Hadron Form Factors in BESIII

Cristina Morales (Helmholtz-Institut Mainz) on behalf of BESIII-Collaboration
Outline:

- Experiment
- Motivation
- Nucleon Electromagnetic Form Factors
- Hyperon Electromagnetic Form Factors
- Pion Form Factor
- Summary

HADRON2015
September 13th - 18th, 2015, Newport News

BESIII@BEPCII

BESIII @ BEPCII

Double ring e+e-collider:

- Beam energy: $1.0-2.3 \mathrm{GeV}$
- Crossing angle: 22 mrad
- Design Luminosity at $\Psi(3770): 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$,85\% achieved
- Optimum energy: 1.89 GeV
- Energy spread: 5.16•10-4
- Number of bunches: 93
- Bunch length: 1.5 cm
- Total current: 0.91 A

BESIII Data Samples

Motivation

Hadron Form Factors

- All hadronic structure and strong interactions in form factors but subject to QED corrections Hadronic vector current: $(2 s+1)$ form factors. For baryons 2 electromagnetic FFs:

Vector current. Dirac and Pauli FFs:

$$
\Gamma^{\mu}=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{B}} F_{2}\left(q^{2}\right)
$$

Sachs parametrization:

$$
\begin{gathered}
G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 M_{B}} F_{2}\left(q^{2}\right) \\
G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{gathered}
$$

$$
\mathrm{B}=\mathrm{p}, \mathrm{n}, \Lambda, \Sigma \ldots
$$

Hadron Form Factors

- Fundamental properties of hadrons

Contain information on charge, magnetization distribution
Connected to distribution, dynamics of quarks
Crucial testing ground for models of hadron internal structure
Necessary input for experiments probing hadronic structure, or trying to understand modification of hadronic structure in hadronic medium

- Driving renewed activity on theory side:

Models trying to explain all four EM FFs of Nucleons
Trying to explain data at both low and high q^{2}
Progress on QCD based calculations

Baryon EM FFs in BESIII

- BESIII @ BEPCII: e+e- -annihilation: access to time-like form factors from

Coulomb correction factor:
$C=\frac{\pi \alpha}{\beta(1-\exp (\pi \alpha / \beta))} \quad$ (if $\left.\mathrm{q}_{\mathrm{B}} \neq 0\right), C=1$ (if $\mathrm{q}_{\mathrm{B}}=0$)

Initial State Radiation

$\mathrm{B}=\mathrm{p}, \mathrm{n}, \Lambda, \Sigma \ldots$
$\frac{d^{2} \sigma_{B \bar{B} \gamma}}{d x d \theta_{\gamma}}=W\left(s, x, \theta_{\gamma}\right) \sigma_{B \bar{B}}^{B o r n}\left(q^{2}\right)$
$W_{L O}\left(s, x, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right)$
$x=1-q^{2} / s=2 E_{\gamma} / \sqrt{s}$

Effective form factor (assume $\left|\mathbf{G}_{E}\right|=\left|\mathbf{G}_{\mathrm{M}}\right|$):

$$
\left|G\left(q^{2}\right)\right|=\sqrt{\frac{\sigma_{B \bar{B}}^{B o r n}\left(q^{2}\right)}{\left(1+\frac{1}{2 \tau}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\right)}}
$$

Separation of $\left|G_{E}\right|$ and $\left|G_{M}\right|$ through angular analysis:

$$
\begin{gathered}
\frac{d \sigma_{B \bar{B}}^{B o r n}}{d \Omega_{C M}}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta_{B}^{C M}\right)\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2} \sin ^{2} \theta_{B}^{C M}\right] \\
\text { with } \tau=\frac{q^{2}}{4 M_{B}^{2}}, \beta=\sqrt{1-1 / \tau}
\end{gathered}
$$

Data Samples for Hadron FFs

Data available for Hadron FFs measurements:

Direct annihilation

Complementary approaches:

- High accuracy in q^{2}
- High geometrical acceptance for hadron pair (93\%)
- Low background

Initial State Radiation

- Continuous q^{2}-range available: $\mathrm{m}_{\mathrm{th}}^{2}<\mathrm{q}^{2}<\mathrm{s}$
- Full angular distribution in hadronic center-of-mass
- Detection efficiency independent of q^{2} and hadronic angular distribution
- Acceptance at threshold $\neq 0$

Nucleon EM FFs in BESIII

$\mathbf{e}^{+} \mathbf{e}^{-} \boldsymbol{\rightarrow} \mathbf{p} \overline{\mathrm{p}}$

Analysis based on $157 \mathrm{pb}^{-1}$ collected in 12 scan points between $2.22-3.71 \mathrm{GeV}$ in 2011 and 2012

