Nucleon EM Form Factors in BESIII

Samer Ahmed ${ }^{1,2}$, Alaa Dbeyssi ${ }^{1}$, Paul Larin ${ }^{2}$, Dexu Lin ${ }^{1,2}$, Frank Maas ${ }^{1,2,3}$, Cristina Morales ${ }^{1}$, Christoph Rosner ${ }^{1,2}$, Yadi Wang ${ }^{1}$ and BESIII Collaboration
1.Helmholtz-Institut Mainz, 55128 Mainz, Germany 2.Institut für Kernphysik, JGU Mainz, 55099 Mainz, Germany 3.PRISMA Cluster of Excellence, JGU Mainz, 55099 Mainz, Germany

ECT* Workshop 'Probing transverse nucleon structure at high momentum transfer' 18th $\mathbf{- 2 2}{ }^{\text {nd }}$ April 2016, Trento (Italia)

Outline

- BESIII@BEPCII
- Motivation
- Proton TL EM form factors in BESIII
- Neutron TL EM form factors in BESIII
- Summary

BESIII@BEPCII

BEPCII Collider

Symmetric $\mathrm{e}^{+} \mathrm{e}^{-}$-collider (double rings)
Beam Energy: 1.0-2.3 GeV Crossing angle: 11 mrad Design Luminosity $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ Energy spread: 5.16-10-4

BESIII Detector

CsI(TI) EMC

Barrel: |cos $\Theta \mid<0.83$
Endcap: $0.85<|\cos \Theta|<0.93$

$$
\begin{aligned}
& \sigma(\mathrm{E}) / \mathrm{E}<2.5 \% \\
& \sigma_{\mathrm{Z.} \mathrm{\Phi}}(\mathrm{E})=0.5-0.7 \mathrm{~cm}
\end{aligned}
$$

BESIII Data Samples

BESIII Data Samples for Nucleon FFs

In 2015 world largest scan data sample between 2 and $3.08 \mathrm{GeV}!$!
World largest J/Psi, Psi(2S), Psi(3770, Y(4260)... produced directly in e+e-collisions

[Int. J. Mod. Phys. A, Vol. 24 (2009)]

Light hadron physics

- Meson and baryon spetroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- Two photon physics
- Form factors

QCD and τ

- Precision R measurement
- τ decays

Charmonium physics

- Precision spectroscopy
- Transitions and decays

Charm physics

- Semi-leptonic form factors
- Decay constants f_{D} and $f_{D s}$
- CKM matrix: |Vcd|, |Vcs|
- Glueballs and hybrids
- D0 - D0 mixing, CPV
- Strong phases

Precision mass measurements

- τ mass
- D, D* mass

XYZ meson physics

- $\mathrm{Y}(4260), \mathrm{Y}(4360)$ properties
- Zc(3900)+...

Light hadron physics

- Meson and baryon spetroscopy
- Mıiltinııark ctatec

Charm physics

- Semi-leptonic form factors
- Merav rnnctante f and f
- Rich in resonanes: charmonia and charmed mesons
- Threshold characteristics (pairs of $\tau, D, D_{s}, \wedge_{c} \ldots$)
- Transition region between continuum and resonances, perturbative and non-perturbative QCD
- Location of new hadrons: glueballs, hybrids, multi-quark states

Charmonium physics

- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- $Y(4260), Y(4360)$ properties
- Zc(3900)+...

Nucleon EM Form Factors

Electro-magnetic Form Factors (FFs)

- Spin $1 ⁄ 2$ Baryons: two EM FFs

Space-like region FFs real

$$
\begin{aligned}
& \Gamma^{\mu}\left(p_{1}, p_{2}\right)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu v} q_{v}}{2 M} F_{2}\left(q^{2}\right) \\
& F_{1}(0)=Q ; F_{2}(0)=K \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 M} F_{2}\left(q^{2}\right)
\end{aligned}
$$

Time-like region
FFs complex
$\operatorname{Re}\left(q^{2}\right)$

$$
G_{E, M}(+\infty)=G_{E, M}(-\infty)
$$

Crossing: total helicity

$$
\begin{aligned}
& 1 \Rightarrow G_{E} \\
& 0 \Rightarrow G_{M}
\end{aligned}
$$

Time-like EM Form Factors (FFs)

- Experimental access: angular distribution of Nucleon in $\mathrm{e}^{+} \mathrm{e}^{-}$-center-of-mass Direct annihilation (fixed $q^{2}, q^{2} \geq 0$):
[Nuovo Cim. 24 (1962) 170]

$$
\begin{aligned}
& \frac{\boldsymbol{d} \sigma^{\text {Born }, \mathbf{1} \gamma}}{\boldsymbol{d} \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}\right. \\
& \sigma^{\text {Born }}\left(q^{2}\right)=\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\left[\left|G_{M}\left(q^{2}\right)\right|^{2}+\left.\frac{2 M^{2}}{q^{2}} \sin ^{2} \theta G_{E}\left(q^{2}\right)\right|^{2}\right] \\
& \text { Effective FF: }|G|=\sqrt{\frac{\sigma^{B o r n}\left(q^{2}\right)}{\left(1+\frac{2 M^{2}}{q^{2}}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\right)}} \quad \text { C: Coulomb factor }
\end{aligned}
$$

[arXiv:1105.4975v2]
Initial State $\left(4 M^{2} \leq q^{2} \leq \mathrm{s}\right)$:
Radiation

$$
\frac{\boldsymbol{d}^{2} \boldsymbol{\sigma}^{I S R}}{d x d \theta_{\gamma}}=-W\left(s, x, \theta_{\gamma}\right) \sigma^{B o r n}\left(q^{2}\right)
$$

$$
W^{L O}\left(s, x, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right)
$$

$$
x=1-q^{2} / s=2 E_{\gamma} / \sqrt{s}
$$

Time-like EM Form Factors (FFs)

