Workshop on Meson Transition Form Factors

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Elisabetta Prencipe
Johannes Gutenberg University of Mainz

on behalf of the BES III collaboration

May 29-30, 2012 in Cracow, Poland
Outline

- Introduction
- Motivation
- BES III detector
- Analysis $\eta' \rightarrow \eta \pi^+ \pi^-$
- Analysis $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$
- Analysis $\gamma\gamma \rightarrow \pi^0/\eta/\eta'$
- Conclusion
Introduction

- Since its discovery (PRL 12, 527 (1964)), \(\eta' \) decays inspired interest in both, theory and experiments

- \(\eta - \eta' \) mixing probes strange quark content of light pseudo-scalar mesons and gluon dynamics of QCD

- Hadronic decays of \(\eta' \), in particular the ones to 3 pions, have garnered attention because of their large experimental limit and because they can probe isospin symmetry breaking

\[
\begin{align*}
 r_0 &\equiv \frac{\mathcal{B}(\eta' \to 3\pi^0)}{\mathcal{B}(\eta' \to \pi^0\pi^0\eta)} = (75 \pm 13) \times 10^{-4} \quad \text{PLB 667, 1 (2008)} \\
 r_\pm &\equiv \frac{\mathcal{B}(\eta' \to \pi^+\pi^-\pi^0)}{\mathcal{B}(\eta' \to \pi^+\pi^-\eta)}
\end{align*}
\]

- Under the 2 assumptions that the decay \(\pi^+\pi^-\pi^0 \) appears only through \(\eta' \to \eta\pi^+\pi^- \) followed by \(\eta - \pi^0 \) mixing and such decays populate uniformly the available phsp, \(r_\pm \) is found to be proportional to the mass difference \(u-d \) quark and \(r_\pm/r_0 \approx 0.37 \)

- A suggestion to use \(U(3) \) chiral effective field theory to examine \(\eta' \) decays is given (PLB 643, 41 (2006)): \(\eta' \to \eta\pi\pi \) Dalitz slope parameters can give large contribution to \(\eta' \to \pi^+\pi^-\pi^0 \); prediction: \(r_\pm/r_0 \approx 5 \)
The BES III experiment

B = 1T
resolution(MDC): $\sigma_p / P = 0.58\%$
resolution(MDC): $\sigma_E / E = 6.0\%$
resolution(TOF): $\sigma_\tau = 100\text{ps}$
resolution(EMC): $\sigma / E = 2.5\%$
Muon detected: $p > 400\text{ MeV/c}$

Very good separation e/π

<table>
<thead>
<tr>
<th>BESIII collected by the end of 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ: 225 Million</td>
</tr>
<tr>
<td>Ψ': 106 Million</td>
</tr>
<tr>
<td>$\psi(3770)$: 2.9fb$^{-1}$</td>
</tr>
<tr>
<td>$\psi(4010)$: 0.5fb$^{-1}$</td>
</tr>
</tbody>
</table>

BES III detector at BepC (Beijing, China) offers a unique opportunity to perform light hadron physics analyses and transition form factor measurements.
Measurement of the matrix element of the decay

$\eta' \rightarrow \eta \pi^+ \pi^-$

PRD 83, 012003 (2011)
The hadronic decay of η' is extremely valuable in studies devoted to the effect of the gluon component in chiral perturbation theory and the possible nonet of light scalars.

Dalitz plot parameters of some hadronic η' decay were already studied:

- VES P.L.B 651, 22(2007) $\eta' \to \eta \pi^+ \pi^-$
- GAMS-4π P.N. 72, 231 (2009) $\eta' \to \eta \pi^0 \pi^0$

In the isospin limit the values of the Dalitz plot parameters should be the same; however, the experimental results show some discrepancy.
Analysis $\eta' \rightarrow \eta \pi^+ \pi^-$: strategy

- Energy c.m. = J/ψ mass production 225 millions J/ψ

- Reconstruction:
 $\eta' \rightarrow \eta \pi^+ \pi^-$
 $\eta \rightarrow \gamma \gamma$ (J/ψ radiative decays)