- Main features:
p and \bar{p} from vertex, in time, back to back, $E_{p, \bar{p}}=E_{C M} / 2$
Background negligible, $\sim 4 \mathrm{GeV}$ Bhabha subtracted
Efficiencies 60\% (2.23 GeV) ... 3\% ($\sim 4 \mathrm{GeV}$)
R Radiative corrections from ConExC (NLO in ISR)
Normalization to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y} Y$ (Babayaga 3.5)

Born cross section

$$
\sigma_{p \bar{p}}^{B o r n}=\frac{N_{p \bar{p}}-N_{b k g}}{L_{i n t} \cdot \epsilon_{\text {geom }} \cdot \epsilon_{\text {detect }} \cdot\left(1+\delta_{r a d}\right)}
$$

\rightarrow effective form factor

$$
\begin{aligned}
& \text { Angular analysis: } \\
& \text { Extraction of } R_{e m} \text { and } \mid G_{E, M} I \\
& \frac{d N}{\varepsilon d \operatorname{dos} \theta_{p}}=N_{\text {norm }}\left[\left(1+\cos ^{2} \theta_{p}\right)+R_{e m}^{2} \frac{1}{\tau} \sin ^{2} \theta_{p}\right]
\end{aligned}
$$

No steps observed in cross section. Overall uncertainty improvement by 30\% $R_{e m}=\left|G_{E}\right| /\left|G_{m}\right|$ and $\left|G_{M}\right|$ for three $E_{c m} . R_{\text {em }}$ consistent with BaBar and $R=1$. $\left|G_{m}\right|$ extracted for first time!

Prospects for $e^{+} e^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}, \mathrm{p} \overline{\mathrm{p}} \gamma_{\text {ISR }}$

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{p} \overline{\mathbf{p}}$
BESIII 2015: 21 scan points between 2.0 and $3.08 \mathrm{GeV}\left(552 \mathrm{pb}^{-1}\right)$

- Expected statistical accuracies or $R_{e m}=\left|G_{E}\right| /\left|G_{M}\right|=1$ between 9% and 35% (similar to space-like region for same q^{2}-region)
- Expected accuracies for $\left|G_{M}\right|$ between 3 to $9 \%, 9$ to 35% for $\left|G_{E}\right|$
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{p} \overline{\mathrm{p}} \mathbf{Y}_{\text {ISR }}$
Data samples (ECM): $\boldsymbol{\Psi}(3770), \Psi(4040), 4230,4260,4360,4420$,
 4600. Total: 7.4 fb-1
- Analysis for each E_{CM} and q, then combine statistics
- ISR kinematics: photon and $\overline{\mathrm{pp}}$-system with small opposite polar angles
- Efficiencies: ~20\% - γ-untagged, ~6\% γ-tagged analysis
- From 2.1 GeV up untagged-photon analysis possible
- Remaining $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \overline{\mathrm{pp}} \pi^{0}$ subtracted from data
- Final statistics competitive with BaBar

Prospects for $e^{+} e^{-} \rightarrow n \bar{n}, n \bar{n} \gamma_{\text {ISR }}$

Only two direct measurements of neutron effective FF

BESIII data cover wide range ($1.87-3.08 \mathrm{GeV}$) with unprecedented statistics
\rightarrow measurement of cross section and |G| in wide q^{2}-region
\rightarrow could provide the first measurement of $R_{e m}$

Strategy:

First identification of \bar{n} and $\gamma_{I S R}$:
EMC shower information

- neutron identification
event kinematics (geometry)

BESIII

EMC calorimeter CsI(TI): 15X ${ }_{0}$,
$\lambda_{1}=171.5 \mathrm{~g} / \mathrm{cm}^{2}, \rho=4.53 \mathrm{~g} / \mathrm{cm}^{3}$
$\rightarrow 52 \% \mathrm{n} / \mathrm{n}$ interact in EMC
MUC: Iron + resistive plates
$\lambda_{1}=132.1 \mathrm{~g} / \mathrm{cm}^{2}, \rho=7.874 \mathrm{~g} / \mathrm{cm}^{3}$
56 cm Fe thickness in barrel
$\rightarrow \sim 96 \% \mathrm{n} / \mathrm{n}$ interact in MUC

Hyperon EM FFs in BESIII

Analysis based on $40.5 \mathrm{pb}^{-1}$ collected in 4 scan points between $2.2324-3.08 \mathrm{GeV}$ in 2012 test run

- at $\mathrm{E}_{\text {CM }}=2.2324 \mathrm{GeV}\left(\mathrm{m}_{\bar{\Lambda}}^{\text {th }}=2.2317 \mathrm{GeV}\right)$

