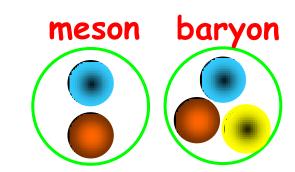
Exotics and Charmonia at BESIII

Zhihong Wang

University of Science and Technology of China

On behalf of BESIII Collaboration

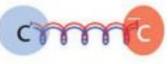
27th Rencontres de Blois, May 31 - June 05, 2015

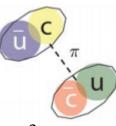

Outline

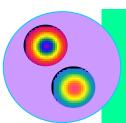
- **◆Introduction**
 - Hadrons: normal & exotic
 - BEPCII and BESIII
- ◆The X-Y- Z states at BESIII
 - Observation of X states
 - Observation of Y states
 - Observation of Z_c states
- **Summary & Outlook**

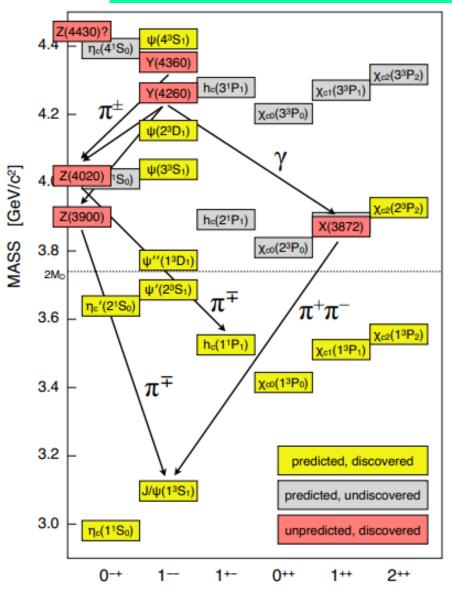
Hadrons: normal & exotic

- ◆ In the quark model:
- > Hadrons are composed from
 - ✓ 2 quarks (qqbar)-meson
 - √ 3 quarks (qqq)-baryon
- >QCD allows hadrons with other configurations
 - ✓ Glueball: N_{quarks} = 0 (gg, ggg, ...)
 - ✓ Hybrid: N_{quarks} = 2 (or more)+excited gluon
 - ✓ Multiquark state: N_{quarks} > 3