- Experimental access: angular distribution of Nucleon in $\mathrm{e}^{+} \mathrm{e}^{-}$-center-of-mass
$\underline{\gamma} \boldsymbol{\gamma}$ exchange

$\gamma \gamma$ exchange interfere with the Born term

Asymmetry in angular distributions [PLB659, 197]

$$
\begin{aligned}
& \frac{\boldsymbol{d} \boldsymbol{\sigma}^{\text {Born }, \mathbf{1} \boldsymbol{\gamma}}}{\boldsymbol{d} \boldsymbol{\Omega}}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|\boldsymbol{G}_{\boldsymbol{M}} \boldsymbol{|}^{\mathbf{2}}+\frac{4 M^{2}}{q^{2}} \sin ^{2} \theta\right| \boldsymbol{G}_{\boldsymbol{E}} \boldsymbol{|}^{\mathbf{2}}\right] \\
& \frac{\boldsymbol{d} \boldsymbol{\sigma}^{\mathbf{1} \gamma \otimes \mathbf{2 \gamma}}}{\boldsymbol{d} \boldsymbol{\Omega}}=\cos \theta\left[c_{0}\left(M_{p \bar{p}}^{2}\right)+c_{1}\left(M_{p \bar{p}}^{2}\right) \cos ^{2} \theta+c_{2}\left(M_{p \bar{p}}^{2}\right) \cos ^{4} \theta+\ldots\right] \\
& \mathcal{A}\left(\cos \theta, M_{p \bar{p}}\right)=\frac{\frac{d \sigma}{d \Omega}\left(\cos \theta, M_{p \bar{p}}\right)-\frac{d \sigma}{d \Omega}\left(-\cos \theta, M_{p \bar{p}}\right)}{\frac{d \sigma}{d \Omega}\left(\cos \theta, M_{p \bar{p}}\right)+\frac{d \sigma}{d \Omega}\left(-\cos \theta, M_{p \bar{p}}\right)}
\end{aligned}
$$

Also interference between ISR and FSR could cause an asymmetry!

Direct annihilation vs ISR

Total cross section

Direct annihilation vs Initial State Radiation

- High $\sigma \times$ low luminosity $=$ high statistics
- High q^{2} precision (ideal for $G_{E, M}$, thresholds, structure studies...)
- High geometrical acceptance of NN pair
- Low background
- Low $\sigma \times$ high luminosity $=$ high statistics
- Continuous q^{2}-range available: $\mathrm{m}_{\mathrm{th}}^{2}<\mathrm{q}^{2}<\mathrm{s}$ in one experiment
- Luminosity a bin width (low q^{2} precision)
- Luminosity at threshold and acceptance != 0

Experimental situation: proton FFs

- First direct measurements of $\sigma_{\text {Borm }}(e e-->p \bar{p})$ had poor statistics \rightarrow only extraction of effective form factor possible

$$
\left.|\mathrm{G}|=\sqrt{\frac{\sigma_{\text {Born }}}{\left(1+\frac{1}{2 \tau}\right)\left(\frac{4 \pi \alpha^{2} \beta}{3 E_{C M} \beta}\right)}} \quad \text { (Assumption: }|\mathrm{G}|=\left|\mathrm{G}_{\mathrm{E}}\right|=\left|\mathrm{G}_{M}\right|\right)
$$

New measurements by BaBar (ISR) and $\overline{\mathrm{p}}$-experiments:

- Steep rise at threshold
- Steps near 2.25 and 3.0 GeV
- Asymptotic behavior in SL and TL regions differ: $\left|G_{M}{ }^{T L}\left(10 \mathrm{GeV}^{2}\right)\right|>\left|G_{M}^{S L}\left(10 \mathrm{GeV}^{2}\right)\right|$

- Only BaBar and PS170 with statistics for angular analysis
\rightarrow extraction of $\mathbf{R}=\left|\mathbf{G}_{\mathrm{E}}\right| /\left|\mathbf{G}_{\mathrm{m}}\right|$ possible
- Precision between 11\% and 43\%
- Strong tension between Babar and PS170
- No individual determination of $\left|G_{E}\right|$ and $\left|G_{M}\right|$

Experimental situation: proton FFs

- Babar's statistics not enough to observe an asymmetry in the angular distribution

Being the integral asymmetry:

$$
\begin{aligned}
& A_{\cos \theta_{p}}=\frac{\sigma\left(\cos \theta_{p}>0\right)-\sigma\left(\cos \theta_{p}<0\right)}{\sigma\left(\cos \theta_{p}>0\right)+\sigma\left(\cos \theta_{p}<0\right)} \\
& =-0.025 \pm 0.014 \pm 003
\end{aligned}
$$

Experimental situation: neutron FFs

Only two direct measurements of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{n n}\right)$ and neutron effective FF

- At threshold cross section different from zero
- Close to threshold flat cross section and $\sigma(\overline{n n}) \approx \sigma(\bar{p})$
- $\left|G^{n}\right|$ seems to be larger than $\left|G^{p}\right|$ as q increases (pQCD: $\left|G^{p}\right|=2 \cdot\left|G^{n}\right|$)
- No measurement of $R=\left|G_{E} / G_{M}\right|$ or $\left|G_{E}\right|$ and $\left|G_{M}\right|$ without previous assumption possible so far

Proton FFs from direct annihilation (scan)