From $\Lambda \rightarrow p \pi^{-}$and $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}\left(B R_{\mathrm{p} \mathrm{\pi}}=64 \%\right)$
well defined p_{π}, possible $\overline{\mathrm{p}}$-annihilation
From $\bar{\Lambda} \rightarrow \bar{n} \pi^{0}\left(\mathrm{BR}_{\mathrm{n} \pi 0}=36 \%\right)$
\bar{n}-annihilation in EMC (Neural Network), well defined $p_{\text {то }}$

- at $\mathrm{E}_{\mathrm{CM}} \geq 2.4 \mathrm{GeV}$, from $\wedge \rightarrow \mathrm{p} \pi^{-}$and $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$
p, \bar{p}, π^{-}and π^{+}from interaction vertex, in time, $\bar{\Lambda} \Lambda$ back to back, $E_{\Lambda, \bar{\Lambda}}=E_{c M} / 2 \ldots$

Current results improve uncertainty by at least $\mathbf{1 0 \%}$ for low q^{2} and even more for $E_{c m}>\mathbf{2 . 4} \mathbf{G e V}$

Cross section does not vanish at threshold!!

Coulomb interaction at quark level?

Prospects for $e^{+} e^{-} \rightarrow$ Hyperons

From 2015 scan full determination of lambda- FFs possible:

- Imaginary part of FFs leads to polarization observables:

Parity violating decay: $\wedge \rightarrow \mathrm{p} \pi$

$$
\begin{array}{cc}
\frac{d N}{d \cos \theta_{p}} \propto 1+\alpha_{\Lambda} P_{n} \cos \theta_{p} & \text { and } \quad P_{n}=-\frac{\sin 2 \theta \sin \Delta \phi / \tau}{R \sin ^{2} \theta / \tau+\left(1+\cos ^{2} \theta\right) / R}=\frac{3}{\alpha_{\Lambda}}\left\langle\cos \theta_{p}\right\rangle \\
\Theta_{p}: \text { Angle between proton } & \Theta_{\Lambda}: \wedge \text { polar angle in CM } \\
\text { and polarization axis in } \Lambda-\mathrm{CM} & \Phi: \text { relative phase between } G_{\mathrm{E}} \text { and } \mathrm{G}_{\mathrm{M}}
\end{array}
$$

Expected statistical accuracies for P_{n} between 6 and 17%
Expected statistical accuracies for $R_{e m}=\left|G_{E}\right| /\left|G_{M}\right|=1$ between 14 and 29%

- Also available from threshold (2015, 2014, 2011 data):
ee $\rightarrow \overline{\Lambda \Sigma^{0}}, \bar{\Sigma}^{0} \Sigma^{0}, \overline{\Sigma^{-}} \Sigma^{+}, \overline{\Sigma^{+}} \Sigma^{-}, \bar{\Xi}^{0} \Xi^{0}, \bar{\Xi}^{+} \Xi^{-}, \overline{\Omega^{+}} \Omega^{-}, \overline{\Lambda_{c}^{-}} \Lambda^{+}{ }_{c}$
measurements of effective FF and $R_{e m}$ and P_{n} at single energy points possible
ee $\rightarrow \Lambda \Sigma^{0}, \Sigma^{0} \Sigma^{0}$ previously measured by BaBar, no $R_{\text {em }}$ extraction possible
measurements of effective FF $R_{\text {em }}$ and $\left|G_{m}\right|$ at threshold possible

Pion FF in BESIII

- Goal: hadronic vacuum polarization contribution to $a_{\mu}=\frac{\left(g_{\mu}-2\right)}{2}$

$$
a_{\mu}^{\text {SM }}=a_{\mu}^{\text {QED }}+a_{\mu}^{\text {weak }}+a_{\mu}^{\text {hadr }}
$$

\rightarrow most relevant contribution to $\mathbf{a}_{\mu}^{\text {hadr }}$ below $1 \mathrm{GeV}: \boldsymbol{\sigma}\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\right)$

$$
\left|F_{\pi}\right|^{2}\left(q^{2}\right)=\frac{3 q^{2}}{\pi \alpha^{2} \beta^{3}} \sigma_{\pi^{+} \pi^{-}}^{\text {dressed }}\left(q^{2}\right)
$$

Disagreement between existing measurements limits knowledge of a_{μ}

- Features of BESIII analysis:
2.9 fb-1 from $\Psi(3770)$
studied range between $600-900 \mathrm{MeV}$
only tagged analysis possible below 1 GeV
main background from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-} \gamma_{\text {ISR }}$ prefectly understood ($<1 \%$)
eluminosity from BhaBha events $\rightarrow 0.5 \%$ accuracy (Babayaga NLO)
FF fit function: Gounaris-Sakurai parametrization
r radiative corrections from Phokhara v8.0

