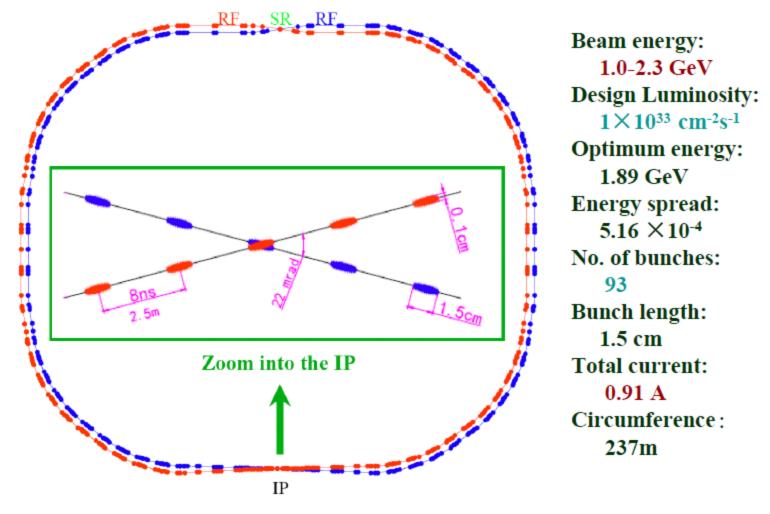
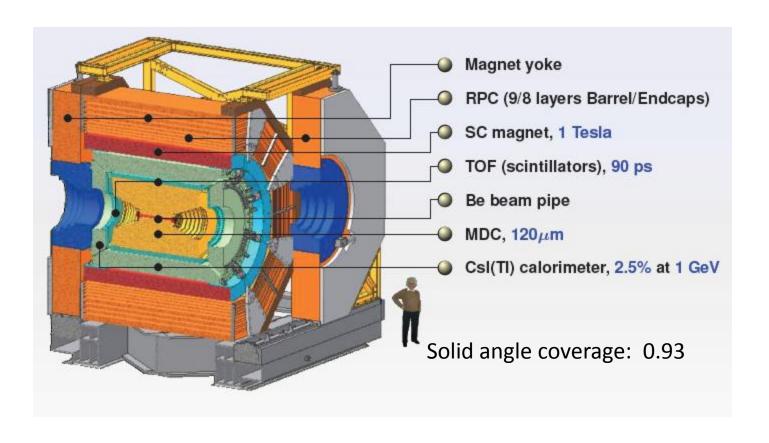
Charm Program at BESIII

Chunlei Liu
On Behalf of the BESIII Collaboration


Carnegie Melon University

19th Particles & Nuclei International ConferenceMassachusetts Institute of Technology, Cambridge, MA, USA

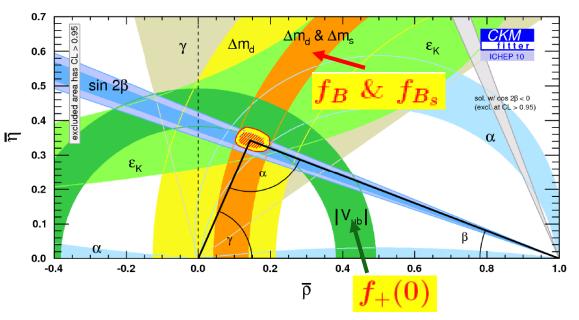
Outline


- BESIII introduction
- Charm prospects at BESIII
- Ongoing analyses
- Summary

BEPCII: e⁺e⁻ Double Ring Collider

Good news: already achieved 2/3 of the design luminosity 3 years into running

BESIII: General-Purpose Detector



A new detector, utilizing advanced detector technologies developed over the past two decades.

Data Taken

- Apr. 2009: 106 M ψ' events (~150 pb⁻¹)
 (plus ~42 pb⁻¹ at 3.65 GeV)
- Jul. 2009: 225 M J/ψ events (~65 pb⁻¹)
- Jun. 2010: $^{\circ}$ 923 pb⁻¹ at ψ (3770) (plus $^{\circ}$ 70 pb⁻¹ scan data around ψ (3770))
- Apr. 2011: $^{\sim}$ 2 fb⁻¹ at ψ (3770) ($^{\sim}$ 2.9 fb⁻¹ ψ (3770) together, 3.5 times of CLEO-c data)
- May. 2011: $\sim 0.5 \text{ fb}^{-1}$ at 4010 MeV (for D_s and XYZ)