Energy scan data samples

BESIII 2015: world largest scan samples between 2.0 and 3.08 GeV

BESIII high luminosity scan 2015

$E_{\mathrm{cm}}(\mathrm{GeV})$	$L\left(\mathrm{pb}^{-1}\right)$	$E_{\mathrm{cm}}(\mathrm{GeV})$	$L\left(\mathrm{pb}^{-1}\right)$
2.0000	10.074	2.0500	3.343
2.1000	12.167	2.1250	108.49
2.1500	2.841	2.1750	10.625
2.2000	13.699	2.2324	11.856
2.3094	21.089	2.3864	22.549
2.3960	66.869	2.5000	1.098
2.6444	33.722	2.6464	34.003
2.7000	1.034	2.8000	1.008
2.9000	105.253	2.9500	15.942
2.9810	16.071	3.0000	15.881
3.0200	17.290	3.0800	126.185

- High accuracy in q^{2} (Ffs, thresholds, structure studies...)
- High geometrical acceptance (detector coverage 93\% of 4π)
- Low background contamination

Based on $157 \mathbf{~ p b}^{-1}$ collected in 12 scan points between 2.23 - $\mathbf{3 . 7 1} \mathbf{~ G e V}$ in 2011/2012

Event selection

- Good charged tracks:

$$
\begin{aligned}
& |R x y|<1 \mathrm{~cm},|\mathrm{Rz}|<10 \mathrm{~cm} \\
& |\cos |<0.93
\end{aligned}
$$

- Particle identification

$$
\mathrm{dE} / \mathrm{dx}+\mathrm{TOF}
$$

$$
\operatorname{prob}(\mathrm{p})>\operatorname{prob}(\mathrm{K},)
$$

For positive track: $\mathrm{E} / \mathrm{p}<0.5, \cos <0.8$

- Ntracks $=2 \& N p=N p=1$
- \mid tof $_{p}-$ tof $_{p} \mid<4 n s$
- Angle between tracks
- Momentum window for p and \bar{p}

Background analysis

- Beam background: separated beam samples -2-body or multi-body with p \bar{p} studied with MC Negligible or subtracted ($\sqrt{ } \mathrm{s}>3.0 \mathrm{GeV}$)

Extraction of $\sigma^{\text {Borm }}(e e \rightarrow p p)$ and $|\mathrm{G}|$ for each scan point:

$$
\sigma^{\text {Born }}(q)=\frac{N_{\mathrm{obs}(q)}-N_{\mathrm{bg}(q)}}{L \cdot \epsilon(q) R(q)} \longrightarrow\left|G\left(q^{2}\right)\right|=\sqrt{\frac{\sigma^{\text {Born }}\left(q^{2}\right)}{\left(1+\frac{2 M^{2}}{q^{2}}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\right)}}
$$

- Efficiencies between 60\% and 3\% (ConExc)
- Radiative corrections up to LO in ISR (ConExc)
- Normalization to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{YY}$ (Babayaga 3.5) [Phys.Lett.B520,16-24]

\rightarrow Overall uncertainty improved by 30\%

Extraction of $R_{\text {em }}=\left|G_{E} / G_{M}\right|$ and $\left|G_{M}\right|$

- From a 2-parameter fit to the proton angular distribution in center-of-mass:

$$
\begin{aligned}
\frac{d N}{\epsilon \cdot(1+\delta) \cdot d \cos \theta_{p}} & =N_{\text {norm }} \sqrt[\left|G_{M}\right|^{2}]{ } \times\left[\frac{q^{2}}{4 M_{p}^{2}} \cdot\left(1+\cos \theta_{p}^{2}\right)+\boxed{R^{2}} \sin \theta_{p}^{2}\right] \\
N_{\text {norm }} & =\frac{2 M_{p}^{2} \cdot L \cdot \hbar c \cdot \pi \alpha^{2} \cdot \beta C}{q^{4}}
\end{aligned}
$$

- From the measurement of the expectation value (method of moments):

$$
<\cos ^{2} \theta_{p}>=\frac{N_{n o r m} \cdot\left|G_{M}\right|^{2}}{N_{\text {tot }}} \int \epsilon \cdot(1+\delta) \cdot\left[\frac{q^{2}}{4 M_{p}^{2}}\left(1+\cos ^{2} \theta_{p}\right)+R_{e m}^{2} \sin ^{2} \theta_{p}\right] d \cos \theta_{p}
$$

For $\cos \theta_{p}$ within [-0.8,0.8]:

$$
\begin{aligned}
R & =\sqrt{\frac{s}{4 M_{p}^{2}} \frac{<\cos ^{2} \theta_{p}>-0.243}{0.108-0.648<\cos ^{2} \theta_{p}>}} \\
\sigma_{R} & =\frac{0.0741}{R\left(0.167-<\cos ^{2} \theta_{p}>\right)^{2}} \frac{s}{4 M_{p}^{2}} \sigma_{<\cos ^{2} \theta_{p}>}
\end{aligned}
$$

$\left|G_{M}\right|$ extracted from the integral of angular differential cross section and R

$a^{+} a^{-} \rightarrow \square \square$ Phys. Rev. D91, 112004 (2015)

$\sqrt{s}(\mathrm{MeV})$	$\left\|G_{E} / G_{M}\right\|$	$\left\|G_{M}\right\|\left(\times 10^{-2}\right)$	$\chi^{2} / n d f$	
	Fit on $\cos \theta_{p}$			
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	1.04	
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	0.74	
$(3050.0,3080.0)$	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	0.61	
method of moments				
2232.4	0.83 ± 0.24	18.60 ± 5.38	-	
2400.0	0.85 ± 0.37	11.52 ± 5.01	-	
$(3050.0,3080.0)$	0.88 ± 0.46	3.34 ± 1.72	-	

$\rightarrow R=\left|G_{E}\right| /\left|G_{M}\right|$ consistent with 1
$\rightarrow\left|\mathbf{G}_{\mathrm{m}}\right|$ (and $\left|\mathrm{G}_{\mathrm{E}}\right|$) extracted for first time

- Precision between 11% and 28%
- Strong tension between Babar and PS170

Prospects for $e^{+} e^{-} \rightarrow p \bar{p}$

About $\mathbf{6 5 0} \mathbf{~ p b}^{-1}$ collected in 22 scan points between 2.0 - $\mathbf{3 . 0 8} \mathbf{~ G e V}$ in 2015
Applying similar selection criteria as in previous analysis to MC samples of expected size, we expect:

${ }^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on BaBar's results.

