Charm Physics at BESIII

Xiaoshuai Qin

(On behalf of BESIII Collaboration) Institute of high energy physics, Beijing, China

OCPA7, August 1-5,2011, Kaohsiung, Taiwan

Outline

- Introduction of BEPCII and BESIII
- Charm prospects at BESIII and ongoing analysis
- Summary

Satellite view of BEPCII /BESIII

South

BESIII detector

August 1st, 2011

Symmetric electron

Beam energy 1.0-2.3 GeV Energy spread: 5.16 × 10-4

Design luminosity 1×10^{33} /cm²/s @ $\psi(3770)$

Achieved luminosity $\sim 0.65 \times 10^{33}$ /cm²/s

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking

BESIII detector

Data taken

So far BESIII has collected : Year **Running Plan** - 2009: 225 Million J/ψ - 2009: 106 Million ψ' - 2010-11: 2.9 fb⁻¹ ψ(3770) 2012 J/ψ : 1 billion / ψ (2S): $(3.5 \times CLEO - c \ 0.818 fb^{-1})$ 0.5 billion (approved) - May 2011: 0.5fb⁻¹ @4010 MeV (one month) for Ds and XYZ 2013 4170 MeV: Ds decay spectroscopy R scan (E > 4 GeV) BESIII will also collect: 2014 ψ(2S)/τ / - more $J/\psi, \psi', \psi(3770)$ R scan (E > 4 GeV) - data at higher energies (for XYZ searches, R scan and Ds 2015 ψ(3770): 5-10 fb⁻¹ physics) (our final goal)

Red: to be approved by BESIII Collaboration

Measurements with tagged D mesons

- Purely leptonic decays
 - f_D and f_{DS} decay constants
- Semileptonic decays
 - $|V_{cs}|$ and $|V_{cd}|$ CKM matrix elements, form factor
- Absolute branching fractions
- CP or T violation
- $D-\overline{D}$ mixing
 - Exploiting quantum correlations @ the $\psi(3770)$

•

Advantage of open charm at threshold

e⁺e⁻ Colliders at threshold: CLEO-c, BESIII, Super-taucharm

 $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0} \ [C = -1] \quad \text{OR} \quad e^+e^- \rightarrow \gamma^* \rightarrow D^0\overline{D^0}\gamma \ [C = +1]$

Good for charm flavor physics:

- Threshold production: clean
- Known initial energy and quantum numbers
- Both D and Dbar fully reconstructed (double tag)
- Absolute measurements

Prospects for Charm at BESIII

precision measurements at BESIII after CLEO-c.

CLEO-c errors for E	D⁰ /D+ physics with 818 pb⁻¹@3770	BESIII (5fb ⁻¹)
f_{D+} (D+ $\rightarrow \mu^+ \nu$):	\pm 4.1% (stat.) \pm 1.2% (sys.)	±1.7% (stat.)
$f_{\pi}(0) (D^0 \rightarrow \pi I_V)$:	±5.3% (stat.) ± 0.7%(sys.)	±2.1% (stat.)
BR(D ⁰ \rightarrow K π):	±0.9% (stat.) ± 1.8%(sys.)	limited by sys.
BR(D ⁺ \rightarrow K $\pi\pi$):	\pm 1.1% (stat.) \pm 2.0%(sys.)	limited by sys.

CLEO-c errors for D_s physics with 600pb⁻¹@4170 MeV f_{Ds} (Ds⁺ $\rightarrow\mu^{+}\nu,\tau\nu$): ±2.5% (stat.) ± 1.2% (sys.)±0.9% (stat.)BR(Ds⁺ \rightarrow KK π): ±4.2% (stat.) ± 2.9%(sys.)±1.5% (stat.)

For Ds physics, BESIII are taking data at both 4010 and 4170 MeV: 4010 MeV (clean single tag, lower cross section 0.3 nb) \rightarrow BESIII 0.5 fb⁻¹ 4170MeV (dirty single tag, maximum cross section 0.9 nb) \rightarrow CLEO-c 0.6 fb⁻¹

Significant gains will be made with increased luminosity at BESIII.