Charm Role in Flavor Physics

Theoretical errors dominate width of bands

|V_{ub}| from B
$$\rightarrow \pi \ell \nu$$
:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

Form factor f(q2):

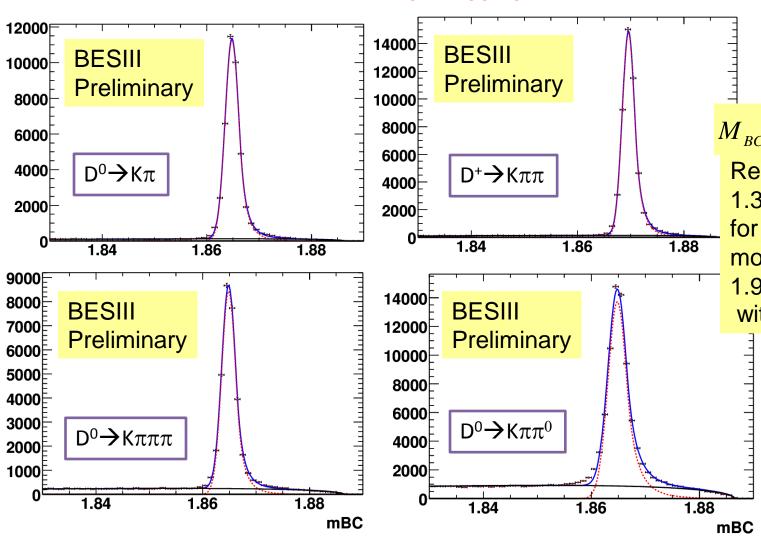
- Hard to calculate
- Limits IV_{ub}I precision
- Lattice QCD can do from first principles

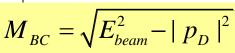
Charm decay measurements

decay constants form factors V_{CKM} clean extraction validate QCD.

over-constrain V_{CKM} Inconsistency → New Physics

Advantage of Open Charm at Threshold

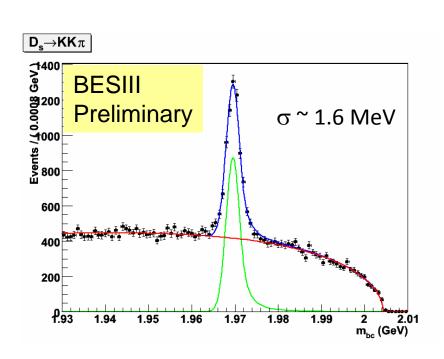

 e⁺e⁻ colliders at threshold: CLEO-c, BESIII, super-tau-charm

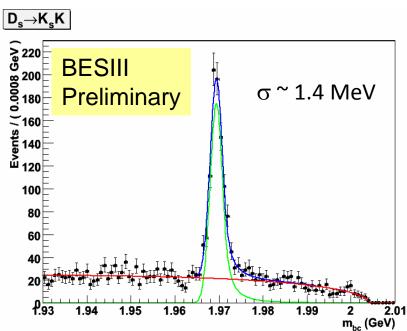

$$e^+e^- -> \psi(3770) -> DDbar$$

- Benefits for charm physics:
 - Threshold production is clean
 - Known initial energy and quantum number
 - Both D and DDar fully reconstructed
 - Absolute measurement

Clean single tag at BESIII

@ ψ (3770) with 420pb⁻¹ first clean single tagging sample:




Resolution:

- 1.3 MeV for pure charged modes;
- 1.9 MeV for modes with one π^0 .