✓ Molecule: bound state of more than 2 hadrons

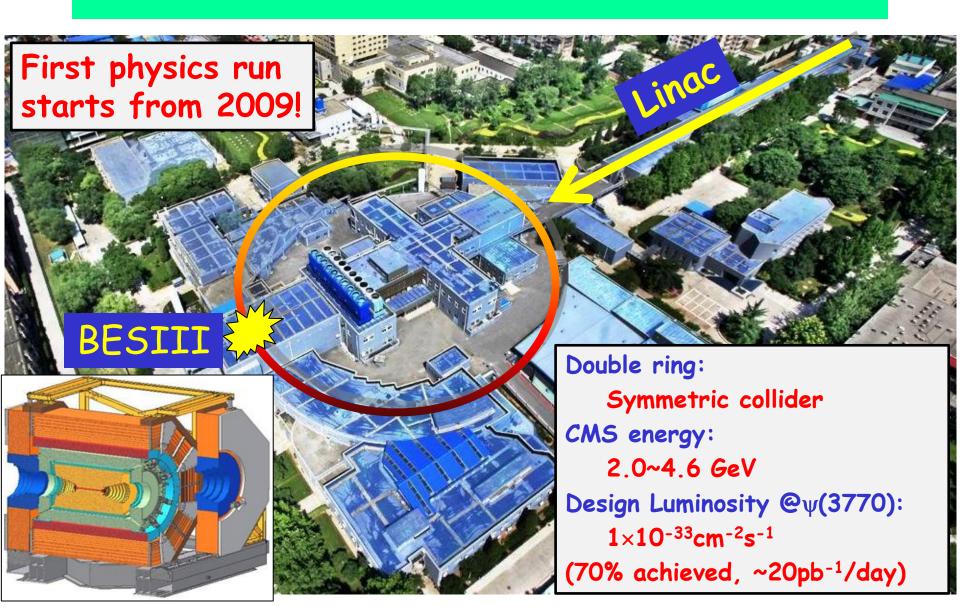

qqg hybrid



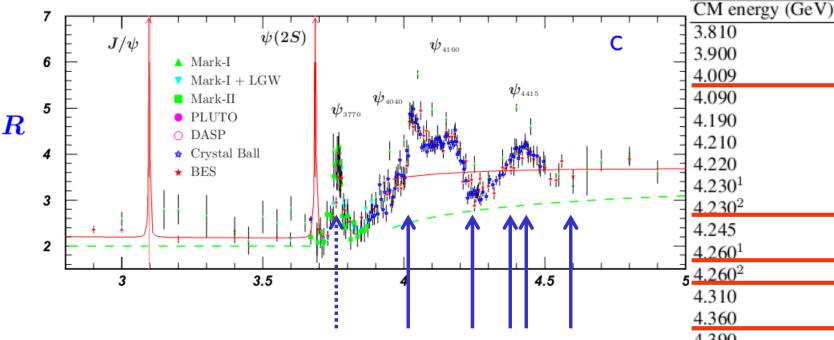


Charmonium & XYZ states

- States in Charmonium region:
 Not all of them are charmonia.
- > Below open-charm threshold:


Good agreement between discovery and theoretical prediction.

> Above open-charm threshold:


Some new states: with charmonium in final sates, but not an obvious charmonium states. (Charmonium-like or XYZ)

Charmonium?
Hybrid?
Multiquark?
Molecule?

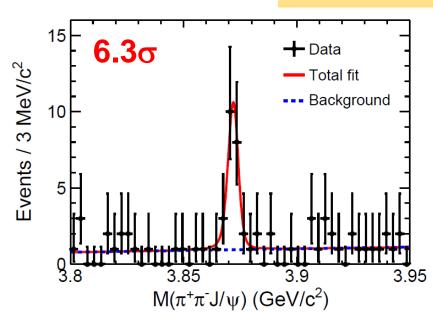
BEPCII and BESIII

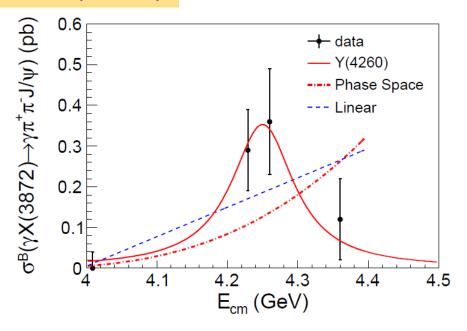
BESIII data samples for XYZ study (5/fb)

ightharpoonup Huge data sets around ψ(4040), Y(4260), Y(4360), ψ(4420), Y(4600).

5.010	30.34±0.03
3.900	52.61 ± 0.03
4.009	481.96 ± 0.01
4.090	52.63 ± 0.03
4.190	43.09 ± 0.03
4.210	54.55 ± 0.03
4.220	54.13 ± 0.03
4.230^{1}	44.40 ± 0.03
4.230^{2}	1047.34 ± 0.14
4.245	55.59 ± 0.04
4.260^{1}	523.74 ± 0.10
4.260^2	301.93 ± 0.08
4.310	44.90 ± 0.03
4.360	539.84 ± 0.10
4.390	55.18 ± 0.04
4.420^{1}	44.67 ± 0.03
4.420^{2}	1028.89 ± 0.13
4.470	109.94 ± 0.04
4.530	109.98 ± 0.04
4.575	47.67 ± 0.03
4.600	566.93±0.11
	Ü

 $L \, (pb^{-1})$

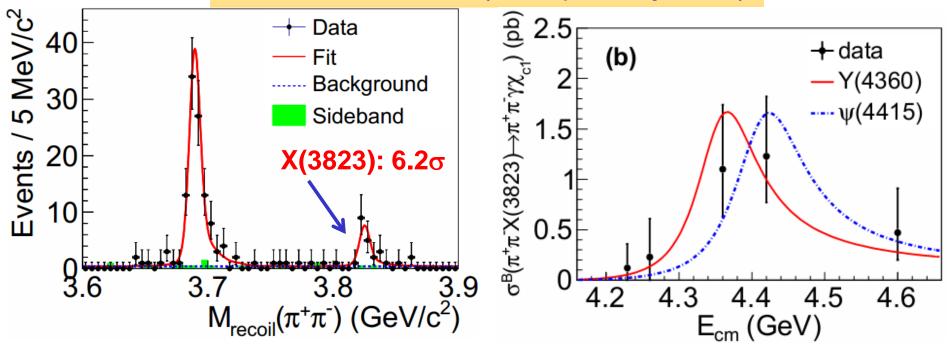

 50.54 ± 0.03


The X states

Observation of $e^+e^- \rightarrow \gamma X(3872)$

PRL 112, 092001 (2014)