- Selection:
 the candidate events with topology $\gamma \gamma \pi^+ \pi^-$ with minimum χ^2(4C fit)

- Background:
 $J/\psi \rightarrow \gamma \eta' \rightarrow \gamma \gamma \rho^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
 $J/\psi \rightarrow \gamma \eta' \rightarrow \gamma \omega \rightarrow \gamma \gamma \pi^+ \pi^- \pi^0$
 No additional peaking background come from $f1(1285), \eta(1405), \eta(1475), f1(1510)$
 $\rightarrow \gamma \eta \pi^+ \pi^-$

$$\mathcal{B}(J/\psi \rightarrow \gamma \eta') = \frac{N_{\text{obs}}}{N_{J/\psi} \times \varepsilon \times \mathcal{B}(\eta' \rightarrow \eta \pi^+ \pi^-) \times \mathcal{B}(\eta \rightarrow \gamma \gamma)} = (4.84 \pm 0.03(\text{stat}) \pm 0.24(\text{sys})) \times 10^{-3}$$

PRD 83, 012003 (2011)
Analysis $\eta' \rightarrow \eta \pi^+ \pi^-$: Dalitz plot parameters

The dynamic of this decay can be described by 2 degrees of freedom, as all particles of this decay have spin = 0.

The Dalitz plot distribution is described by 2 variables and in different parametrization:

- $X = \frac{\sqrt{3}}{Q}(T_{\pi^+} - T_{\pi^-})$
- $Y = \frac{m_\eta + 2m_\pi T_\eta}{m_\pi Q} - 1$

1) $M^2 = A(1 + aY + bY^2 + cX + dX^2)$

is the decay amplitude (general decomposition) expanded in terms of Dalitz parameters to be evaluated.

- Odd term in X are forbidden in this decay.

The parameter $c = \begin{cases} 0, & \eta' \rightarrow \eta \pi^0 \pi^0 \\
\text{not necessarily 0,} & \eta' \rightarrow \eta \pi^+ \pi^- \end{cases}$
A second parametrization is the linear parametrization:

\[M^2 = A(|1 + \alpha Y|^2 + cX + dX^2) \]

linear function of the kinetic energy of the \(\eta \).
\(\alpha \) is a complex parameter

A non zero value of \(\alpha \) may represent the contribution of a gluon component in the wave function of the \(\eta' \) in the dynamics of the decay

For comparison with the parametrization 1):

\[a = 2 \text{Re}(\alpha) \]
\[b = \text{Re}^2(\alpha) + \text{Im}^2(\alpha) \]
Analysis $\eta' \rightarrow \eta \pi^+ \pi^-$: results

The parameter c is consistent with 0 within 1.8σ

1) general decomposition parametrization:

$$M_i = \sum_{j=1}^{N_{ev}} (1 + aY_j + bY_j^2 + cX_j + dX_j^2)$$

$$a = -0.047 \pm 0.011 \begin{pmatrix} 1.000 & -0.442 & -0.010 & -0.239 \\ b = -0.069 \pm 0.019 & 1.000 & 0.025 & 0.282 \\ c = +0.019 \pm 0.011 & 1.000 & 0.030 & \end{pmatrix}$$

$$d = -0.073 \pm 0.012$$

2) linear parametrization

$$M_i = \sum_{j=1}^{N_{ev}} (|1 + \alpha Y_j|^2 + cX_j + dX_j^2)$$

$$\text{Re}(\alpha) = -0.033 \pm 0.005$$

$$\text{Im}(\alpha) = 0.000 \pm 0.049$$

$$c = +0.018 \pm 0.009$$

$$d = -0.059 \pm 0.012$$

The parameter c is consistent with 0 within 2.1σ
Analysis $\eta' \to \eta \pi^+ \pi^-$: comparison

The negative value of b indicates that the 2 parametrizations are not equivalent.
The parameters a and b are consistent with the ones from GAMS-4π.

$X^2 Y^2$ value are different from 0.

The 2 parametrizations do not look equivalent because of the estimated value of b.

The value b shows to be different from the expected chiral Lagrangian model (zero); however, it can be accommodated in a U(3) chiral unitarized model by including final state interactions [N.P. A716, 186 (2003)].