August 1st, 2011

mBC of D_s Single Tag part of data @ 4010 MeV

Leptonic decay

- Clean way to measure f_{D+} and f_{Ds} in SM
- Good agreement between expt. f_{D+} and LQCD calculations
- ~1.60 difference between expt. f_{Ds} and LQCD calculations

$$\Gamma(D_q^+ \to l^+ \nu) = \frac{G_F^2}{8\pi} f_{D_q}^2 |V_{cq}|^2 m_l^2 \left(1 - \frac{m_l^2}{m_{D_q}^2}\right)^2 m_{D_q} \quad (q = d, s)$$

- Two ongoing measurements at BESIII:
 - $D^+ \rightarrow \mu^+ v$
 - $D_s \rightarrow \mu^+ v$

August 1st, 2011

A brief history on f_{Ds}

Kronfeld, arxiv:0912.0543+updates

- Gray: lattice three flavor avg.
- Yellow: expt. avg.
- Leftmost(t=0)result accompanied by successful prediction of f_{D+} by FNAL/MILC
- HPQCD2007(t~2) result provoke the "f_{Ds} puzzle" (3.8o discrepency)
- · Lattice avg. has come up
- Expt. avg has come down

Semi-leptonic Analysis

- Three ongoing measurements:
 - $D^0 \rightarrow K^-/\pi^- e^+ v$
 - $D^+ \rightarrow \pi^0/\eta \ e^+ v$,
 - $D^+ \rightarrow \omega/\phi \ e^+ \ v, \ \omega \rightarrow \pi^+\pi^-\pi^0, \ \phi \rightarrow KK$
- Motivation:
 - Measure form factors and check theory
 - Test iso-spin symmetry in $D^0/D^+ \rightarrow \pi^-/\pi^0 e^+ v$
 - Branching fraction measurements (larger error for PDG value of D⁺ $\rightarrow we^+v$, and only upper limit for D⁺ $\rightarrow \phi e^+v$. can help studying $w-\phi$ mixing.)

D Branch Fraction Measurement

•Motivation:

(1) Important to normalize decay fractions of D and B mesons (2) Precise measurements of $B(D^0 \rightarrow K\pi)$ and $B(D^+ \rightarrow K\pi\pi)$ can directly improve precisions of CKM elements

•Current status: (1) K/ π tracking, π^0 , K⁰_s efficiency measurements (2)PID efficiency measurement

•All other analyses at BESIII would benefit from systematics studies

CPV in D decay at BESIII

Direct CP violation in D decays is expected to be small in SM.

For CF and DCS decays direct CP violation requires New Physics. Exception: $D^{\pm} \rightarrow K_{S,L}\pi^{\pm}$ with A_{CP} =-3.3×10⁻³.

For Singly Cabibbo Suppressed (SCS) decays SM CPV could reach 10⁻³.

$$A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

At BESIII, CP asymmetry can be tested with 10⁻³ sensitivity for many final states. D.S.Du , EPJC5,579(2007) Y. Grossman et al PRD75, 036008(2007) Best limits:

Belle: $D^0 \rightarrow K^+ K^-, \pi^+ \pi^ A_{CP}(K^+ K^-) = (0.43 \pm 0.30 \pm 0.11)\%$ $A_{CP}(\pi^+ \pi^-) = (0.43 \pm 0.52 \pm 0.12)\%$

BABAR: $D^+ \rightarrow K_S \pi^+$ $A_{CP}(K_S \pi^+) = (-0.44 \pm 0.13 \pm 0.10)\%$ CLEO-c : Ks $\pi^+ \pi^0$ $A_{CP}(K_S \pi^+ \pi^0) = (0.3 \pm 0.9 \pm 0.3)\%$