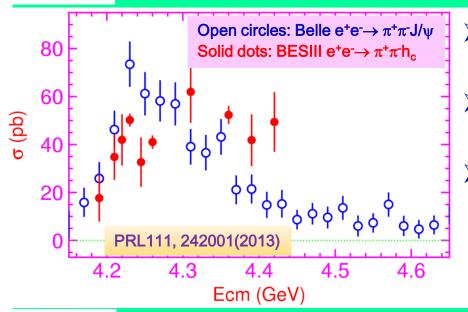
- ► BESIII observed $e^+e^- \rightarrow \gamma X(3872) \rightarrow \pi^+\pi^- J/\psi$.
- \triangleright It seems that X(3872) is from the radiative transition of Y(4260).


$$\frac{\sigma(e^+e^- \to \gamma X(3872))}{\sigma(e^+e^- \to \pi^+\pi^- J/\psi)} \sim 10\%, \text{ Large transition ratio.}$$

➤ May new decay mode: $Y(4260) \rightarrow \gamma X(3872)$.

Observation of $e^+e^- \rightarrow \pi^+\pi^- X(3823)$

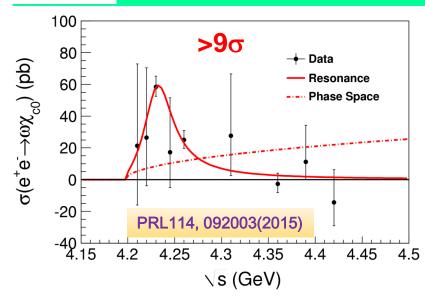
arXiv:1503.08203 (Accepted by PRL)


- **>** BESIII observed e⁺e⁻→ π ⁺ π ⁻X(3823) → π ⁺ π ⁻ γχ_{c1}.
- Arr M=3821.7±1.3±0.7MeV/c, Consistent with Belle's results (PRL111, 032001). Candidate for $\psi(1^3D_2)$.
- For the energy dependent cross section of $e^+e^-\to \pi^+\pi^-X(3823)$, both Y(4360) and $\psi(4415)$ line shape give reasonable description.

The Y states

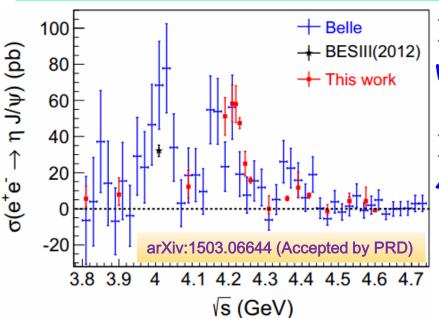
(vectors)

BESI

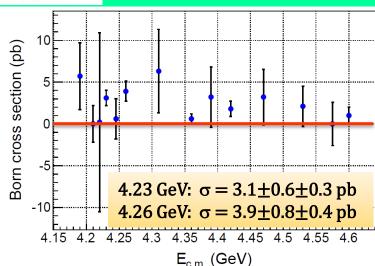

Observation of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

- > $\sigma(e^+e^- \to \pi^+\pi^-h_c) \sim \sigma(e^+e^- \to \pi^+\pi^-J/\psi)$, but line shape different.
- Local maximum ~ 4.23 GeV for $\sigma(e^+e^- \to \pi^+\pi^-h_c)$, Narrow structure?
- Broad structure at high energy region? Need more data at high energies to complete the line shape measurement.