The value c, which test C-parity violation in the strong interaction, is consistent with 0.

The BR is found consistent with previous BESII measurement and improves the statistical errors [PRD 73, 052008 (2006)].
Measurement of BF

\[\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^- \]

PRELIMINARY RESULTS
The BR for $\eta' \rightarrow \pi^+ \pi^- X$ ($X=e,\mu$) are expected to scale with those for $\eta' \rightarrow \gamma X$.

The most copious decay should be $\eta' \rightarrow \pi^+ \pi^- e^+ e^-$ (experimental limit: 0.6%) expected: 0.3%

Different theoretical approaches provide explanation for ρ^0-dominance for the $\pi^+ \pi^-$ invariant mass, $e^+ e^-$ mass distribution peaking just above $2m_e$, with long tail extended to ~300 MeV.

The BR limit on $\eta' \rightarrow \pi^+ \pi^- e^+ e^-$ is expected to be $\sim 2 \times 10^{-5}$

The analysis from CLEO has been shown the following results:

$BR(\eta' \rightarrow \pi^+ \pi^- e^+ e^-) = (2.5^{+1.2}_{-0.9} \pm 0.5) \times 10^{-3}$

$BR(\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-) < 2.4 \times 10^{-4}$

CLEO PRL 102, 061801 (2009)
Analysis $\eta'\to\pi^+\pi^-l^+l^-$: strategy

- Energy c.m. = J/ψ mass production 225 millions J/ψ

- Reconstruction:

$$\eta' \to \pi^+\pi^-\mu^+\mu^- \quad \eta' \to \pi^+\pi^-e^+e^-$$

The topology of the event studied is $J/\psi \to \gamma\eta'$, $\eta' \to \pi^+\pi^-l^+l^-$

- Selection:

$$\chi^2\text{ cut (4C fit)}$$

- Background:

The events $J/\psi \to \gamma\eta'$, $\eta'\to\gamma\pi^+\pi^-$ are under exam; other possible sources of background are:

$$J/\psi \to \gamma\eta', \eta' \to \gamma\rho^0, \rho^0 \to \pi^+\pi^-$$
$$J/\psi \to \gamma\eta', \eta' \to \gamma\rho^0, \rho^0 \to \pi^+\pi^-\gamma_{FSR}$$
$$J/\psi \to \pi^+\pi^-\rho^0\gamma_{FSR}$$
$$J/\psi \to \gamma\eta', \eta' \to \gamma\omega, \omega \to \pi^+\pi^-$$
$$J/\psi \to h_1(1170)\pi^0, h_1(1170) \to \rho^0\pi^0, \rho^0 \to \pi^+\pi^-$$
$$J/\psi \to \pi^+\pi^-\rho^0$$

This is the main background source
Analysis $\eta' \rightarrow \pi^+ \pi^- e^+ e^-$: invariant mass

$\eta' \rightarrow \gamma \rho^0, \rho^0 \rightarrow \pi^+ \pi^-$ via γ conversion

As from prediction, a long tail up to ~ 300 MeV is observed

As from prediction, the di-lepton ($e^+ e^-$) mass peaks about $\sim 2m_e$

As from prediction, a huge signal is observed in $e^+ e^- \pi^+ \pi^-$

As from prediction, the ρ^0-dominance is observed in $\pi^+ \pi^-$ mass
Analysis $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$: invariant mass

- No signal observed on data

Elisabetta Prencipe

29th May 2012
Analysis $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$: results

- A specific MC generator was used to simulate events $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$, where the form factor (FF) assumption is done (DIY) with Q^2 dependence.

- To estimate the uncertainty introduced from the form factor model, a constant value was introduced, to eliminate the dependence of FF from Q^2.