CP Violation with T-Odd Correlation

- Form T-odd correlation and difference of asymmetries
 - Look for T-violation assuming CPT invariance (Bigi hepph/0107102)
 - D meson four body decays
 - D→ KsKππ, KKππ

$$C_T \equiv \langle ec{p}_{K^+} \cdot (ec{p}_{\pi^+} imes ec{p}_{\pi^-})
angle \ ar{C}_T \equiv \langle ec{p}_{K^-} \cdot (ec{p}_{\pi^-} imes ec{p}_{\pi^+})
angle$$

$$A_{T} = \frac{\Gamma_{D^{0}}(C_{T}>0) - \Gamma_{D^{0}}(C_{T}<0)}{\Gamma_{D^{0}}(C_{T}>0) + \Gamma_{D^{0}}(C_{T}<0)} \quad \text{and} \quad \overline{A}_{T} = \frac{\Gamma_{\overline{D}^{0}}(-\overline{C}_{T}>0) - \Gamma_{\overline{D}^{0}}(-\overline{C}_{T}<0)}{\Gamma_{\overline{D}^{0}}(-\overline{C}_{T}>0) + \Gamma_{\overline{D}^{0}}(-\overline{C}_{T}<0)}$$

• If T violation:

$$\mathcal{A}_T = \frac{A_T - \bar{A}_T}{2} \neq 0$$

- Ongoing analysis:
 - Look into $D^{+/-} \rightarrow KsK\pi\pi$, $KK\pi\pi^0$

Other Analysis at BESIII

- Dalitz plot analysis ($D^0 \rightarrow K\pi\pi^0$, $D^+ \rightarrow K^0_s\pi\pi^0$, $D^0 \rightarrow K\pi\eta$, $D^+ \rightarrow KK\pi$):
 - Study the Km system, search for the low mass scalar resonance κ
- $\psi(3770)$ cross section measurement
- $\psi(3770)$ line shape measurement

Summary

- BESIII is accumulating data at record speed
- Many unique opportunities for BESIII
 - Challenge SM with improved f $_{D+}$ f $_{Ds}$ values
 - Measure form factor and check LQCD
 - Search for CP or T violation in D-meson decays

Thank you!

Backup

BEPCII storage rings

Beam energy: 1.0-2.3 GeV **Design Luminosity:** 1×10^{33} cm⁻²s⁻¹ Already achieved 2/3 of the design luminosity **Optimum energy: 1.89 GeV Energy spread:** 5.16 × 10⁻⁴ No. of bunches: 93 **Bunch length:** 1.5 cm **Total current: 0.91** A **Circumference**: 237m

BESIII Collaboration

D⁺->µ⁺v Measurement

•Tag side: 9 D⁺ hadronic modes ($K\pi\pi$, $K\pi\pi\pi^0$, $K_s\pi$, etc) •Signal side:

1. one charged track only and muon PID satisfied

2. no isolated EMC shower

23

D-D mixing

Flavor oscillation in neutral D meson systems:

Mass eigenstates ≠ Flavor eigenstates

 $egin{aligned} |D_1
angle &= p |D^0
angle + q |ar{D}^0
angle \ |D_2
angle &= p |D^0
angle - q |ar{D}^0
angle \ p
eq q ~~ ext{if}~CP ~ ext{violation} \end{aligned}$

Mixing parameters

$$x=rac{M_1-M_2}{\Gamma}$$
 $y=rac{\Gamma_1-\Gamma_2}{2\Gamma}$

Mixing mechanism and x,y •short distance contribution: •Well predicted by SM GIM(for d,s) & CKMb,s,d(for b) suppression W y^{box}<<x^{box}~10⁻⁶-10⁻⁵ $\overline{b}, \overline{s}, \overline{d}$ •Long distance contribution: •Difficult to calculate •Depend on the size of SU(3)_F breaking •Up to O(10⁻³) •New physics can enhance D⁰ mixing