mBC of D_s Single Tag

part of data @ 4010 MeV

Prospects for Charm at BESIII

precision measurements at BESIII after CLEO-c.

```
CLEO-c errors for D<sup>0</sup> /D<sup>+</sup> physics with 818 pb<sup>-1</sup>@3770 BESIII (5fb<sup>-1</sup>) f_{D+} (D<sup>+</sup>\rightarrow \mu^+ \nu): \pm 4.1\% (stat.) \pm 1.2\% (sys.) \pm 1.7\% (stat.) f_{\pi}(0) (D<sup>0</sup>\rightarrow \pi l \nu): \pm 5.3\% (stat.) \pm 0.7\% (sys.) \pm 2.1\% (stat.) BR(D<sup>0</sup>\rightarrow K\pi): \pm 0.9\% (stat.) \pm 1.8\% (sys.) limited by sys. BR(D<sup>+</sup>\rightarrow K\pi\pi): \pm 1.1\% (stat.) \pm 2.0\% (sys.) limited by sys.

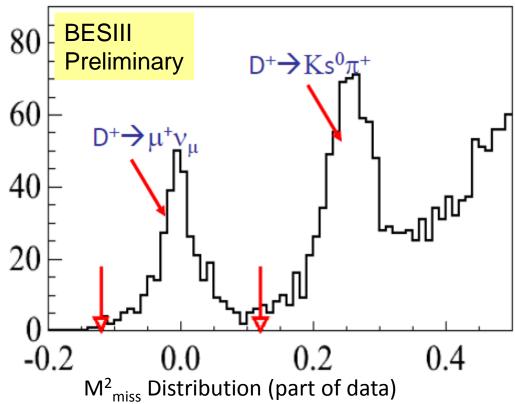
CLEO-c errors for D<sub>s</sub> physics with 600 pb^{-1}@4170 \ MeV f_{Ds} (Ds<sup>+</sup>\rightarrow \mu^+ \nu, \tau \nu): \pm 2.5\% (stat.) \pm 1.2\% (sys.) \pm 0.9\% (stat.) BR(Ds<sup>+</sup>\rightarrow KK\pi): \pm 4.2\% (stat.) \pm 2.9\% (sys.) \pm 1.5\% (stat.)
```

```
For Ds physics, BESIII are taking data at both 4010 and 4170 MeV:

4010 MeV (clean single tag, lower cross section 0.3 nb) → BESIII 0.5 fb<sup>-1</sup>

4170MeV (dirty single tag, maximum cross section 0.9 nb) → CLEO-c 0.6 fb<sup>-1</sup>
```

Significant gains will be made with increased luminosity at BESIII.


Ongoing Analyses (using data up to 2.9 fb⁻¹)

Leptonic Analysis

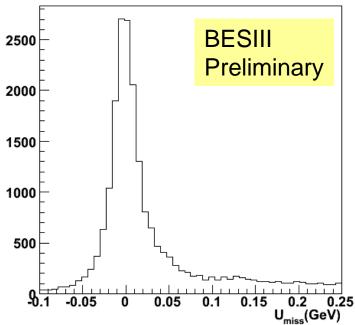
- Two ongoing measurements:
 - $D^+ -> \mu^+ \nu$,
 - $-D_s \rightarrow \mu^+ \nu$
- Motivations:
 - Clean way to measure f_{D+} and f_{Ds} (by Branch Fraction) in SM
 - Good agreement between expt. f_{D+} and LQCD calculations
 - ~1.6 σ difference between expt. f_{Ds} and LQCD calculations
 - Precise f_{D+} and f_{Ds} measurements are important inputs for theory

$D^+ > \mu^+ \nu$ Measurement

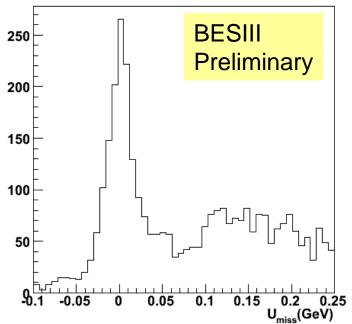
- •Tag side: 9 D⁺ hadronic modes ($K\pi\pi$, $k\pi\pi\pi^0$, $K_s\pi$, etc)
- •Signal side:
 - 1. one charged track only and muon PID satisfied
 - 2. no isolated EMC shower
- •Key variable: $M_{miss}^2 = E_{miss}^2 P_{miss}^2$

Semi-leptonic Analysis

- Three ongoing measurements:
 - $-D^{0}->K^{-}/\pi^{-}e^{+}\nu$
 - $-D^{+} \rightarrow \pi^{0}/\eta e^{+} \nu$,
 - $D^+ -> ω/φ e^+ ν, ω-> π^+π^-π^0, φ->KK$
- Motivations
 - Measure form factors and check theory
 - Test iso-spin symmetry in D⁰/D⁺-> π^-/π^0 e⁺ ν
 - Branch fraction measurements (large error for PDG value of D⁺ -> ω e⁺ν, and only upper limit for D⁺ -> φ e⁺ν.)