Prospects for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}: \sigma(\mathrm{p} \overline{\mathrm{p}})$

\rightarrow Unprecedented accuracies above 2.0 GeV
Expected accuracies between $0.5 \%(2.125 \mathrm{GeV})$ and $26 \%(2.8 \mathrm{GeV})$ and improving all measurements so far
\rightarrow Also data samples collected around 'steps' observed by BaBar (2.2 and 3.0 GeV) to check this observation
${ }^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on BaBar's results.

Prospects for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}: \sigma(\mathrm{p} \overline{\mathrm{p}}),|\mathrm{G}|$

$$
\left|G\left(q^{2}\right)\right|=\sqrt{\frac{\sigma^{\text {Born }}\left(q^{2}\right)}{\left(1+\frac{2 M^{2}}{q^{2}}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\right)}}
$$

\rightarrow Expected accuracies between $\mathbf{0 . 3 \%}(2.125 \mathrm{GeV})$ and $\mathbf{1 3 \%}(2.8 \mathrm{GeV})$ and improving all measurements so far
${ }^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on BaBar's results.

Prospects for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}: \mathrm{R},\left|\mathrm{G}_{\mathrm{E}, \mathrm{M}}\right|$

16 scan points between 2.0 and 3.08 GeV with enough statistics for angular analysis:

\rightarrow Comparable accuracies in SL and TL regions for similar Q^{2} values

[^0]
Proton FFs from radiative return (ISR)

Data samples for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

BESIII: World largest Psi(3770), Psi(4040), Y(4260), $\mathrm{Y}(4360), \mathrm{Y}(4420), \mathrm{Y}(4600)$ produced directly in $\mathrm{e}+\mathrm{e}$ - collisions

ISR Luminosity ${ }^{\text {(") }}$

\rightarrow Similar statistics as BaBar with much smaller luminosity!!
\rightarrow Why so little luminosity at threshold?

Data samples for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

BESIII: World largest Psi(3770), Psi(4040), Y(4260),Y(4360), Y(4420), Y(4600) produced directly in $\mathrm{e}+\mathrm{e}$ - collisions

Properties of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

$\sqrt{s}(\mathrm{GeV})=4.230 \mathrm{GeV}$, Phokhara v9.1 simulation [arXiv:1407.7995v2]

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

Untagged $\gamma_{\text {ISR }}$ analysis

- only p \bar{p} reconstructed (41\% of all events)
- identification of γ_{ISR} based on missing 4-momentum

Tagged $\gamma_{\text {ISR }}$ analysis

- p, \bar{p} and γ_{ISR} reconstructed (12\% of all events)

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

Untagged $\gamma_{\text {ISR }}$ analysis:

- only $\mathrm{p} \overline{\mathrm{p}}$ reconstructed (41\% of all events)
- identification of γ_{ISR} based on missing 4-momentum

$$
\begin{aligned}
\vec{p}_{m i s s}= & \vec{p}_{p}+\vec{p}_{\bar{p}}-\vec{p}_{e^{+}}-\vec{p}_{e^{-}} \rightarrow \theta_{m i s s},\left|\vec{p}_{m i s s}\right|>0.2 \mathrm{GeV} / \mathrm{c} \\
& M_{m i s s}^{2}=\left(p_{p}+p_{\bar{p}}-p_{e^{+}}-p_{e^{-}}\right)^{2}
\end{aligned}
$$

\rightarrow Remaining ~2\% background from $e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}$ subtracted using sidebands
\rightarrow Signal efficiency increases with \mathbf{q} and decreases with \sqrt{s}
\rightarrow Region accessible: $2.0 \mathrm{GeV} \leq q \leq 3.8 \mathrm{GeV} / \mathrm{c}$
${ }^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]
(**) BesEvtGen [Chin.Phys. C32 (2008) 599
(***) Babayaga 3.5

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

Tagged $\gamma_{\text {ISR }}$ analysis

- $\mathbf{p}, \overline{\mathbf{p}}$ and $\gamma_{\text {ISR }}$ reconstructed (12% of all events)
- $\gamma_{\text {ISR }}$ is the highest energetic shower in EMC (> 0.4 GeV)
- 4-constraints kinematic fit to $e^{+} e^{-} \rightarrow p \bar{p} \gamma_{I S R}$
- $\boldsymbol{\pi}^{0}$-veto: find $\boldsymbol{\pi}^{0}$ and apply 5C kinematic fit to $e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}$

\rightarrow Remaining 20-60\% background from $e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}$ subtracted (MC weights)
\rightarrow Signal efficiency independent on \mathbf{q} and decreasing slightly with \sqrt{s}
\rightarrow Region accessible: $2 m_{p} \leq q \leq 3 \mathrm{GeV} / \mathrm{c}$
${ }_{\left({ }^{(*)}\right)}^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]
${ }^{(* *)}$ BesEvtGen [Chin.Phys. C32 (2008) 599]