B€SⅢ


Observation of $e^+e^- \rightarrow \omega \chi_{c0}$

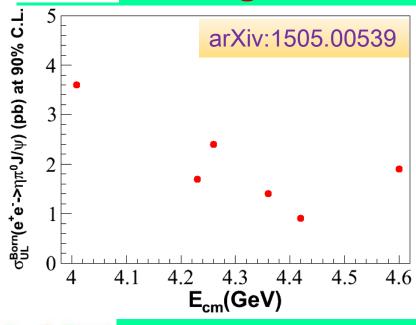
- Fit with a single BW: $M = 4230\pm8\pm6$ MeV $\Gamma = 38\pm12\pm2$ MeV
- > Signal does not arise from the decays of Y(4260).


Observation of $e^+e^- \rightarrow \eta J/\psi$

- ➤ Agree with previous results with improved precision.
- The cross section peaks around 4.2 GeV: $\psi(4160) \rightarrow \eta J/\psi$.

B€SⅢ

Observation of $e^+e^- \rightarrow \eta' J/\psi$

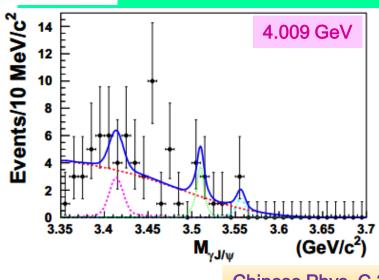


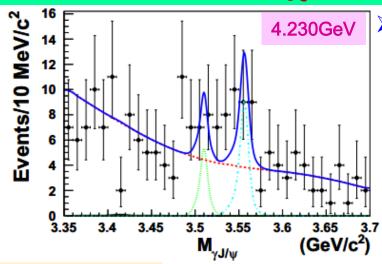
- ightharpoonup e⁺e⁻ $\rightarrow \eta' J/\psi$ are observed at 4.230GeV and 4.260GeV.
- First observation, cannot tell the line shape due to statistics

BESIII Preliminary

B€SⅢ

No significant signal of $e^+e^- \rightarrow \eta \pi^0 J/\psi$

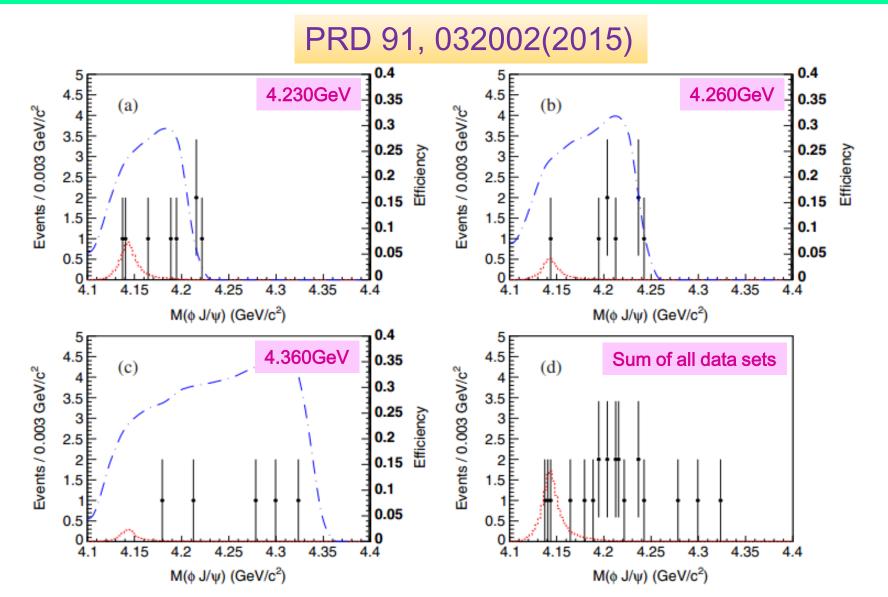

> Model predictions of $e^+e^- \rightarrow \eta \pi^0 J/\psi$ Y(4260) as a D₁D molecule:


[X. Wu et al., PRD 89, 054038]

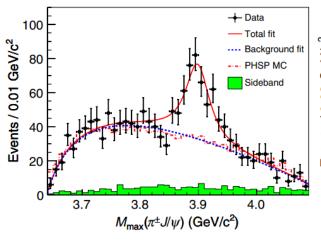
Need more luminosity to reach the sensitivity.