Syst. uncertainty in cross section 0.9\%
Compatible with prev. measurements (1 σ)
More than 3σ deviation wrt $\left(g_{\mu}-2\right)^{S M}$ prediction confirmed Data from untagged analysis and above $\Psi(3770)$ will be used Analysis will be extended below 600 MeV and above 900 MeV

Summary

Summary \& Outlook

- BESIII excellent laboratory for hadron form factor measurements: scan data + ISR tecnique
- Proton Form Factors and their ratio have been measured using a small amount of data
- Preliminary results on \wedge just released
- New high statistics data between 2.0 and 3.1 GeV will significantly improve FFs measurements for protons, neutrons, lambdas and other hyperons.
Also from ISR measurements exciting results for nucleon FFs expected
- ISR technique allows access to energies below 2 GeV : the first result is the charged pion, more to come
- Other related topics being studied (not reviewed here):
- Baryon production threshold measurements
- Space-like transition FFs of mesons (light-by-light contributions to $\left(g_{\mu}-2\right)$)

Thank you!

Backup

BEPCII Collider

Symmetric e ${ }^{+}{ }^{-}$--collider

Beam Energy: 1.0-2.3 GeV
Design Luminosity $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Achieved Luminosity 70\%@ $\Psi(3770)$

BESIII Detector

R inner: 63 mm R outer: 810 mm Length: 2582 mm 43 Layers

$$
\begin{aligned}
& \sigma(p) / p=0.5 \% \\
& \sigma_{d E / d x}=6.0 \%
\end{aligned}
$$

CsI(TI) EMC

$6240 \mathrm{CsI}(\mathrm{TI})$ crystals: $28 \mathrm{~cm}\left(\mathbf{1 5 X}_{0}\right)$ Barrel: |cos $\Theta \mid<0.83$
Endcap: $0.85<|\cos \Theta|<0.93$

$$
\begin{aligned}
& \sigma(\mathrm{E}) / \mathrm{E}=2.5 \% \\
& \sigma_{\mathrm{z} . \mathrm{o}}(\mathrm{E})=0.5-0.7 \mathrm{~cm}
\end{aligned}
$$

TOF

BTOF: two layers;
ETOF: 48 crys. for each $\sigma(\mathrm{t})=80 \mathrm{ps} \quad$ (barrel)
$\sigma(\mathrm{t})=120 \mathrm{ps}$ (endcap)

Experimental Situation: proton FFs

- Initial direct measurements of $\sigma_{\text {Born }}\left(\right.$ ee--> pp) had very poor statistics ${ }_{\text {e }}^{\text {e }}$ \rightarrow only extraction of effective form factor, |G|, possible

$$
\left.|\mathrm{G}|=\sqrt{\frac{\sigma_{\text {Born }}}{\left(1+\frac{1}{2 \tau}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 E_{C M}^{2}}\right)}} \quad \text { (Assumption: }|\mathbf{G}|=\left|\mathbf{G}_{\mathrm{E}}\right|=\left|\mathbf{G}_{M}\right|\right)
$$

New measurements by BaBar (ISR) and pp-experiments:

- Steep rise at threshold

Steps near 2.25 and 3.0 GeV

- Asymptotic behavior in SL and TL regions differ:
$\left|\mathrm{G}_{\mathrm{M}}^{\mathrm{TL}}\left(10 \mathrm{GeV}^{2}\right)\right|=2\left|\mathrm{G}_{\mathrm{M}}^{\mathrm{SL}}\left(10 \mathrm{GeV}^{2}\right)\right|$

- Only BaBar and PS170 with statistics for angular analysis
\rightarrow extraction of $R=\left|G_{E}\right| /\left|G_{M}\right|$ possible
- Precision between 11% and 43%, ($<1 \%$ precision in $\left.\mathrm{SL}_{\Sigma}\right)_{\Sigma}$
- Strong tension between Babar and PS170

No individual determination of G_{E} and G_{M}

$\because \square \square$ (Phys. Rev. D91, 112004)

Analysis based on157 pb-1 collected in 12 scan points between 2.22 - 3-71 GeV in 2011 and 2012

- Selection:

Only 2 oppositely charged tracks in detector:
identified as p and $p: d E / d x+$ Tof $+E / p_{p}<0.5$
from interaction vertex: $\left|R_{x y}\right|<1 \mathrm{~cm},\left|R_{z}\right|<10 \mathrm{~cm}$
same time of flight window: |tofp - tofp|<4ns
o back to back signature
sharing E_{CM}
for $\mathrm{E}_{\mathrm{CM}}>2.4 \mathrm{GeV}$ low polar angles rejected (Bhabha)

- Background:

$$
\mathrm{E}_{\mathrm{CM}}=2.4 \mathrm{GeV} \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{pp} \mathrm{MC}
$$