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\mid S R}$

Data samples: $\psi ", \Psi(4040), Y(4230), Y(4260), Y(4360), Y(4420), Y(4600)$ Total: $7.1 \mathrm{fb}^{-1}$

Prospects for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}: \sigma(\mathrm{p} \overline{\mathrm{p}}),|\mathrm{G}|$

Untagged $\gamma_{\text {ISR }}$ analysis:

\rightarrow Final statistics competitive with BaBar
(1) PRD87,092005(2013)
(2) PRD88,072009(2013)

Tagged $\gamma_{\text {ISR }}$ analysis:

\rightarrow Cross section and effective form factor measured between threshold and 3.0 GeV in same q-bin sizes as untagged analysis
\rightarrow Expected about 3 times less statistics than for untagged case
${ }^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]

Neutron FFs from direct annihilation (scan)

Detection of Neutrons in BESIII

Beam line

EMCalorimeter
$\operatorname{CsI}(\mathrm{TI}): 15 \mathrm{X}_{0}$,
$\lambda_{1}=171.5 \mathrm{~g} / \mathrm{cm}^{2}, \rho=4.53 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{P}_{\mathrm{n}, \overline{\mathrm{n}}}=52 \%$

EMCalorimeter

CsI(TI): 15X ${ }_{0}$,
$\lambda_{\mathrm{l}}=171.5 \mathrm{~g} / \mathrm{cm}^{2}, \rho=4.53 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{P}_{\mathrm{n}, \overline{\mathrm{n}}}=52 \%$

MUC

Iron + resistive plates
$\lambda_{\mathrm{I}}=132.1 \mathrm{~g} / \mathrm{cm}^{2}, \rho=7.874 \mathrm{~g} / \mathrm{cm}^{3}$ 56 cm Fe thickness in barrel $P_{n, n}=\sim 96$ \%

TOF

2 Plastic scintillator layers BC408
Total width: 10 cm
Assuming $\mathrm{p}=0.6 \mathrm{GeV} / \mathrm{c}$
$\sigma(\mathrm{pn})=1.5 \cdot 10^{2} \mathrm{mb}$
$\sigma(\mathrm{pn})=0.4 \cdot 10^{2} \mathrm{mb}$
$N_{H}=5.23 \cdot 10^{22} / \mathrm{cm} 3$
$\mathrm{N}_{\mathrm{C}}=4.74 \cdot 10^{22} / \mathrm{cm} 3$
$P_{\bar{n}}=55 \%, P_{n}=13.5 \%$

Analysis of $e^{+} e^{-} \rightarrow n \bar{n}$

Current analysis based only on EMC information and final state kinematics
Challenges:

Particle identification

- Only ~50\% or n, \bar{n} interact with EMC
- Energies of n, \bar{n} not fully deposited in EMC
- Many secondary showers created \rightarrow shower reconstruction very difficult
- Annihilation star makes it difficult to reconstruct back to back signature

Background

- large neutral backgrounds with photons ($\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma\right) \gg \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{nn}\right)$), $\mathrm{K}_{\mathrm{L}}, \ldots$
- huge background from beam associated processes

Trigger

- lower trigger efficiencies for purely neutral channels

Analysis of $e^{+} e^{-} \rightarrow n \bar{n}$

Analysis strategy:

- more than 1 shower in EMC and no charged tracks in MDC
- first identify $\overline{\mathrm{n}}$:
highest energetic shower (0.5 GeV up to $\mathrm{E}_{\mathrm{CM}} / 2+\mathrm{m}_{\mathrm{n}}$)
energy deposited in 40° cone
number of hits in 40° cone
second moment of crystals in a shower
- then neutron identification:
shower energy (smaller than for \bar{n}) most back to back shower to \bar{n}
- cuts against background back to back signature between n and n no extra energy in EMC (not associated to n or \bar{n}) reject low and large polar angles of n and \bar{n}

Background status

- Physics background negligible
- Beam background: studied with separated beam samples

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \bar{n}$

Prospects for $e^{+} e^{-} \rightarrow n \bar{n}: \sigma(n \bar{n}),|G|, R \ldots$

$\sigma^{\text {Born }}(q)=\frac{N_{\mathrm{obs}(q)}-N_{\mathrm{bg}(q)}}{L \cdot \epsilon(q) R(q)}$

$$
\left|G\left(q^{2}\right)\right|=\sqrt{\frac{\sigma^{\text {Born }}\left(q^{2}\right)}{\left(1+\frac{2 M^{2}}{q^{2}}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\right)}}
$$

\rightarrow Unprecedented statistics above 2.0 GeV Expected $\sigma(\mathrm{nn})$ accuracies between 6% (at 2.396 GeV) and 13\% (at 3.0 GeV)
\rightarrow First measurement of R and $\left|G_{M}\right|$ (and $\left|G_{E}\right|$) will be probably be possible at 2.396 GeV
\rightarrow Current selection efficiencies (1% level) will be enhanced with the use of MUC and TOF detectors in the analysis
${ }^{(*)}$ Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on SL and TL region measurements on neutron Ffs and $\sigma(\mathrm{n} \bar{n})$

Summary

Summary \& Outlook

- BESIII excellent laboratory for Nucleon form factor measurements: energy scan + initial state radiation
- First results on Proton Form Factors used a fraction of available scan data
- High statistics energy scan between 2.0 and 3.08 GeV will significantly improve Nucleon's FFs measurements

$$
\begin{aligned}
& \text { Protons: } \delta \mathrm{\delta R} / \mathrm{R}=3-35 \%, \delta|\mathrm{Gm}| /|\mathrm{Gm}|=1-9 \% \\
& \quad \rightarrow \text { Perhaps sensitive to two-photon exchange? } \\
& \text { Neutrons: } \delta \sigma / \sigma=6-13 \%, \delta|G| /|G|=3-7 \% \text { or even better } \\
& \quad \rightarrow \text { First measurement of } R \text { in the time-like region }
\end{aligned}
$$

Data from 2011 and 2012 will also be added

- Very exciting results from ISR on proton FFs expected very soon. Statistics similar to BaBar with only $7.4 \mathrm{fb}^{-1}$!
BESIII will keep on collecting high statistics at the main resonances \rightarrow more statistics for ISR studies!