- Other sources of uncertainty in this analysis are conventional.

\[
BR(\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-) < \frac{N_{\eta' \rightarrow \pi \pi \mu \mu}^{U,L}}{N_{\eta' \rightarrow \gamma \rho^0}} \times \epsilon_{\eta' \rightarrow \gamma \rho^0} \times BR(\eta' \rightarrow \gamma \rho^0) \times 2.62 \times 10^{-5}
\]

Good agreement with predictions.

\[
BR(\eta' \rightarrow \pi^+ \pi^- e^+ e^-) = \frac{N_{\eta' \rightarrow \pi e e}}{N_{\eta' \rightarrow \gamma \rho^0}} \times \epsilon_{\eta' \rightarrow \gamma \rho^0} \times BR(\eta' \rightarrow \gamma \rho^0) =
\]

\[
= (2.13 \pm 0.13\,(stat.) \pm 0.19\,(syst.)) \times 10^{-3}
\]
Transition meson form factor of

\[\gamma\gamma \rightarrow e^+e^-\pi^0/\eta/\eta' \]

FEASIBILITY study: analysis ongoing

Only feasibility studies are presented here today
Anomalous magnetic momentum of the muon $a_{\mu} = (g-2)_{\mu}/2$ is a very important observable providing test at the precision frontier of the Standard Model.

Presently **3.6\sigma deviation observed** for $(g-2)_{\mu}$ and Standard Model prediction.

$$a_{\mu}(\text{SM}) = (116\ 591\ 594.7 \pm 70) \times 10^{-11}$$

$$a_{\mu}(\text{SM}) = a_{\mu} (\text{QED}) + a_{\mu} (\text{hadronic}) + a_{\mu} (\text{weak})$$

$$a_{\mu} (\text{New Physics}) = a_{\mu} (\text{Measured}) - a_{\mu} (\text{SM})$$

Contribution from strong interactions not calculable within perturbative QCD
Contribution to the measurement of a μ

QED contribution = $(11\,658\,471.810 \pm 0.016) \times 10^{-10}$

Weak contribution = $(15.4 \pm 0.2) \times 10^{-10}$

Hadronic vacuum polarization = $(695.5 \pm 4.1) \times 10^{-10}$

Hadronic Light-by-light scattering = $(10.5 \pm 2.6) \times 10^{-10}$

Hadronic vacuum polarization

Standard Model precision limited by strong contribution

Hadronic LBL contribution still smaller compared to **Hadronic vacuum polarization**, but its uncertainty is calculated of the same order

Measurement of **meson transition form factor** of utmost importance to validate hadronic models
To solve beyond QED-effects more precision in theory and experiments needs
Need to study the transition form factor of π^0, η, η' to give new input to the theory
Due to the upcoming experiment at Fermilab, the hadronic LBL correction will become the main uncertainty to evaluate for the precision measurement of $(g-2)_\mu$

Hadronic Light-by-Light Scattering

$$a_{\mu}^{(had),LbL} = (10.5 \pm 2.6) \cdot 10^{-10} \quad \text{Prades et al.}$$

$$\quad (11.6 \pm 4.0) \cdot 10^{-10} \quad \text{Nyffeler}$$

$$\quad (21.6 \pm 9.1) \cdot 10^{-10} \quad \text{Fischer et al.}$$
How the form factor can be measured

- **Two-photon production** of the meson
 - \(- S + M^2 < q_1^2 < 0, \ q_2^2 \approx 0, \ Q^2 \equiv -q_1^2\)
 - \(d\sigma/dQ^2\) falls as \(1/Q^6\)
 - At \(\sqrt{s} = 10.6\ \text{GeV}\) for \(e^+e^- \rightarrow e^+e^- \pi^0\)
 \(d\sigma/dQ^2(10\ \text{GeV}^2) \approx 10\ \text{fb/GeV}^2\)

- **Annihilation process** \(e^+e^- \rightarrow P\gamma\)
 - \(Q^2 = S > M^2\)
 - \(\sigma \propto 1/S^2\)
 - \(\sigma(e^+e^- \rightarrow \eta\gamma) \approx 5\ \text{fb at}\ \sqrt{s} = 10.6\ \text{GeV}\)

- **Dalitz decay** \(P \rightarrow \gamma e^+e^-\)
 - \(0 < Q^2 < M^2\)
 - \(M^2d\Gamma/dQ^2 \approx (2\alpha/\pi)\Gamma(P \rightarrow \gamma\gamma)\) at \(Q^2/M^2 \approx 1/4\)
Analysis $\gamma \gamma \rightarrow e^+e^-\pi^0/\eta/\eta'$: strategy