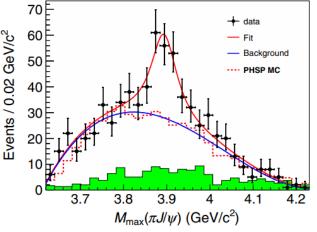
B€SⅢ

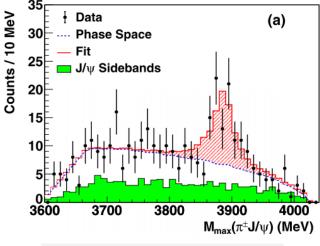
Evidence for $e^+e^- \rightarrow \gamma \chi_{cJ}$



Evidence for: $e^+e^- \rightarrow \gamma \chi_{c1}$ 3.0σ $e^+e^- \rightarrow \gamma \chi_{c2}$ 3.4σ


No significant signal of $e^+e^- \rightarrow \gamma Y(4140)$



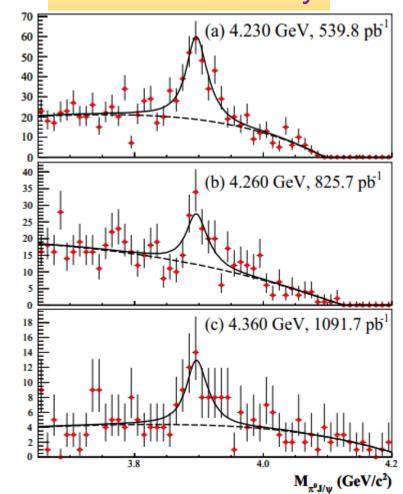

The Z_c states

Observation Zc(3900)[±] in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

BESIII data at 4.26 GeV (PRL 110, 252001)

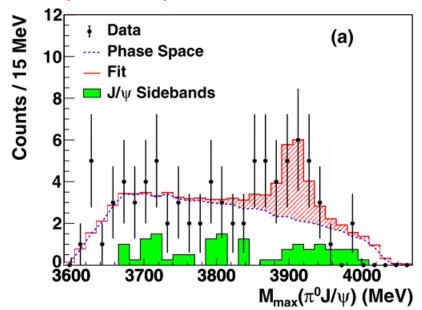
Belle with ISR data (PRL 110, 252002)

CLEOc data at 4.17 GeV (PLB 727, 366)


Experiment	Mass (MeV)	Width (MeV)	Significance
BESIII	3899.0±3.6±4.9	46±10±20	> 8.0 σ
Belle	3894.5±6.6±4.5	63±24±26	5.2 σ
CLEO-c	3886±4±2	37±4±8	> 5.0 o

Events/(10 MeV/c²)

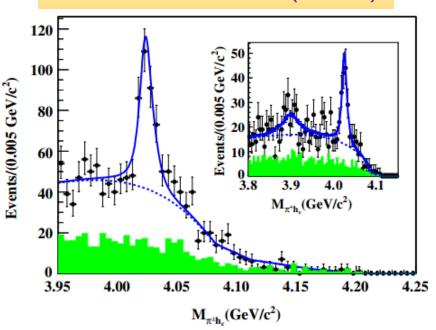
Observation Zc(3900)⁰ in $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$



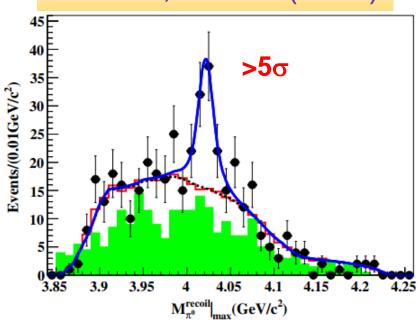
Simultaneous fit:

Significance = 10.4σ M = $3894.8\pm2.3\pm2.7$ MeV Γ = $29.6\pm8.2\pm8.2$ MeV

> Isospin triplet is established!