A new crystal zero degree detector will also enlarge ISR photon acceptance region

Backup

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \overline{\mathrm{n}} \gamma_{\mid S R}$

Same challenges as for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{nn}$ and more!

Detection of ISR photon needed for binning in $\mathbf{q}^{\mathbf{2}} \quad\left(q^{2}=M_{n \bar{n}}\right)$

Only tagged analysis in EMC possible (no identification through 4-momentum conservation)

Additional backgrounds:

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{nn} \pi^{0}(\eta), \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma(\gamma) \ldots
$$

```
V
```

Low efficiencies

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \overline{\mathrm{n}} \gamma$

Analysis strategy:

- Energy deposition in EMC:

EgammaISR has a sharp maximum
\bar{n} has large energy deposition
n has small energy deposition

- Shape of e.m. Showers in EMC:

Gamma ISR has narrow shower shape n and $\overline{\mathrm{n}}$ have wider shower shapes

- Event kinematics:
back to back signature between nn-system and $\gamma_{\text {ISR }}$ in $\mathrm{e}^{+} \mathrm{e}^{-}-\mathrm{CMS}$
n and $\overline{\mathrm{n}}$ back to back in $\mathrm{e}^{+} \mathrm{e}^{-} \gamma_{\text {ISR }}$-rest frame
Background status
Only $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \overline{\mathrm{n}} \mathrm{m}^{0}(\mathrm{n}), \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma(\gamma)$ still present \rightarrow Multi Variate Analysis with MC signal and bg validated with data

Analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \overline{\mathrm{n}} \gamma_{\text {ISR }}$

Analysis strategy:

- Energy deposition in EMC:

EgammaISR has a sharp maximum
\bar{n} has large energy deposition

Problem: selection efficiencies at the 1% level !!

\rightarrow The use of TOF and MUC detectors in the analysis will definitely help!!
n and $\overline{\mathrm{n}}$ back to back in $\mathrm{e}^{+} \mathrm{e}^{-} \gamma_{\text {ISR }}$-rest frame
Background status
Only $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \bar{n} \mathrm{~m}^{0}(\eta), \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma(\gamma)$ still present \rightarrow Multi Variate Analysis with MC signal and bg validated with data

BESIII data taking status \& plan (run ~8 years)

	Previous data	BESIII present \& future	Goal
J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
$\psi '$	CLEO: 28 M	0.5 B 20* CLEOC	3B
ψ "	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	$20 / \mathrm{fb}$
Above open charm threshold	CLEO: 0.6/fb @ $\psi(4160)$	$0.5 / \mathrm{fb}$ @ $\psi(4040)$ 2.3/fb@~4260, 0.5/fb@4360 0.5/fb@4600, 1/fb@4420	5-10 /fb
R scan \& Tau	BESII	$3.8-4.6 \mathrm{GeV}$ at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)		$100 \mathrm{pb}^{-1}$ (2015)	
$\psi(4170)$		$3 \mathrm{fb}^{-1}(2016$)	

Peak luminosity achieved $9.98 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

BESIII detector performance

Expt.	MDC Wire resolution	MDC $\mathrm{dE} / \mathrm{dx}$ resolution	EMC Energy resolution
CLEO	$110 \mu \mathrm{~m}$	5%	$2.2-2.4 \%$
BABAR	$125 \mu \mathrm{~m}$	7%	2.67%
Belle	$130 \mu \mathrm{~m}$	5.6%	2.2%
BESIII	$115 \mu \mathrm{~m}$	$<5 \%$	2.3%

- 2015: Installation of new ETOF modules (MRPC, $\sigma_{t} \sim 60 \mathrm{ps}$)
- Cylindrical GEM (CGEM) detector to replace inner part of MDC (Italy, IHEP, Germany, Sweden)
- Small-angle electron/photon tagger

	TOF Expt.
	time resolution
CDF	100 ps
Belle	90 ps
BESIII	68 ps (Barrel)
	100 ps (ETOF)

ISR vs scan data: luminosity

Data in TL region

Extraction of $\sigma^{\text {Born }}(\mathrm{ee} \rightarrow \mathrm{p} \overline{\mathrm{p}})$ for each scan point:

$$
\sigma^{\text {Born }}(q)=\frac{N_{\mathrm{obs}(q)}-N_{\mathrm{bg}(q)}}{L \cdot \epsilon(q) R(q)}
$$

- Efficiencies between 60\% and 3\% (ConExc)
- Radiative corrections up to LO in ISR (ConExc)
- Normalization to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{YY}$ (Babayaga 3.5)