- Electrons are scattered predominantly at small angles

- **Single-tag mode technique:**
 - one electron is detected
 - $Q^2 = -q_1^2 = 2EE'(1-\cos \theta)$
 - $q_2^2 \approx 0$
 - electron is detected and identified
 - the meson is detected and fully reconstructed
 - electron + meson system has low p_{T}
 - missing mass in an event is close to 0

$$dN/dQ^2 \quad \rightarrow \quad d\sigma/dQ^2 \quad \rightarrow \quad |F(Q^2)|$$
Analysis $\gamma\gamma \rightarrow e^+e^−\pi^0/\eta/\eta'$: feasibility study

- Errors definitively reduced: high precision!
- Possibility to check very low Q^2
- Cross check the BaBar/Belle data up to 10GeV2
- Cross check CLEO data from $Q^2=1.5$ up to 7GeV2

All simulation are performed with EKHARA 2.0: no detector simulation included.
Analysis $\gamma\gamma \rightarrow e^+e^-\pi^0/\eta/\eta'$: cross section

- **E c.m. = 3.77 GeV;** it reduces the background due to e^+e^- from J/ψ

<table>
<thead>
<tr>
<th>EKHARA simulation</th>
<th>$e^+e^- \rightarrow e^+e^-\gamma \rightarrow e^+e^-\pi^0$ (nb)</th>
<th>$e^+e^- \rightarrow e^+e^-\gamma \rightarrow e^+e^-\eta$ (nb)</th>
<th>$e^+e^- \rightarrow e^+e^-\gamma \rightarrow e^+e^-\eta'$ (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non tagged</td>
<td>$(832.2 \pm 2.9)x10^{-3}$</td>
<td>$(297.2 \pm 1.0)x10^{-3}$</td>
<td>$(212.2 \pm 1.1)x10^{-3}$</td>
</tr>
<tr>
<td>Tagged e^+</td>
<td>$(6.672 \pm 0.059)x10^{-3}$</td>
<td>$(5.240 \pm 0.019)x10^{-3}$</td>
<td>$(6.776 \pm 0.039)x10^{-3}$</td>
</tr>
<tr>
<td>$21.6<\theta<158.4$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- @BESIII we can perform the analysis $\gamma^* \rightarrow P$ tagging one lepton
Analysis $\gamma \gamma \rightarrow e^+e^-\pi^0/\eta/\eta'$: acceptance

After the detector acceptance is included, a loss of events is seen at the threshold. It is due to the photon acceptance.

This analysis is ongoing....
BaBar could not check very low Q^2 values due to the trigger.

Simulations show that in BESIII it is possible

$Q^2 \in [1/3] \text{ GeV}^2$ is theoretically the best range to test hadronic \textit{LBL} correction to $(g-2)\mu$

\textbf{INPUT TO THE THEORY!}
Conclusion

- The BES III detector collected high quality data, that allow us to do precise and competitive measurements compared to other experiments.

- Interesting analysis are going on pseudo-scalar mesons and light hadron physics: BES III can give an important contribution in this sector.

- The study of the Dalitz plot matrix elements of $\eta' \rightarrow \eta \pi \pi$ allow us to conclude that BES III is in agreement with VES (parameters c and d) and GAMs-4π (parameters a and b). As expected, the parameter c related to C-parity violation is consistent with 0 (as expected for strong interactions).

- High precision measurement of BF($\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0$) has been performed: it confirms the theoretical prediction and it will be published very soon.

- The analysis of transition form factor of π^0, η, η' is ongoing at BES III:
 - **Range observable: $Q^2 [0.3;10.0] \text{ GeV}^2$**
 - improved efficiency compared to other experiments
 - never tested the area Q^2 in $[0.5;1.5] \text{ GeV}^2$ from other experiments
 - possibility to cross check CLEO data at low $Q^2 [1.5;3]\text{GeV}^2$
 - complementary measurement to BaBar/Belle experiment (e.g. Q^2 in $[4;40]\text{GeV}^2$)
Thank you!