
 $b_{\eta'} = 1.60 \text{ GeV}^{-2}$ ChPT
 $b_{\eta'} = 1.53^{+0.15}_{-0.08} \text{ GeV}^{-2}$ Dispersion

2015/8/4

Dayong Wang

Observation of $\eta' \rightarrow \omega e^+ e^-$

New Physics Searches@BESIII

*Physics beyond the SM due to phenomena that cannot be explained within the SM framework:

- SM does not explain gravity

- SM does not supply any fundamental particles that are good dark matter candidates, nor be able to explain dark energy

- No mechanism in the SM sufficient to explain asymmetry of matter and anti-matter.

*No evidence of new physics been found at high energy frontier, it is important to search for new physics both directly and indirectly in the precision frontier.

Dark photon search with ISR

3.4

Di-muon resonance: Motivation

Coupling of fermions and the CP-odd Higgs A⁰

 $L_{\text{int}}^{f\bar{f}} = -\cos\theta_A \tan\beta \frac{m_f}{v} A^0 \overline{d}(i\gamma_5) d, \quad d = d, s, b, e, \mu, \tau$ $L_{\text{int}}^{f\bar{f}} = -\cos\theta_A \cot\beta \frac{m_f}{v} A^0 \overline{u}(i\gamma_5) u, \quad u = u, c, t, v_e, v_{\mu}, v_{\tau}$

 $\tan \beta = \frac{v_u}{v_d}$

E. Fullana et. al, Phys. Lett. B 653, 67 (2007)

J/ ψ → γ A 0 is possible in the range of 10⁻⁹ – 10⁻⁷. [PRD 76, 051105 (2007)]

♦ The CLEO [PRL101, 151802 (2008)], BaBar [PRL 103, 081803 (2009); PRD 87, 031102 (R) (2013)], BESIII [PRD 85, 092012 (2012)] and CMS [PRL 109, 121801 (2012)] experiments have reported negative results for the A⁰ decaying to muon pairs using various decay channels and in five different A⁰ mass ranges.

2015/8/4

Search with $\Psi' \rightarrow \pi \pi J/\psi$ data Coupling of <u>c-quark to the A⁰: Expected BF: 10⁻⁷ -10⁻⁹</u> [PRD 76, 051105 (2007)] EVENTS/5MeV/d 10² (a) 10 $\rightarrow \pi \pi J/\psi$, $J/\psi \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$ 10² here a hard a start when the part of the property (b) Nsig UL P Varia harry sport 10 BESIII [PRD 85, 092012 (2012)] North Marsh Marsh Marsh Marsh Marsh Marsh Marsh Marsh BF UL(10⁻⁶) 10 (C) arough the Manager All And 10-1 0.5 1.5 2.5 2 3 M(µ+µ) (GeV/c2) exclusion limit ranges: 4×10^{-7} - 2.1×10^{-5}

Dayong Wang

Probing NP with Charmonia and Charmed mesons Symmetry breaking, Invisible decays, FCNC ...

Rich and active hadron physics programs & opportunities at BESIII.

- Spectroscopy results provide insights into both normal and exotic hadron states
- Several Dalitz type decays are first observed, provide more info about meson structure
- With large statistics&high quality data, BESIII has good potential to do NP search.

Z_c(3900) Observed at BESIIII

 $Z_c(4025)^0$ in $e^+e^-
ightarrow (D^*\bar{D}^*)^0\pi^0$ The recoiling mass of π^0

Signal+PHSP+Backgrounds

PHSP+Backgrounds

Data sample	Mass(MeV/c ²)	Width(MeV/c ²)	$\sigma(e^+e^- ightarrow Z_c(4025)~^0\pi^0 ightarrow D^*\overline{D}^*\pi^0)$ (pb)
@4.23GeV	4025 5 ^{+2,0} +3 1	$23.0 \pm 6.0 \pm 1.0$	$61.6 \pm 8.2 \pm 9.0$
@4.26GeV	1020.0_4.7 - 0.1		$43.4 \pm 8.0 \pm 5.4$

Dayong Wang