$\sqrt{s}(\mathrm{MeV})$	$N_{\text {obs }}$	$N_{\text {bkg }} \varepsilon^{\prime}(\%)$	$L\left(\mathrm{pb}^{-1}\right)$	$\sigma_{\text {Born }}(\mathrm{pb})$	$\|G\|\left(\times 10^{-2}\right)$	
2232.4	614 ± 25	1	66.00	2.63	$353.0 \pm 14.3 \pm 15.5$	$16.10 \pm 0.32 \pm 0.35$
2400.0	297 ± 17	1	65.79	3.42	$132.7 \pm 7.7 \pm 8.1$	$10.07 \pm 0.29 \pm 0.31$
2800.0	53 ± 7	1	65.08	3.75	$21.3 \pm 3.0 \pm 2.8$	$4.45 \pm 0.31 \pm 0.29$
3050.0	91 ± 10	2	59.11	14.90	$10.1 \pm 1.1 \pm 0.6$	$3.29 \pm 0.17 \pm 0.09$
3060.0	78 ± 9	2	59.21	15.06	$8.5 \pm 1.0 \pm 0.6$	$3.03 \pm 0.17 \pm 0.10$
3080.0	162 ± 13	1	58.97	30.73	$8.9 \pm 0.7 \pm 0.5$	$3.11 \pm 0.12 \pm 0.08$
3400.0	2 ± 1	0	63.34	1.73	$1.8 \pm 1.3 \pm 0.4$	$1.54 \pm 0.55 \pm 0.18$
3500.0	5 ± 2	0	63.70	3.61	$2.2 \pm 1.0 \pm 0.6$	$1.73 \pm 0.39 \pm 0.22$
3550.7	24 ± 5	1	62.23	18.15	$2.0 \pm 0.4 \pm 0.6$	$1.67 \pm 0.17 \pm 0.23$
3600.2	14 ± 4	1	62.24	9.55	$2.2 \pm 0.6 \pm 0.9$	$1.78 \pm 0.25 \pm 0.35$
3650.0	36 ± 6	4	61.20	48.82	$1.1 \pm 0.2 \pm 0.1$	$1.26 \pm 0.11 \pm 0.07$
3671.0	6 ± 2	0	51.17	4.59	$2.2 \pm 0.9 \pm 0.8$	$1.84 \pm 0.37 \pm 0.33$

Gain From Raw Data Analysis

- From raw data: TOF and MUC information for neutrals
M. Ablikim et al. / Nuclear Instruments and Methods in Physics Research A 614 (2010) 345-399

(a) BESIII detector
- What do we hope to achieve with these two subdetectors?
\rightarrow More statistics: drop tagging the neutron, tag only \bar{n} (and $\gamma_{I S R}$)
\rightarrow Suppress bg: γ 's are faster than \bar{n} and don't reach MUC

Detect Cosmic Rays With MUC

Fig. 1. The illustration of one cosmic ray goes through the BESIII detecter.

One Method To Use MUC As \bar{n} Detector

- Not possible for hits in 2 even layers (only MuC Ф-position)
- For hits in 2 odd layers (only MuC z-position) we have at least the Φ-position of segment \rightarrow need to be studied!
- But if we detect MUC hits in odd and even layer:
\rightarrow Linear fit through MUC signal, EMC shower and Vertex
\rightarrow If no signal from n, this should be enough to select signal

Proposal: The Crystal Zero Degree Detector

 An Alternativecrystals
(option: PbWO_{4})
flash ADC
PbWO_{4}
density $8.28 \mathrm{~g} / \mathrm{cm}^{3}$
radiation length 0.89 cm
Moliere radius 2.00 cm
τ_{1} (fast component, 97%) 6.5 ns
τ_{2} (slow component, 3%) 30.4 ns
relative lightyield 0.6% at $20^{\circ} \mathrm{C}$
compared to $\mathrm{NaI} \quad 2.5 \%$ at $-25^{\circ} \mathrm{C}$

Spatial considerations

- ISR peaked at $\theta=0^{\circ}$ and $180^{\circ} \Rightarrow$ position of detector
- Limited space \Rightarrow compact design
- Bremsstrahlung even stronger peaked towards $\theta=0^{\circ}$ and $180^{\circ} \Rightarrow$ small gap

Geometry

- Similar layout as ZDD (2 blocks divided by a 1 cm gap)
- 3×4 crystals per block
- $1 \times 1 \times 14 \mathrm{~cm}^{3}$ crystals

- Maximum of ISR distribution out of acceptance
- Note: log-scale!
- But: reduction of bremsstrahlung

Pion FF in BESIII

- Goal: hadronic vacuum polarization contribution to $a_{\mu}=\frac{\left(g_{\mu}-2\right)}{2}$

$$
a_{\mu}^{\text {SM }}=a_{\mu}^{\text {QED }}+a_{\mu}^{\text {weak }}+a_{\mu}^{\text {hadr }}
$$

\rightarrow most relevant contribution to $\mathbf{a}_{\mu}^{\text {hadr }}$ below $1 \mathrm{GeV}: \boldsymbol{\sigma}\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)$

$$
\left|F_{\pi}\right|^{2}\left(q^{2}\right)=\frac{3 q^{2}}{\pi \alpha^{2} \beta^{3}} \sigma_{\pi^{+} \pi^{-}}^{\text {dressed }}\left(q^{2}\right)
$$

Disagreement between existing measurements limits knowledge of a_{μ}

- Features of BESIII analysis:
. $2.9 \mathrm{fb}-1$ from $\Psi(3770)$
studied range between $600-900 \mathrm{MeV}$
only tagged analysis possible below 1 GeV
main background from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-} \gamma_{\text {ISR }}$ prefectly understood ($<1 \%$)
luminosity from BhaBha events $\rightarrow 0.5 \%$ accuracy (Babayaga NLO)
FFF fit function: Gounaris-Sakurai parametrization
r radiative corrections from Phokhara v8.0

Syst. uncertainty in cross section 0.9\%
Compatible with prev. measurements (1 σ)
More than 3σ deviation wrt $\left(g_{\mu}-2\right)^{S M}$ prediction confirmed Data from untagged analysis and above $\Psi(3770)$ will be used Analysis will be extended below 600 MeV and above 900 MeV

