

D semi-leptonic and leptonic decays at **BESIII**

BESIII Collaboration

Speaker: H.L. Ma

XV International Conference on Hadron Spectroscopy

November 4th(Mon) - 8th(Fri), 2013 Nara Prefectural New Public Hall, Nara, Japan

Key words: BESIII/BEPCII, precision measurement, D meson purely and semi-leptonic decays, decay constant f_{D+} , form factors $f^+_{K/\pi}(q^2)$, CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$.

Data and D meson production

■ D⁺→ μ^+ v, f_{D+} and |V_{cd}| ■ D⁰→K/ π^- e⁺v, f⁺_{K/ π}(q²) and |V_{cs/d}| ■ Summary

2

Data and D meson production

e⁺e⁻ collision data taken at ~3.773 GeV

2010.1-2011.5

D meson production at 3.773 GeV

Purely-leptonic decay $D^+ \rightarrow \mu^+ v$, f_{D^+} and $|V_{cd}|$

$D^+ \rightarrow \mu^+ v$ and decay constant f_{D_+}

> All strong interaction effect between the two quarks within D^+ meson is simply factorized into the decay constant f_{D_+} .

> Improved f_{D+} can accurately test LQCD calculation of f_{D+} .

➢ In current LQCD calculations, the ratio f_{D+}:f_{Ds+}:f_{B+} has a significantly better precision than their individual values. Once the measured f_{D+} pass the test on LQCD, f_{B+} can be improved. As a result, |V_{td}| can also be improved in the of B⁰B⁰ mixing experiment.

Isospin symmetry expects $f_B = f_{B0} = f_{B+}$. The well $B^0 \overline{B}^0$ mixing parameter x_B relates to $|V_{td}|$ and f_B . The decay constant f_{B+} relates to $|V_{td}|$ via $B^+ \rightarrow l^+ v$.

$|V_{cd}|$ measured via $D^+ \rightarrow \mu^+ v$

 \succ In history, $|V_{cd}|$ was usually measured by

- **D** meson decay $D \rightarrow \pi e^+ v$, which suffers 11% uncertainty of theoretical calculation of form factor;
- neutrino and anti-neutrino interaction, which suffers 4.8% uncertainty.

> A recent un-quenched LQCD of f_{D+} reaches ~2% precision, thus provides an opportunity to accurately measure $|V_{cd}|$ by D⁺→ μ^+ v.

> More accurate measurements of $|V_{cd}|$ and $|V_{td}|$ will improve the stringency of unitarity constraints on CKM matrix and provide improved test on the Standard Model.

Single tag D⁻ mesons

Preliminary results

 $N_{D_{tag}} = (1.566 \pm 0.002) \times 10^{6}$

Preliminary results on f_{D+} and |V_{cd}|

In the recoil side, we select the purely leptonic decays $D^+ \rightarrow \mu^+ \nu$ by defining

 M^{2}_{miss} for the events of the singly tagged D⁻ vs. D⁺ $\rightarrow \mu^{+}\nu$ should be ~0

Comparisons of B[D⁺ \rightarrow $\mu^+ v_{\mu}$] and f_{D+}

Comparisons of the measured $|V_{cd}|$

Semi-leptonic decay $D^0 \rightarrow K/\pi^- e^+ v$, $f^+_{K/\pi}(q^2)$ and $|V_{cs/d}|$

D⁰ \rightarrow **K**/ π ⁻**e**⁺**v** and form factor **f**⁺_{K/ π}(**q**²)

> The strong interaction effect between the two quarks within D^0 meson is simply factorized into the form factor $f^+_{K/\pi}(q^2)$.

> $|V_{cs/d}|$ parameterizes the mixing between the quark mass eigenstates and the two weak eigenstates.