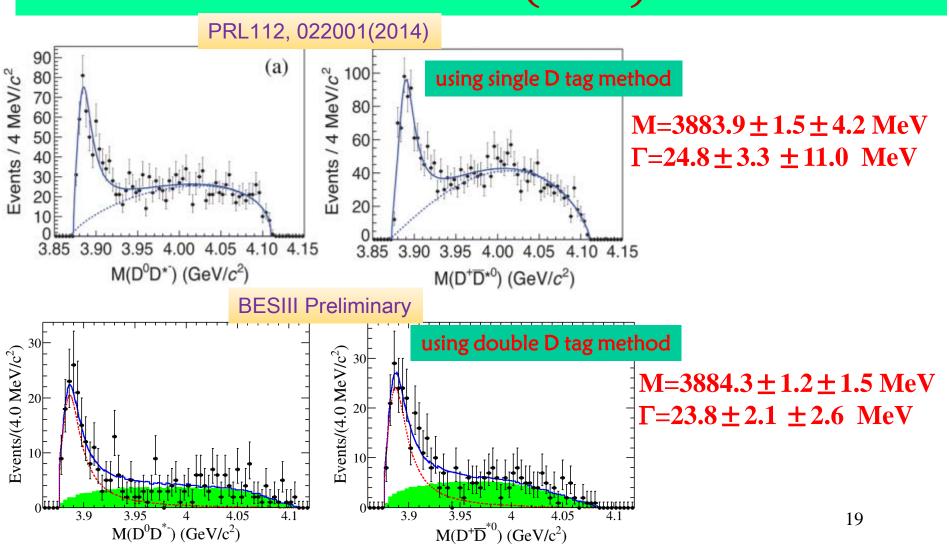
CLEOc data at 4.17 GeV (PLB 727, 366)


Observation Zc(4020) $^{\pm/0}$ in $e^+e^- \rightarrow \pi^+\pi^-h_c/\pi^0\pi^0h_c$

PRL111, 242001(2013)

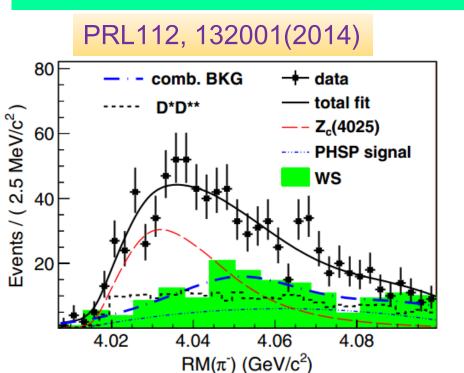
M= $4022.9 \pm 0.8 \pm 2.7$ MeV Γ = $7.9 \pm 2.7 \pm 2.6$ MeV

PRL113, 212002(2014)

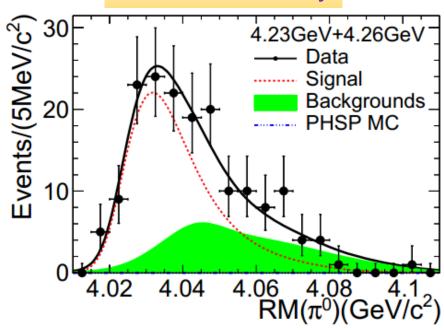

 $M=4023.9\pm2.2\pm3.8 \text{ MeV}$

Width is fixed to be same as its charged partner.

Another isospin triplet is established!



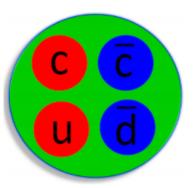
Observation of $Z_c(3885)^\pm$ in $e^+e^- \to \pi^\pm(D\overline{D}^*)^\mp$



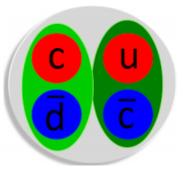
Observation of $Z_c(4025)^{\pm/0}$ in $e^+e^- o \pi^{\pm/0}(D^*\overline{D}^*)^{\mp/0}$

M=4026.3±2.6±3.7 MeV Γ=24.8±5.6±7.7 MeV

BESIII Preliminary


M=4025.5±4.7±3.1 MeV Γ=23.0±6.0±1.0 MeV

Another isospin triplet is established!


New class of states: Zc

>At least four quarks, not conventional meson.

✓ Tetraquark state?

Phys. Rev. D87,125018(2013); Phys. Rev. D88, 074506(2013); Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); ...