Hyperon EM FFs in BESIII

$\mathbf{e}^{+} \mathbf{e}^{-} \boldsymbol{\rightarrow} \boldsymbol{\Lambda}{ }_{\text {(BESIII Preliminary!!) }}$

Based on $40.5 \mathrm{pb}^{-1}$ collected in 4 scan points between $2.2324-3.08 \mathrm{GeV}$ in 2012

- at $\mathrm{E}_{\mathrm{CM}}=2.2324 \mathrm{GeV}$ (1 MeV from threshold!!)

$$
\mathrm{E}_{\mathrm{CM}}=2.2324 \mathrm{GeV}
$$ From $\Lambda \rightarrow p \pi^{-}$and $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}\left(B R_{p \pi}=64 \%\right)$

well defined $p_{\pi^{+}}$and $p_{\pi-}$ and possible \bar{p}-annihilation
From $\bar{\Lambda} \rightarrow \bar{n} \pi^{0}\left(B R_{n \pi 0}=36 \%\right)$
$\overline{\mathrm{n}}$-annihilation and well defined $\mathrm{p}_{\text {то }}$

- at $\mathrm{E}_{\mathrm{cm}} \geq 2.4 \mathrm{GeV}$, from $\Lambda \rightarrow \mathrm{p} \pi^{-}$and $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$
ep, \bar{p}, Π^{-}and π^{+}from interaction vertex, in time, $\Lambda \Lambda$ back to back, $E_{\Lambda, \bar{\Lambda}}=E_{C M} / 2 \ldots$

Results:

$\sqrt{s}(\mathrm{GeV})$	Channel	$\sigma^{\text {Born }}(\mathrm{pb})$	$\|G\|\left(\times 10^{-2}\right)$
2.2324	$\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	$325 \pm 53 \pm 46$	
	$\bar{\Lambda} \rightarrow \bar{n} \pi^{0}$	$300 \pm 100 \pm 40$	
	combined	$318 \pm 47 \pm 37$	$63.2 \pm 4.7 \pm 3.7$
2.4000	$\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	$133 \pm 20 \pm 19$	$12.9 \pm 1.0 \pm 0.9$
2.8000		$15.3 \pm 5.4 \pm 2.0$	$4.2 \pm 0.7 \pm 0.3$
3.0800		$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

No Coulomb term for neutral baryon pairs \rightarrow cross section should vanish at threshold

$$
\sigma^{B o r n}\left(q^{2}\right)=\frac{4 \pi \alpha^{2} \beta}{3 q^{2}}\left[\left|G_{M}\left(q^{2}\right)\right|^{2}+\frac{2 M^{2}}{q^{2}}\left|G_{E}\left(q^{2}\right)\right|^{2}\right]
$$

Precision increased by at least $\mathbf{1 0 \%}$ for low q^{2} and even more above 2.4 GeV
\rightarrow Origin of unexpected behavior? Coulomb interaction at quark level?(***)
\rightarrow Precison measurement forseen by BESIII with 2015 data
*** Eur. Phys. J. A39:315-321(2009)

Prospects for $e^{+} e^{-} \rightarrow$ Hyperons

From 2015 scan full determination of lambda- FFs possible:

- Imaginary part of FFs leads to polarization observables:

Parity violating decay: $\wedge \rightarrow \mathrm{p} \pi$

$$
\begin{array}{cc}
\frac{d N}{d \cos \theta_{p}} \propto 1+\alpha_{\Lambda} P_{n} \cos \theta_{p} \quad \text { and } \quad P_{n}=-\frac{\sin 2 \theta \sin \Delta \phi / \tau}{R \sin ^{2} \theta / \tau+\left(1+\cos ^{2} \theta\right) / R}=\frac{3}{\alpha_{\Lambda}}\left\langle\cos \theta_{p}\right\rangle \\
\Theta_{p}: \text { Angle between proton } & \Theta_{\Lambda}: \wedge \text { polar angle in CM } \\
\text { and polarization axis in } \Lambda-\mathrm{CM} & \Phi: \text { relative phase between } G_{\mathrm{E}} \text { and } \mathrm{G}_{\mathrm{M}}
\end{array}
$$

Expected statistical accuracies for P_{n} between 6 and 17%
Expected statistical accuracies for $R_{e m}=\left|G_{E}\right| /\left|G_{M}\right|=1$ between 14 and 29%

- Also available from threshold (2015, 2014, 2011 data):
ee $\rightarrow \overline{\Lambda \Sigma^{0}}, \overline{\Sigma^{0}} \Sigma^{0}, \overline{\Sigma^{-}} \Sigma^{+}, \overline{\Sigma^{+}} \Sigma^{-}, \bar{\Xi}^{0} \Xi^{0}, \bar{\Xi}^{+} \Xi^{-}, \overline{\Omega^{+}} \Omega^{-}, \overline{\Lambda_{c}^{-}} \Lambda^{+}{ }_{c}$
measurements of effective FF and $R_{e m}$ and P_{n} at single energy points possible
ee $\rightarrow \Lambda \Sigma^{0}, \Sigma^{0} \Sigma^{0}$ previously measured by BaBar, no $R_{\text {em }}$ extraction possible
measurements of effective FF $R_{\text {em }}$ and $\left|G_{M}\right|$ at threshold possible

[^0]: ${ }^{(*)}$ Babayaga phase: modified Babayaga v3.5 with ppbar differential cross section for the ppbar channel with $R=1$ and $\left|G_{m}\right|=22.5\left(1+q^{2} / 0.71\right)^{-2}\left(1+q^{2} / 3.6\right)^{-1}$ like in [Phys.Lett.B504,291]