$f_{K/\pi}^+(q^2)$ and $|V_{cs/d}|$ from D semileptonic decay

- > In experiment, studies of $D^0 \rightarrow K/\pi^-e^+v$ can provide
 - form factors of hadronic current $f^+_{K/\pi}(q^2)$
 - Single pole form Modified pole model
 - ISGW2 model Series expansion model
 - + CKM matrix elements $|\mathbf{V}_{cs}|$ and $|\mathbf{V}_{cd}|$

> The improved $f^+_{K/\pi}(q^2)$ can be used to validate the LQCD calculations on $f^+_{K/\pi}(q^2)$

> More accurate measurements of $|V_{cs}|$ and $|V_{cd}|$ can more precisely test the SM.

Single tag **D**⁰ mesons

Preliminary results with 0.928fb⁻¹ data@ 3.773 GeV

Preliminary results

$$E_{\text{miss}} = E_{\text{cm}} - \sum_{i} E_{i}$$

$$\overrightarrow{p}_{\text{miss}} = |-\sum_{i} \overrightarrow{p}_{i}|$$

$$U_{\text{miss}} = E_{\text{miss}} - p_{\text{miss}}$$

U_{miss} for the events of the singly tagged \overline{D}^0 vs. $D^0 \rightarrow K/\pi^-e^+\nu$ should be ~0

B [%]	BESIII (0.928 fb ⁻¹)	CLEO-c (0.818 fb ⁻¹)	PDG
D⁰→K⁻e⁺v _e	3.542±0.030±0.046	3.50±0.03±0.04	3.55±0.04
$D^0 \rightarrow \pi^- e^+ v_e$	0.288±0.008±0.004	0.288±0.008±0.003	0.289±0.008

Form factors at CLEO-c

Form factor fits for $D^0 \rightarrow K^-e^+v$

Form factor fits for $D^0 \rightarrow \pi^- e^+ v$

Form factor fit results

Simple Pole	$f_{+}(0) V_{cd(s)} $	m_{pole}	
$D^0 \to K e \nu$	$0.729 \pm 0.005 \pm 0.005$	$1.943 \pm 0.025 \pm 0.003$	
$D^0 \to \pi e \nu$	$0.142 \pm 0.003 \pm 0.001$	$1.876 \pm 0.023 \pm 0.003$	
Modified Pole	$f_{+}(0) V_{cd(s)} $	α	
$D^0 \to K e \nu$	$0.725 \pm 0.006 \pm 0.005$	$0.265 \pm 0.045 \pm 0.006$	
$D^0 \to \pi e \nu$	$0.140 \pm 0.003 \pm 0.001$	$0.315 \pm 0.071 \pm 0.011$	
2 par. series	$f_{+}(0) V_{cd(s)} $	r_1	
$D^0 \to K e \nu$	$0.728 \pm 0.006 \pm 0.005$	$-1.235 \pm 0.201 \pm 0.025$	
$D^0 \to \pi e \nu$	$0.140 \pm 0.004 \pm 0.001$	$-2.117 \pm 0.163 \pm 0.023$	
3 par. series	$f_{+}(0) V_{cd(s)} $	r_1	r_2
$D^0 \to K e \nu$	$0.729 \pm 0.008 \pm 0.005$	$-1.251 \pm 0.349 \pm 0.053$	$0.527 \pm 7.984 \pm 0.895$
$D^0 \to \pi e \nu$	$0.144 \pm 0.005 \pm 0.001$	$-2.728 \pm 0.482 \pm 0.031$	$4.194 \pm 3.122 \pm 0.237$

TABLE XVII. Form factor fit results, center value from statistical only BESIII preliminary

Form factor comparisons

 $D^0 \rightarrow K^- e^+ v$

 $D^0 \rightarrow \pi^- e^+ v$

Summary

BESIII collected 2.92 fb⁻¹ data at 3.773 GeV.

> Purely leptonic decay D⁺→ μ^+ v and semi-leptonic decays of D⁰→K⁻/ π^- e⁺v were studied.

- > These will significantly improve
 - Branching fractions for these decays
 - Decay constant f_{D+}
 - CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$
 - form factors of hadronic current $f^+_{K/\pi}(q^2)$

Thank you!