Beam background, ee--> two-body and multi-body with p and $p \rightarrow$ negligible
Only remaining Bhabha at $\mathrm{E}_{\mathrm{CM}}>3.40 \mathrm{GeV}$ corrected for

$Q \rightarrow \square$ (Phys. Rev. D91, 112004)

- Results:
from $\sigma_{\text {Born }}($ ee--> pp) measurement, extraction of effective form factor, $|\mathrm{G}|$:
$\sigma_{\mathrm{Born}}=\frac{N_{\mathrm{obs}}-N_{\mathrm{bkg}}}{L \cdot \varepsilon \cdot(1+\delta)}$
$|G|=\left|G_{E}\right|=\left|G_{M}\right|$
$|\mathbf{G}|=\sqrt{\frac{\sigma_{\text {Born }}}{\left(1+\frac{1}{2 \tau}\right)\left(\frac{4 \pi \alpha^{2} \beta C}{3 E_{C M}^{2}}\right)}}$
$\mathrm{N}_{\text {obs }}$: observed signal events
L : integrated luminosity
$N_{\text {bkg }}$: estimated background (from MC)
$\varepsilon \quad$: detection efficiency (from MC)
$1+\delta$: radiative factor (from MC)
Agreement with previous measurements and overall uncertainty improved by 30\%

from proton angular distribution in CM: extraction of $R=\left|G_{E}\right| /\left|G_{M}\right|$ and $\left|G_{M}\right|$:
- fit differential cross section with:

$$
\begin{array}{r}
\frac{\mathrm{dN}}{\varepsilon \cdot \mathrm{~d} \cos \theta_{\mathrm{p}}}=\mathrm{N}_{\text {norm }}\left[\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\mathrm{R}^{2} \frac{1}{\tau} \sin ^{2} \theta_{\mathrm{p}}\right] \\
N_{\text {norm }}=\frac{2 \pi \alpha^{2} \beta L}{4 s}\left[1.94+5.04 \frac{m_{p}^{2}}{s} R^{2} \cdot\left|\mathrm{G}_{\mathrm{M}}\right|^{2}\right.
\end{array}
$$

- from second moment of $\cos \theta_{p}$:

$$
\mathrm{R}=\sqrt{\frac{\mathrm{s}}{4 \mathrm{~m}_{\mathrm{p}}^{2}} \frac{\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle-0.243}{0.108-0.648\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle}} ; \quad \sigma_{R}=\frac{0.0741}{R\left(0.167-\left\langle\cos ^{2} \theta\right\rangle\right)^{2}} \frac{s}{4 m_{p}^{2}} \sigma_{\left\langle\cos ^{2} \theta_{p}\right\rangle}
$$

Extraction of electromagnetic $\left|\mathbf{G}_{\mathbf{E}} / \mathbf{G}_{\mathbf{M}}\right|$ ratio

\square Angular analysis to extract the em FFs:

$$
\begin{aligned}
& >\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\left(\mathrm{q}^{2}\right)=\frac{\alpha^{2} \beta}{4 \mathrm{~s}}\left|\mathrm{G}_{\mathrm{M}}(\mathrm{~s})\right|^{2}\left[\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\mathrm{R}_{\mathrm{em}}^{2} \frac{1}{\tau} \sin ^{2} \theta_{\mathrm{p}}\right] \\
& >\mathrm{R}_{\mathrm{em}}=\mathrm{G}_{\mathrm{E}}\left(\mathrm{q}^{2}\right) / \mathrm{G}_{\mathrm{M}}\left(\mathrm{q}^{2}\right) \\
& >\theta: \text { polar angle of proton at the c.m.system }
\end{aligned}
$$

- Fit function:

$$
\begin{aligned}
& >\frac{\mathrm{dN}}{\mathrm{~d} \cos \theta_{\mathrm{p}}}=\mathrm{N}_{\text {norm }}\left[\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\mathrm{R}_{\mathrm{em}}^{2} \frac{1}{\tau} \sin ^{2} \theta_{\mathrm{p}}\right] \\
& >\mathrm{N}_{\text {norm }}=\frac{2 \pi \alpha^{2} \beta \mathrm{~L}}{4 \mathrm{~s}}\left[1.94+5.04 \frac{\mathrm{~m}_{\mathrm{p}}^{2}}{\mathrm{~s}} \mathrm{R}^{2}\right] \mathrm{G}_{\mathrm{M}}(\mathrm{~s})^{2} \text { is the overall normalization }
\end{aligned}
$$

Extraction of electromagnetic $\left|\mathbf{G}_{\mathbf{E}} / \mathbf{G}_{\mathbf{M}}\right|$ ratio