D^0 ->K⁻/ π - e⁺ v Measurement

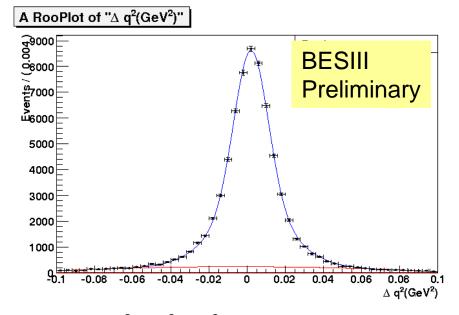
•Tag side: Three D⁰ modes ($K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$)


•Signal side:

- 1. two good tracks with opposite charges
- 2. K/π PID and electron PID requirements
- 3. electron has opposite charge as the tag side kaon

•Key variable: $U_{miss} = E_{miss} - P_{miss}$

 U_{miss} Distribution of D^0 -> K e ν mode (part of data)



 U_{miss} Distribution of $D^0 -> \pi e \nu$ mode (part of data)

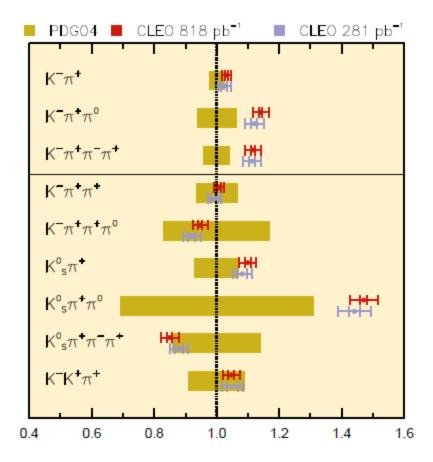
q² Resolution

$$\frac{d\Gamma(D \to Pe\nu)}{dq^2} = X \frac{G_F^2 \left| V_{cd(s)} \right|^2}{24\pi^3} p^3 \left| f_+ \left(q^2 \right) \right|^2$$

Where q² is invariant mass of leptonneutrino system

 $\Delta q^2 = q^2 - q^2_{truth}$ From signal Monte Carlo

- •To extract form factors, need to fit yields in q² bins.
- •Less than 10 bins in q² from 0 to 3 GeV²
- •Excellent resolution according to MC: $\sigma \sim 0.015 \text{ GeV}^2$


D Branch Fraction Measurement

•Motivation:

- (1) Important to normalize decay fractions of D and B mesons
- (2) precise measurements of $B(D^0-K\pi)$ and $B(D^+-K\pi)$ can directly improve precisions of CKM elements
- (3) Check CLEO-c measurements

•Current status:

- (1) Luminosity measurement
- (2) K/π tracking, π^0 , K_s^0 efficiency measurements
- (3) PID efficiency measurement
- •All other analyses at BESIII would benefit from systematics studies

Xin Shi, 2011 Lake Louise Winter Institute (preliminary)

DDbar Cross Section Measurement

- Motivation
 - Measure ratio of D⁰ and D⁺ cross section to check theory calculation
 - To extract non-DDbar Brach Fraction
- previous results at E_{cm} ~ 3773 MeV:
 - BESII, ~5.93+/-0.59 nb (PRL, 97:121801,2006)
 - CLEO-c, ~6.51+/-0.08 nb (xinshi, 2011 LLWI)
- Both single tag and double tag techniques are used to measure the DDbar cross sections at BESIII

Other Analyses at BESIII

- Dalitz plot analysis (D^0 -> $K\pi\pi^0$, D^+ -> $K^0_s\pi\pi^0$, D^0 -> $K\pi\eta$, D^+ -> $KK\pi$) :
 - Study the $K\pi$ system, search for the low mass scalar resonance κ
 - Develop the Dalitz plot analysis software for Charm physics at BESIII
- Search for CP violation through T-violation in modes: D+-> $K^0_sK^+\pi^+\pi^-$ and D+-> $K^+K^-\pi^+\pi^0$

Summary

- BESIII is accumulating data at record speed
- Charm prospects at BESIII is great
- Rich results are coming out soon

Back Up

Non-DDbar Brach Fraction

- $\psi(3770)$ (mixture of S and D waves) expected to decay to DDbar entirely
- However, long history of non-DDbar branch fraction measurements:
 - ~1988, Mark III/II, Lead-Glass Wall: ~50% non-DDbar
 - ~2006-2008, BESII: 14.7% +/- 3.2%
 - ~ 2010, CLEO-c: no evidence of non-DDbar, set upper limit <9% at 90%CL

Non-Ddbar Measurement at BESIII

- Use same p(3770) data as charm physics
- Inclusive measurement
- Exclusive measurement:
 - ψ(3770)-> $γχ_{cJ}$
 - ψ (3770)-> $J/\psi \pi \pi$, $J/\psi \pi^0$, $J/\psi \eta$
 - $\psi (3770) -> VP$
 - $-\psi$ (3770)-> light hadrons