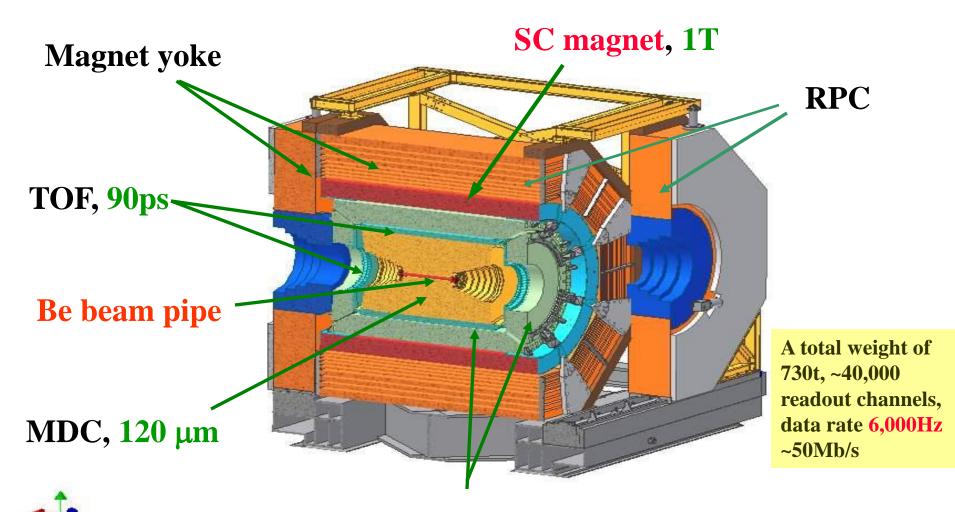
$\checkmark D^{(*)} \bar{D}^{(*)}$ molecule state?

Phys. Rev. Lett. 111, 132003 (2013); Phys. Rev. D 89, 094026 (2014) Phys. Rev. D 89, 074029 (2014); Phys. Rev. D 88, 074506 (2013); ...

√ Final States Interaction?

✓ ...

Summary & Outlook


- >Lots of progress in the study of exotic and charmonia states at BESIII recently.
- \triangleright Observation of e⁺e⁻ $\rightarrow \gamma$ X(3872) & $\pi^+\pi^-$ X(3823).
- > Measurements of many hidden charm final states.
- >Observation of Zc states.
- >BESIII may continue data taking until 2020-2022.

Thanks a lot! 谢谢!

BEPC II: a double-ring machine

The BESIII Detector

CsI(Tl) calorimeter, 2.5 %@ 1 GeV₅

Summary on Z_c states

The BESIII experiment discovered several Z_c states.

State	Mass(MeV)	Width(MeV)	Decay mode	Process
$\mathbf{Z}_{\mathrm{c}}(3900)^{\pm}$	3899.0±3.6 ±4.9	46±10 ±20	$\pi^{\pm}J/\psi$	$e^+e^- \rightarrow \pi^+\pi^- J^/\psi$
$Z_c(3900)^0$	$3894.8 \pm 2.3 \pm 2.7$	$29.6 \pm 8.2 \pm 8.2$	$\pi^0 J/\psi$	$e^+e^-{\longrightarrow}\pi^0\pi^0J^/\psi$
$\mathbf{Z}_{\mathrm{c}}(3885)^{\pm}$	3883.9±1.5±4.2 [single D tag] 3884.3±1.2±1.5 [double D tag]	24.8±3.3±11.0 [single D tag] 23.8±2.1±2.6 [double D tag]	D ⁰ D*-	$\mathbf{e^+e^-} \rightarrow \pi^+ \mathbf{D^0} \mathbf{D^{*-}}$ $\mathbf{e^+e^-} \rightarrow \pi^+ \mathbf{D^-} \mathbf{D^{*0}}$
$\mathbf{Z}_{\mathrm{c}}(4020)^{\pm}$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}\mathbf{h}_{\mathrm{c}}$	$e^+e^-{ ightarrow}\pi^+\pi^-h_c$
$Z_{c}(4020)^{0}$	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^0 \mathbf{h}_{\mathbf{c}}$	$e^+e^-{ ightarrow}\pi^0\pi^0h_c$
$Z_c(4025)^{\pm}$	4026.3±2.6±3.7	24.8±5.6±7.7	D*0D*-	$e^+e^-{\rightarrow}\pi^+(\mathbf{D}^*\stackrel{-}{\mathbf{D}}^*)^-$