- Method of Moment
$>$ Second Moment of $\cos \theta_{p:}\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle=\frac{1}{\mathrm{~N}_{\text {norm }}} \int \cos ^{2} \theta_{\mathrm{p}} \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega} \mathrm{d} \cos \theta_{\mathrm{p}}$
$>$ The estimator of $\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle:\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle=\overline{\cos ^{2} \theta_{\mathrm{p}}}=\frac{1}{\mathrm{~N}} \sum_{i=1}^{N} \cos ^{2} \theta_{\mathrm{p}} / \varepsilon_{\mathrm{i}}$
$>$ Extract $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio: $\mathrm{R}=\sqrt{\frac{\mathrm{s}}{4 \mathrm{~m}_{\mathrm{p}}^{2}} \frac{\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle-0.243}{0.108-0.648\left(\cos ^{2} \theta_{\mathrm{p}}\right\rangle}}$
$>$ Uncertainty of $\left\langle\cos ^{2} \theta_{\mathrm{p}}\right\rangle: \sigma_{\left\langle\cos ^{2} \theta_{p}\right\rangle}=\sqrt{\frac{1}{N-1}\left[\left\langle\cos ^{4} \theta_{p}\right\rangle-\left\langle\cos ^{2} \theta_{p}\right\rangle\right]}$
■ Results on $\left|\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right|$ ratio:

$\sqrt{s}(\mathrm{MeV})$	$\left\|G_{E} / G_{M}\right\|$	$\left\|G_{M}\right\|\left(\times 10^{-2}\right)$				$\chi^{2} / n d f$
	Fit on $\cos \theta_{p}$					
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	1.04			
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	0.74			
$(3050.0,3080.0)$	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	0.61			
method of moment						
2232.4	0.83 ± 0.24	18.60 ± 5.38	-			
2400.0	0.85 ± 0.37	11.52 ± 5.01	-			
$(3050.0,3080.0)$	0.88 ± 0.46	3.34 ± 1.72	-			

Proton threshold

At $p \bar{p}$ threshold $\left(q^{2}=4 M_{p}^{2}\right)$

Phys. Rev. D 87, 092005 (2013)

S. Pacetti

With more L and smaller binning, the result changed somewhat.
Results from BESIII needed (from ISR process).

Prospects for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}} \gamma$
 ISR

Available data samples $\left(\mathrm{E}_{\mathrm{CM}}\right): \psi ", \psi(4040), \mathrm{Y}(4230), \mathrm{Y}(4260)$, $\mathrm{Y}(4360), \mathrm{Y}(4420), \mathrm{Y}(4600)$. Total: $7.4 \mathrm{fb}-1$

For q < 2.1 GeV: Only tagged measurement possible for $\mathrm{E}_{\mathrm{CM}} \geq 3.773 \mathrm{GeV}$.
Low efficiencies ($\sim 6 \%$), lower statistics than BaBar. Perhaps untagged analysis of J / Ψ and $\psi(3686)$ possible ?!

Analysis based on $40.5 \mathrm{pb}^{-1}$ collected in 4 scan points between $2.2324-3.08 \mathrm{GeV}$ in 2012

- Selection at $\mathrm{E}_{\mathrm{CM}}=2.2324 \mathrm{GeV}\left(\mathrm{m}_{M}=2.2317 \mathrm{GeV}\right)$

Reconstruction of ee--> $\bar{\Lambda}$ from $\Lambda-->p \pi^{-}$and $\bar{\Lambda}-->\bar{p} \pi^{+}(B R 64 \%)$
o only pi and pi in detector
pion-momentum well defined
Anti-proton annihilation--> secondary particles $\left|R_{r}\right| \sim 3 \mathrm{~cm}$
$\rightarrow 43 \pm 7$ events observed
Reconstruction of ee--> $\wedge \bar{\Lambda}$ from $\bar{\Lambda}-->\bar{n} \pi^{0}$:(BR 36\%)
Multivariate Analysis (boosted decision tree) to identify n
$p_{\pi 0}$ well defined
$\rightarrow 22 \pm 6$ events observed

- $A t E_{c m}=2.4,2.8$ and 3.08 GeV

Reconstruction of ee--> $\wedge \bar{\Lambda}$ from Λ-->pri and $\bar{\Lambda}-->\bar{p} \pi^{+}$

- Results:
from $\sigma_{\text {Born }}($ ee--> $\boldsymbol{\Lambda} \mathbf{\Lambda})$ measurement, extraction of effective form factor, $|G|:$

$$
\sigma_{\mathrm{Born}}=\frac{N_{\mathrm{obs}}-N_{\mathrm{bkg}}}{L \cdot \varepsilon \cdot(1+\delta)} \quad|\mathrm{G}|=\left|\mathrm{G}_{\mathrm{E}}\right|=\left|\mathrm{G}_{\mathrm{M}}\right| \quad|\mathrm{G}|=\sqrt{\frac{\sigma_{\text {Born }}}{\left(1+\frac{1}{2 \tau}\right)\left(\frac{4 \pi \alpha^{2} \beta}{3 E_{C M A}^{2}}\right)}}
$$

*PRD76,092006 (2007)
** Z Phys C48, 23(1990)

Cross section expected to vanish at threshold ($q=2 m_{\wedge}$):

$$
\underset{\text { Born }}{\sigma\left(q^{2}\right)}=\frac{4 \pi \alpha^{2} \beta}{3 q^{2}}\left[\left|G_{M}\left(q^{2}\right)\right|^{2}+\frac{1}{2 \tau}\left|G_{E}\left(q^{2}\right)\right|^{2}\right] \quad \text { with } \beta=\sqrt{1-4 m_{\Lambda}^{2} / q^{2}}
$$

$\sqrt{s} \mathrm{GeV}$	Reconstruction	$\sigma_{\text {Born }}(\mathrm{pb})$	$\|G\|\left(\times 10^{-2}\right)$
2.2324	$\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	$325 \pm 53 \pm 46$	
	$\bar{\Lambda} \rightarrow \bar{n} \pi^{0}$	$(3.0 \pm 1.0 \pm 0.4) \times 10^{2}$	
	combined	320 ± 58	63.4 ± 5.7
2.40		$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$
2.80		$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$
3.08		$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

Coulomb interaction at quark level?

Prospects fore ${ }^{+} \rightarrow \wedge \Lambda, \Sigma \Sigma, \equiv \equiv \ldots$

From BESIII 2015: 15 points above llbar threshold!
Parity violating decay: \wedge-->pт, emission of proton depends on \wedge polarisation

$$
\frac{d N}{d \cos \theta_{p}} \propto 1+\alpha_{\Lambda} P_{n} \cos \theta_{p}^{\left({ }^{*}\right)}
$$

(*) Angle between proton a polarization axis in mother' rest frame

- Imaginary part of FFs leads to polarization observables:

$$
P_{n}=-\frac{\sin 2 \theta \sin \Delta \phi / \tau}{R \sin ^{2} \theta_{\Lambda} / \tau+\left(1+\cos ^{2} \theta_{\lambda}\right) / R}=\frac{3}{\alpha_{\Lambda}}\left\langle\cos \theta_{p}\right\rangle
$$

Expected statistical accuracies for P_{n} between 6 and 17\%

- Expected statistical accuracies for $R=\left|G_{E}\right| /\left|G_{M}\right|=1$ between 14 and 29\%

Complete determination of TL Ffs possible!!

Also available from threshold:

$$
\begin{aligned}
& \text { ee } \rightarrow \Lambda \overline{\Sigma^{0}}, \overline{\Sigma^{-}} \Sigma^{+}, \overline{\Sigma^{0}} \Sigma^{0}, \overline{\Sigma^{-}} \Sigma^{+}, \overline{\Xi^{0}}{ }^{0}, \overline{\Xi^{+}}{ }^{-}, \overline{\Omega^{+}} \Omega^{-}, \overline{\Lambda_{c}^{-}} \Lambda^{+}{ }_{c} \\
& \mathrm{p} \pi, \mathrm{p} \pi^{0}, \gamma \wedge, \mathrm{n} \pi^{-}, \wedge \pi^{0}, \wedge \pi, \wedge K, \wedge \pi, \\
& 64 \%, 52 \%, 100 \%, 100 \%, 100 \%, 100 \%, \quad 68 \%, 1 \%
\end{aligned}
$$

Hyperon TL EM FF in BESIII

Prospects for BES III

Other hyperon channels: $\Lambda \overline{\boldsymbol{\Sigma}}^{0}, \boldsymbol{\Sigma}^{0} \overline{\boldsymbol{\Sigma}}^{0}$

$E_{e^{+}+e^{-}}(\mathrm{GeV})$	$L\left(p b^{-1}\right)$	$\epsilon_{\Lambda \overline{\Sigma^{0}}}(\%)$	$\sigma_{\Lambda \overline{\bar{\Sigma}^{0}}}(p b)$		$N_{\Lambda \overline{\Sigma^{0}}}$	$\overline{\epsilon_{\Sigma^{0} \overline{\Sigma^{0}}}(\%)}$	$\sigma_{\Sigma^{0} \overline{\bar{\Sigma}^{0}}}(\mathrm{pb})$		$N_{\Sigma \overline{\Sigma^{0}}}$

- Luminosities from this proposal
- Acceptances from $J / \psi \rightarrow Y \bar{Y}$
(PRD 86 032008)
- Cross sections from:
- BABAR (away from threshold)
- Rinaldo Baldini (at threshold)
=> More than 10-fold increase of statistics.

For $\boldsymbol{\Sigma}^{+} \bar{\Sigma}^{-}$:

- Cross section should be larger than for $\Sigma^{0} \bar{\Sigma}^{0}$
- Acceptance of the same order

e+e- \rightarrow Hyperons

[B. Aubert et al., Phys. Rev. D 76, 092006 (2007)]
About $350 \wedge \bar{\Lambda} \gamma_{\text {ISR }}$ events with $\Lambda \rightarrow \mathrm{p} \pi{ }^{-}$and $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$selected by BaBar

- Only one measurement before by DM2
- Cross section roughly flat at threshold and possibly not vanishing even thogh no Coulomb correction for neutral baryons production
- However, large error bars do not exclude $\sigma_{\text {trreshold }}=0$

- Rise of FFs close to threshold observed also in this case
- Fit with $\mathrm{f}=\mathrm{K} / \mathrm{q}^{\mathrm{n}}$ gives $\mathrm{n}=9.2 \pm 0.3$
- pQCD asymptotic prediction (q^{4}) reached at 3 GeV first
- F_{\wedge} in agreement with DM2 and with F_{n} by Fenice

e+e- \rightarrow Hyperons

[B. Aubert et al., Phys. Rev. D 76, 092006 (2007)]

- Ratio of form factors extracted from the analysis of the angular distribution of the lambda helicity angle

$$
\left|\mathrm{G}_{\mathbf{E}}^{\wedge} / \mathbf{G}_{\mathbf{M}}^{\wedge}\right|<1.73_{-0.57}^{+0.99}
$$

$\left|\mathrm{G}_{\mathbf{E}}^{\wedge} / \mathrm{G}_{\mathrm{M}}^{\wedge}\right|<0.71_{-0.71}^{+0.66}$

\rightarrow Compatible with $\left|G_{E}^{\wedge} / G_{M}^{\wedge}\right|=1$, but with large uncertainties

- Polarization tested by fitting slope of angle between lambda polarization axis and proton momentum in \wedge rest frame

$$
\begin{aligned}
& \frac{\mathrm{d} N}{\mathrm{~d} \cos \theta_{p \zeta}}=A\left(1+\alpha \sqrt{\zeta_{f}} \cos \theta_{p \zeta}\right) \\
\Rightarrow & \left.\mathbf{- 0 . 2 2}<\mathbf{5}_{\mathbf{f}}<\mathbf{0 . 2 8} \quad \mathbf{(9 0 \%} \mathbf{C L}\right)
\end{aligned}
$$

Under $\left|G_{E}^{\wedge}\right|=\left|G_{M}^{\wedge}\right|$ assumption, tests a non-zero relative phase between G_{E}^{\wedge} and G_{M}^{\wedge} : $-\mathbf{0 . 7 6}<\boldsymbol{\operatorname { s i n }} \phi<\mathbf{0 . 9 8}$

e+e- \rightarrow Hyperons

BaBar performed first measurement ever for these channels
Reconstruct Σ baryon in decay channels $\Sigma \rightarrow \Lambda \gamma$ and $\Lambda \rightarrow \mathrm{pm}:$ few tens of signal events

e $\sigma\left(e^{+} e^{-} \rightarrow \Sigma^{0} \overline{\Sigma^{0}}\right)$ is different from zero at threshold, being $0.030 \pm 0.013 \mathrm{nb}$
e $\sigma\left(e^{+} e^{-} \rightarrow \Lambda \overline{\Sigma^{0}}\right)$ is different from zero at threshold, being $0.047 \pm 0.022 \mathrm{nb}$
QCD predictions:

$$
\begin{array}{ll}
\mathrm{F}_{\Lambda} / \mathrm{F}_{\mathrm{p}}=0.24 & \rightarrow \text { Effective }|\mathrm{F}| \text { shows same rising behavior } \\
\mathrm{F}_{\Sigma} / \mathrm{F}_{\mathrm{A}}=-1.18 & \rightarrow \text { Data seem to agree with theory only for } \mathrm{F}_{\Sigma} / F_{\Lambda} \text { (by accident?) } \\
\mathrm{F}_{\Sigma \Lambda} / \mathrm{F}_{\mathrm{A}}=-2.34 & -\mathrm{F}_{\Lambda} / \mathrm{F}_{\mathrm{p}} \text { decrease with energy, similar to prediction close to } 3 \mathrm{GeV}
\end{array}
$$

New scan in $2-3.1 \mathrm{GeV}$

- 2014.12.30-2015.5.1;
- From high to low;
- Added 2.05 GeV ;
- 20 energy points, total online luminosity $525 \mathrm{pb}^{-1}$;
- Allows for form factor measurements, threshold studies, ...

6-month plan, finished in ~ 4 months.

